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ABSTRACT 
 

The aim of this study is to analyze the annual performances of a variable capacity high temperature air source heat 

pump when retrofitted into a mid-terraced house in different aspects combining control, property ages and locations 

across the UK. TRNSYS simulations are used to predict the performances of the retrofit high temperature air source 

heat pump. Firstly, the heat pump model and the whole building model are developed and validated against field trial 

results. Then, a series of reference dwellings combining three climate conditions (Belfast, Aviemore and Camborne), 

three dwelling ages (the ‘00s, ‘70s and ‘90s) and two control strategies (fixed water flow temperature and weather 

compensation) is simulated. The annual simulation results indicate that the heat pump efficiency is highly affected by 

all three factors. The heat pump’s COPs, energy consumption, running cost and carbon emissions have been discussed 

in this paper, which can provide good information for further studies assessing the retrofit potential of this kind of 

heat pump.  

 

1. INTRODUCTION 
 

Regarding domestic sector in the UK, almost 88% of space heating and hot water demand were met by using fossil 

fuel boilers (DECC, 2015), and they were responsible for 40% of domestic heat related emission (DECC, 2012). The 

recent UK’s policies have encouraged the domestic sector to be more energy efficiency and renewable energy 

utilization in order to hit the legally binding target of reducing carbon emissions up to 80% by 2050 (PUK, 2008). 

Therefore, replacing existing fossil fuel boilers with alternative renewable technologies has been a considerable 

attention.   

 

Air source heat pumps (ASHPs), illustrating not only a renewable-based alternative to fossil fuel boilers but also an 

efficient technology, are considered as a promising solution to achieve the carbon reduction target in the domestic 

sector. Hence, there is much research in the UK (e.g. Kelly and Cockroft (2011);  Dunbabin and Wickins (2012)) 

aiming at assessing the performance of the ASHPs when retrofitted into existing dwellings where oil and gas boilers 

have been well established with traditional wet radiators. Most of those research focuses on the standard ASHPs of 

which the output water temperatures limit to 55°C, and the authors conduct this kind of heat pump with a compromise 

of using oversized radiators or under-floor heating because the existing traditional wet radiators cannot work 

efficiently with the flow temperature of under 75°C (BSI, 2014). However, those retrofit approaches requiring the 

modification of the heating distribution systems such as radiators, hot water tanks, piping etc. would lead to the high 

capital cost, and therefore it would be a barrier to encourage homeowners to replace their boilers. To mitigate this 

issue, high temperature air source heat pumps (HT-ASHPs) can be a potential solution because its flow temperature 

can reach 80°C, which is similar to the supply of boilers, so that the requirement of modification of heating distribution 

systems can be prevented.  

 

Due to the advantages for retrofit of HT-ASHPs mentioned above, there are several studies concerning this kind of 

heat pump as a retrofit option in the UK (e.g. The Carbon Trust (2016); Shah and Hewitt (2015)), but most of them 

are carried out using experimental works in short periods and therefore it limits the full-scale investigation of 

performance of this heat pump type. In addition, while there are many studies describing the modeling and simulations 

of standard ASHPs, the investigation of modelling and simulating HT-ASHPs is still scarce. To best of our knowledge, 
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most of the HT-ASHP works are carried out at design level through experiments (e.g. Wang et al. (2009), Hewitt et 

al. (2011)) rather than integrated systems in buildings by means of simulations. Therefore, there is in need of modelling 

works for HT-ASHPs to further conduct their performances in buildings when considering different aspects and time 

spans such as the annual. 

 

This paper presents the model of a variable capacity HT-ASHP coupled with a whole building model in TRNSYS 17 

environment (Klein et al., 2014). The aim of this study is to assess the yearly techno-economic performances of a HT-

ASHP when retrofitted into a mid-terraced house in different aspects combining various dwelling ages, locations and 

control (fixed outlet water temperature and weather compensation strategy) across the UK. The TRNSYS models have 

been developed and validated based on the field trial results mentioned in the previous study (Shah and Hewitt, 2015). 

The investigated heat pump is a cascade variable capacity HT-ASHP with a nominal capacity of 11kW. Figure 1 

depicts the schematic of the retrofit system carried out in this study.   

