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Abstract 

In this paper, an automatic voice pathology detection (VPD) system based on voice production theory is 

developed. More specifically, features are extracted from vocal tract area, which are connected to the glottis. 

Voice pathology is related to a vocal fold problem, and hence the vocal tract area which is connected to vocal 

fold or glottis should exhibit irregular patterns over frames in case of a sustained vowel for a pathological voice. 

This irregular pattern is quantified in the form of variance across the frames to distinguish between normal and 

pathological voices. The proposed VPD system is evaluated on the MEEI database with sustained vowel 

samples. Vocal tract irregularity features and support vector machine classifier are used in the proposed system. 

The proposed system achieves 99.02%±0.01 accuracy on the MEEI database. The results indicate that vocal 

tract irregularity measures can effectively be used in voice pathology detection.   

Keywords: voice pathology detection, vocal tract area, voice disorders, support vector machine. 

 

Introduction 

Voice pathology detection refers to a detection procedure of the pathology in the vocal fold from an input voice. 

The detection can be subjective or objective. In subjective detection, an experienced physician hears the voice 

and assesses whether the voice is normal or having pathology based on his/her previous knowledge and 
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experience. However, this type of assessment may vary physician to physician depending on experience 

(Kreiman, Gerratt, & Precoda, 1990). Therefore, objective evaluation of voice pathology is gaining more 

attention day by day from both medical and engineering personnel. 

Lieberman proposed one of the first acoustic voice parameters in pathological voice analysis in 1961 

(Lieberman, 1961). Voice perturbation and quality measures, such as jitter (pitch perturbation) and shimmer 

(amplitude perturbation), depend on accurate extraction of fundamental frequency and the amplitude of various 

waveform types. However, measuring fundamental frequency (F0) is a very difficult task; especially in the case 

of a pathological voice (Titze, & Liang, 1993).  

Most of the work in voice pathology detection rely on the measurement of a sustained vowel, particularly, /AH/ 

sound, uttered by the subject. /AH/ is easy to pronounce for a patient having voice pathology; its formants are 

clearly distinguishable, and peaks are prominent. These three attributes of sustained /AH/ make it a proper 

choice for voice pathology detection. Popular acoustic features extracted from sustained vowel to detect voice 

pathology are shimmer and jitter, spectral centroid and spectral flatness (Moran, Reilly, Chazal, & Lacy, 2006), 

cepstral peak prominence (Heman-Ackah, Heuer, Michael, Ostrowski, Horman, Baroody, Hillenbrand, & 

Sataloff, 2003), etc. Vasilakis and Stylianou developed a new method for short-time jitter and found the AUC 

(area under curve) reached 94.82% (Vasilakis, & Stylianou, 2009). Though these popular features are widely 

used in the literature, many researchers found different relationships (poor to high) between these features and 

severity of voice pathology (Martin, Fitch, & Wolfe, 1995; Shrivastav, 2003). Little et al. found that nonlinear 

measures, such as recurrence period density entropy and detrended fluctuation analysis, were more stable and 

reliable than the classical measures on voice pathology quantification (Little, Costello, & Harries, 2009). 

Markaki and Stylianou suggested a modulation spectra method to identify pathological voices and achieved an 

AUC of 96.26% (Markaki, & Stylianou, 2011). Arias-Londono et al. introduced a method, which is based on 

extracting eleven features using nonlinear analysis of time series, and gained a classification accuracy of 98.23% 

using classifier combination (Arias-Londono, Godino-Llorente, Saenz-Lechon, Osma-Ruiz, & Castellanos-

Dominguez, 2011). Godino-Llorente et al. proposed a detection system of pathological voice by means of 

Gaussian mixture models and short-term mel cepstral parameters complemented by frame energy together with 

first and second derivatives (Godino-Llorente, Gomez-Vilda, & Blanco-Velasco, 2006). All of three methods 



in (Markaki, & Stylianou, 2011; Arias-Londono, et al., 2011; Godino-Llorente, et al., 2006) were applied on a 

common subset of MEEI database (Kay Elemetrics Corp., 1994). Some research was conducted with continuous 

speech to detect voice pathology (Lowell, Colton, Kelley, & Hahn, 2011; Muhammad, Mesallam, Almalki, 

Farahat, Mahmood, & Alsulaiman, 2012), where the authors claim that continuous speech is more practical than 

sustained vowel in everyday life.  

Voice pathology detection is still an open problem. The difficulty of detecting voice pathology is closely 

associated to the severity of the pathology. A patient with less severe pathology can pronounce a vowel without 

much difficulty; however, it is not the same with the patient having severe voice pathology; for example, a big 

cyst in the vocal fold prevents proper closing and opening of the fold while pronouncing a vowel sound. 

In this paper, we propose a voice pathology detection (VPD) system based on the vocal tract area features. Voice 

pathology is related to vocal fold problem, and hence the vocal tract area which is connected to the vocal fold 

should exhibit irregular patterns over frames in case of a sustained vowel for a pathological voice. Typically, it 

is believed that there is no infralaryngeal (tracheobronchial tree) effect on the vocal tract while producing a 

vowel on the assumption that the voicing source has infinite impedance. However, a finely detailed analysis 

must recognize that the infralaryngeal structures exert an influence on the vocal tract; the articulatory 

configuration in the vocal tract interacts with the articulation in the vocal folds (Kent, & Kim, 2008). Therefore, 

additional vocal tract-related information is expected to assist in detecting the characteristics of the vocal folds, 

especially during phonation (Lee, et al., 2013). We quantify this irregularity in the form of variances along time. 

Several methods based on glottal noise measures, such as signal to noise ratio (SNR), harmonic to noise ratio 

(HNR), normalized noise energy (NNE), pitch amplitude (PA), and spectral flatness ratio (SFR), are proposed 

in (Parsa, & Jamieson, 2000). However, calculation of SNR, HNR, and NNE requires correct estimation of F0. 

PA and SFR are based on linear prediction (LP) modeling, where PA needs computationally expensive 

autocorrelation, and SFR needs windowing and Fourier transform after LP. On the other hand, our proposed 

method is much simpler than the PA and SFR in the sense that it uses LP coefficients directly to calculate the 

area of different tubes in the vocal tract. 



Materials and Methods 

Data 

To prove the proposed concept, we utilize a common database, which is MEEI database, in the experiments. 

Campbell and Reynolds state that “the main benefit of using standard corpora is that it allows researchers to 

compare performance of different techniques on common data, thus making it easier to determine which 

approaches are most promising to pursue” (Campbell, & Reynolds, 1999). To compare the proposed system 

with others, we used the same subset of the MEEI database which was used in (Markaki, & Stylianou, 2011; 

Arias-Londono, et al., 2011; Godino-Llorente, et al., 2006), denoted as MEEIsubset; this subset has sustained 

vowel /AH/ recordings for 53 normal and 173 pathological speakers. The criteria in selecting this subset took 

into consideration a wide variety of voice disorders and a uniformly distributed gender and age between both 

normal and pathological classes (Parsa, & Jamieson, 2000). A statistical description of the MEEIsubset is shown 

in Table 1. In the pathological class, the voice disorders include adductor (22 speakers), vocal nodules (20 

speakers), keratosis (26 speakers), vocal fold polyp (20 speakers), and paralysis (71 speakers). The rest 14 

speakers have multiple disorders. The sound files in the MEEIsubset have a sampling rate of either 50 kHz or 25 

kHz. Therefore, all the files having a sampling rate of 50 kHz were down-sampled to 25 kHz to have a uniform 

sampling rate. 

Table 1: Statistics of MEEIsubset :♂ for male, ♀ for female (Parsa, & Jamieson, 2000). 

 

Number of 

speakers 

Mean age 

(years) 
Age range (years) 

Standard Deviation 

(years) 

♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ 

Nor mal 21 32 38.8 34.2 26 to 59 22 to 52 8.5 7.9 

Pathological 70 103 41.7 37.6 26 to 58 21 to 51 9.4 8.2 

 

Proposed System 

The proposed VPD system, shown in Figure 1, consists of two major components, which are feature extraction 

and classification. Features are extracted from the vocal tract area obtained from the input voice. The vocal tract 



starting from glottis and ending at lips can be divided into several tubes of uniform length. Vocal tract area 

function calculates area of different tubes along the vocal tract for a certain time based on the phone production 

system. Figure 2 shows simulated tubes of a vocal tract area. Glottis is directly connected to the vocal fold, and 

therefore, any abnormality in the vocal fold may be observed to the area of the tubes connected to the glottis. 

During vowel pronunciation, in case of voice pathology the vocal folds can have irregular opening and closing, 

thereby causing noise. The abnormality can be found in the tubes area across frames. 

 

Figure 1: Block diagram of the proposed VPD system. Solid line indicates training phase, while dashed line 

indicates testing phase. 

 

Figure 2: Simulated tubes of the vocal tract. 

Vocal tract area calculation 

The area of the vocal tract is calculated using LP filter. LP coding of speech is proposed early 1980's and has 

been used in many applications of speech (Markel, & Gray, 1982). Suppose, x(n) is the current sample, and it 

has to be predicted by some weighting of the previous M samples. M is called the order of the filter (number of 

tubes), and the predicted current sample, )(nx , can be found as Eq. (1). 
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where, ai corresponds to i-th LP coefficients or weight. The error between the current sample and the predicted 

current sample is 
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The mean square error (E) is calculated by Eq. (3). 
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To find minimum error, we set the derivative of E equal zero and find the coefficients ai. 
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Eq. (4) can be solved using the matrix form in Eq. (5). 
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Eq. (5) can be solved using Levinson-Durbin recursive algorithm as follows (Markel, & Gray, 1982). 

Stop.    , 

21

1,...,2,1     ,

/)()(

,1 

)0( :

1

1

)(

1

1
1

1

1

0

thenMmif

m
kEE

miforakaa

Eimramrka

mFor

rEtionInitializa

mm

m

imm

m

i

m

i

m
m

i

m

im

m

m

=





 −=

−=−=









−−==



=

−

−

−

−

−
−

=

−

  

In the above algorithm, Em corresponds to the m-th order prediction error, and k is called reflection coefficient. 

The vocal tract area of the m-th tube can found using Eq. (6). 
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Feature extraction based on vocal tract area 

The vocal tract areas of m number of tubes are calculated frame by frame for each input voice file. If the input 

voice is a sustained vowel, for a normal speaker without any voice pathology, the area of the m-th tube across 

the frames will not vary a significant amount. On the other hand, the area will differ for a pathological voice 

because of irregular opening and closing of the vocal fold. Figure 3 shows an example of such case. In the top 

row of the figure, the vocal tract areas of two different frames for a normal voice (file AXH1NAL in MEEI 

database) are shown. We can find that the areas of the tubes close to the glottis are almost similar for the two 

frames. In the bottom row of the figure, the same are shown for a pathological voice (file ALB18AN). We see 

that the areas close to the glottis are not similar in the two frames. From the above observation, we calculate 

three types of features as described below. 

Average: The average area (Avgm) of each tube (Am) is calculated along the frames. 

Variance: The variance (Varm) of each tube is calculated along the frames. 

Ratio_Variance: The ratio (Rm, m-1) of the area of the two successive tubes is calculated along the frames. We 

can formulate it as 

m

m

mm
A

A
R 1

1,

−

− = .

 

(7)

 

So, there will be m-1 number of ratio. We take the variance of the ratio along the frames and denote it as (R-

varm,m-1). The reason behind this feature is to capture the relative shape differences between the tubes (as evident 

in Figure 3). 

The final feature vector set is the concatenation of these three types of features as [Avgm Varm R-varm,m-1].  



 

(a) Normal voice. 

 

(b) Pathological voice. 

Figure 3: Vocal tract area for (a) normal and (b) pathological voices for two different frames. For the normal 

voice, area close to glottis is similar between frames, while those for pathological voice are different. 

Setup 

The minimum value of M (order of the LP filter) is set to 16, because the typical vocal tract length is around 17 

cm. We varied M between 16, 20, 24, and 28. Frame length is set to 30 ms with no overlapping.  

The classification process was done using a ten-fold cross-validation SVM. RBF kernel was chosen for SVM. 

In ten-fold cross-validation, the normal files and the pathological files are randomly divided into ten equal 

groups each. In each iteration, nine groups each from the normal and the pathological are used for training, 

while the remaining are for testing. Therefore, at the end of ten iterations, all the ten groups are tested. There is 

no overlapping of the samples between the training set and the testing set. The optimization of the SVM 

parameters was done with the training set. Loose grid search and fine grid search were conducted to obtain the 

optimal parameters values for ‘c’ and ‘gamma’. The whole program ran 20 times and the final accuracy was 



obtained by averaging accuracies of 20 runs. We used LIBSVM, which is a library for SVM (Chih-Chung, & 

Chih-Jen, 2011). 

Results  

Figure 4 shows the effect of the order of LP on the proposed system. All the three types of irregularity measures 

are calculated on all the tubes. From the figure, we see that 24-order performs the best and Var has the highest 

detection capability with 95% accuracy. From this outcome, we find that tube lengths of around 7 mm (17 cm / 

24 tubes) each can effectively detect the irregularity in the voice production. If the tube length is greater than 7 

mm, the irregularity is smoothed, and if the tube length is less than 7 mm, noise is emphasized. All the 

subsequent experiments are done with 24-order LP. 

Figure 5 shows the accuracies of the system using various numbers of tubes (starting from the first tube). For 

example, considering the average area of only the first tube (Avg1), the accuracy is 32%, while the variance of 

the first tube (Var1) gives 77% accuracy. The variance of the ratio between the first and the second tubes (R-

var2,1) shows 51% accuracy. Using the first three tubes, the accuracies obtained by Avg, Var, and R-var are 41%, 

89%, and 75%, respectively. The last bar of each type corresponds to the result shown in Figure 4 with 24-LP. 

These results demonstrate that variances of the vocal tract areas of the tubes have very good discrimination 

capability between normal and pathological voices. Var of only first three tubes has accuracy of 89%, which is 

interesting. Shape ratio of the successive tubes also has a good contribution towards the discrimination. 

The performance of combining all the three irregularity measures is given in Table 2. The best accuracy (99.02% 

with a standard deviation of 0.01) is obtained using all the tubes. In this case, the number of features is (24 Avg 

+ 24 Var +23 R-var =) 71. The sensitivity (Sn) and specificity (Sp) is 99.8% and 97.5%, respectively, and the 

AUC = 0.9915 (see Figure 6). The ROC curve with AUC is shown in Figure 6 (with 95% confidence interval). 

Figure 7 shows the discriminative capability of the first three variances in the form of a scatter plot.   

 

 



 

Figure 4: Accuracy (%) of the system using various LP orders with three different measurement types. 

 

Figure 5: Accuracy (%) of the system using various vocal tract area irregularity measurements with 24-

order LP filter. 

Table 2: Performance of the combined irregularity measures. The numbers inside the parenthesis 

represent feature dimension. 

Features %Acc %Sn %Sp 

Avg+Var+R-var  (3+3+3) 95.14±1.13 97.1±0.03 93.1±0.87 

Avg+Var+R-var (7+7+7) 97.84±0.07 98.4±0.12 96.5±1.3 

Avg+Var+R-var (24+24+23) 99.02±0.01 99.8±0.02 97.5±0.04 
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Figure 6. ROC curves of the proposed system with different dimensions of irregularity measures. 

 

Figure 7. 3-D scatter plot to show the discriminative capability of the three features (Var 1, Var 2, and Var 3). 

 

Comparison with other methods of VPD system 

We compare the performance of different methods of the VPD system. The accuracies together with the feature 

and classification names are given in Table 3. The proposed vocal tract area irregularity measures and SVM 

classification based VPD system performs better than the methods described in (Markaki, & Stylianou, 2011; 

Arias-Londono, et al., 2011; Godino-Llorente, et al., 2006). The accuracies of these methods are taken from 

their papers, because all the methods in these papers are applied on the same subset of the MEEI database. From 

the table we find that the best accuracy (99.02%) is achieved with the proposed method, and the second best 

accuracy (98.23%) is obtained with the method in (Arias-Londono, et al., 2011). 
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Avg+Var+R-var (3+3+3); AUC = 0.9469

Avg+Var+R-var (7+7+7); AUC = 0.9790

Avg+Var+R-var (24+24+23); AUC = 0.9915



Table 3. Comparison of different approaches on voice pathology detection. 

Method %Acc Feature Classification 

Proposed 99.02 Vocal tract area irregularity SVM 

Method in (Markaki, & 

Stylianou, 2011) 

 

94.1 Modulation Spectra SVM 

Method in (Godino-

Llorente, et al., 2006) 

 

94.07 Cepstral GMM 

Method in (Arias-

Londono, et al., 2011) 
98.23 MFCC + others GMM+SVM 

 

Discussion 

The LP coefficients correspond to the excitation signal of the vocal tract area function. In case of normal voice, 

the LP coefficients may be modeled as a deterministic signal (all-pole), consisting of the sinusoids with equal 

amplitudes. In normal production of a sustained vowel, the vocal fold vibrates with periodic and stable structure, 

and the vocal tract is approximately fixed. In case of some pathologies, there might be vocal fold tension 

irregularity, for example, the vocal folds can have irregular opening and closing. The LP coefficients cannot be 

estimated on only the closed phase of the cycle, the interpretation of the area estimates is not straightforward. 

We can generally say that, in this case, the LP coefficients are modeled as a sum of incoherent sinusoidal with 

random phases.  This irregularity may produce frequency jitter, turbulent noise, subharmonics, two independent 

fundamental frequencies, and other effects. These measurements are used before in the literature to detect voice 

pathology (Moran, et al., 2006; Heman-Ackah, et al., 2003; Vasilakis, & Stylianou, 2009; Parsa, & Jamieson, 

2000). However, in this paper, we propose a simple mechanism to detect voice pathology. In this mechanism, 

features are extracted directly from the vocal tract area tubes across frames, thereby reducing the extra 

calculation needed to measure jitter, noise, subharmonics, fundamental frequencies, etc. Voice is the production 

of a source (vocal fold) and a filter (vocal tract), and therefore, voice quality should depend on the both. Nunes 

et al. studied that supraglottic tract has a clear effect on the voice pathology; however, they could not quantify 

the relation (Nunes, de Souza, Duprat, Silva, Costa, & Paulino, 2009). This can be quantified by a measure of 

irregularity in the vocal tract.   



To quantify the irregularity of the vocal tract area, we calculate the average, variance, and ratio between two 

successive tubes in the vocal tract. In the experiments, the variance is proved to be more significant than the 

other two measures. The features from the first three tubes achieve accuracy as high as 95%, indicating their 

significant contribution to detect the irregularity. Supraglottic tract can be represented by the tubes close to the 

glottis (for example, first three to seven tubes), and these tubes contribute more to the detection performance 

(Table 2). This study is the first kind of quantifying the vocal tract irregularity to detect voice pathology.   

Markakai et al. reported 94.1% accuracy using modulation spectra features and SVM classification (Markaki, 

& Stylianou, 2011). The total number of features in their case was 91, and this number of optimal features wa 

found using a high order singular value decomposition. Godino-Llorente et al. achieved 94.07% accuracy using 

12 MFCC and 12 delta-MFCC with GMM (Godino-Llorente, et al., 2006). However, our proposed method 

achieved 95.14% accuracy using only nine features (Table 2, first row), without any optimal feature selection.  

Arias-Londono et al. used different entropy and noise measures together with MFCC features (Arias-Londono, 

et al., 2011). They fused two classifiers, generative and discriminative, in the form of SVM to achieve 98.23% 

accuracy. Fusing classifiers is always a time consuming process. In our proposed method, we got 97.84% 

accuracy with only 21 features and 99.02% accuracy with 71 features. These accuracies were obtained without 

any classifier combination. 

To the best of our knowledge, 99.02% is one of the highest accuracies obtained in MEEI database reported so 

far in the literature. To investigate the proposed features capability of detecting voice pathologies independent 

of the classifiers, we performed another set of experiments using GMM-based classifiers with number of 

Gaussian mixture = 2, 4, 8, 16, and 32. The number of features was fixed to 71. The accuracies obtained were 

93.2%, 94.6%, 97.1%, 98.8%, and 96.8%, respectively. The accuracy of 98.8% closely matches with 99.02% 

obtained with the SVM classifier indicating the robustness of the proposed features.    

Conclusions 

A VPD system based on vocal tract area irregularity was proposed. Three measurements of the irregularity, 

namely, average, variance, and ratio of the successive tubes, were investigated. The proposed system achieved 

99.02% accuracy using these three irregularity measurements on sustained vowels. We can summarize the 

findings to detect voice pathology as follows: 



• The irregularity measure of the vocal tract area is useful. 

• Supraglottic tract has more contribution than the remaining part of the vocal tract towards detecting 

voice pathology. 

• Variance of vocal tract tubes across the utterance is more important than mean of those tubes. 

• A reasonable length of each vocal tract tube is around 7 mm for this specific task.  

How to improve the performance of the proposed system in continuous speech will be a future study. 
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