 

 
 

Figure 1: Schematic of the investigated system 

 

2. TRNSYS MODEL 
 

2.1 HT-ASHP model 
TRNSYS Type 1231 (non-standard TESS libraries) is used to predict the performances of the variable capacity HT-

ASHP. It is worth to note that this TRNSYS Type just models the steady-state performances, while it cannot predict 

the transient states, which is discussed more in the previous study (Le et al., 2017). This model mainly relies on a 

characterized performance map comprising of full load and part load curves which are obtained from field trial results 

(Shah and Hewitt, 2015). The performance map informed by the measured data excludes the periods of defrost 

operation; therefore, an incorporating defrost model is developed outside the heat pump Type 1213 model. The 

following subsections describe those curves and the coupling defrost model in detail.  

 

2.1.1 Full load curves: The maximum load curves of the heat pump model are depicted in Figure 2, with the mean 

COP and electric power (without defrost) being illustrated as a function of external air temperature in accordance with 

different leaving water temperatures (LWT) at condenser side. The electric consumption of the compressors, fans, 

controllers and a circulating pump inside the indoor unit are totally accounted for in the performance curves.  
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Figure 2: Full load curves of the heat pump model 

 

2.1.2 Part load curves: The variable speed compressor heat pump can modulate its heat output capacity based on the 

thermal load required. Since part load performance highly influences the efficiency of the heat pump, its effect should 

be accounted for in the heat pump model. Figure 3 shows the part load curve of the model. The heat pump can reach 

the highest efficiency when its heat output is approximately 13kW.      

  

 
Figure 3: Part load curve of the heat pump when water outlet temperature is set to 76˚C 

 

2.1.3 Defrost model: The field trial data used to obtain the above full load and part load curves excludes the periods 

of defrost operation. Hence, a defrost model is developed outside the heat pump Type 1213 model. 

  

The proposed defrost model is simplified using empirical correlations gained from the experimental data. When the 

ambient temperature is below 7°C and the relative humidity is above 65% for a long period, the heat pump activates 

defrost operation. The frosting time 𝑡𝑓𝑟𝑜𝑠𝑡 and the duration of a defrost cycle 𝑡𝑑𝑒𝑓 are determined using the following 

Equation (1) and Equation (2), respectively. The time of a defrost cycle is between 1 and 10 minutes.  
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 𝑡𝑓𝑟𝑜𝑠𝑡 = 39 − 1.06𝑇 + 0.33𝑅𝐻 + 0.13𝑇2 − 0.0093𝑅𝐻2 − 0.018𝑇3 − 0.00006𝑅𝐻3 (1) 

 𝑡𝑑𝑒𝑓 =  56.2 − 0.34𝑇 − 3.56𝑡𝑓𝑟𝑜𝑠𝑡 − 0.047𝑇2 + 0.079𝑡𝑓𝑟𝑜𝑠𝑡
2 + 0.0096𝑇3 − 0.00057𝑡𝑓𝑟𝑜𝑠𝑡

3  (2) 

 

The cooling energy 𝐸𝑐 and electric consumption 𝐸𝑒 required for a defrost cycle are expressed in Equation (3) and 

Equation (4). The 𝑄𝑐,𝑚𝑒𝑎𝑛 and  𝑊𝑐,𝑚𝑒𝑎𝑛 equal 2.17 kW and 1.75 kW, respectively 

 
𝐸𝑐 =

𝑡𝑑𝑒𝑓 . 𝑄𝑐,𝑚𝑒𝑎𝑛

60
 

(3) 

 
𝐸𝑒 =

𝑡𝑑𝑒𝑓 . 𝑊𝑐,𝑚𝑒𝑎𝑛

60
 

(4) 

 

2.2 Building model 
To model the mid-terraced house, Sketchup software is utilized to draw the building geometry (Figure 4), and then it 

is imported into TRNSYS Type 56. This building was built under the 1900s specifications, representing the popular 

type of housing stock (27.3%) across Northern Ireland, the UK (NIHCS, 2016). The external walls are of solid wall 

and loft insulation with the U-value of 1.64 W/m2K. The U-values of floors, roofs, and windows are 0.67 W/m2K, 

1.42 W/m2K and 4.8 W/m2K, respectively. Infiltration is approximately 1 air changes per hour (Davies, 2016). The 

heat gains from occupants and equipment for the building model are estimated based on the surveys with the people 

who are occupying the field trial house.  

 

      

  
 

Figure 4: Mid-terraced house plans  

 

2.3 Domestic hot water model 
TRNSYS Type 534 is used to model the domestic hot water (DHW) tank. The DHW has a capacity of 163 liters, and 

its standby loss is of 2.74 kWh/day. The DHW tank is serviced by the heat pump via an internal heat exchanger coil 
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to maintain the hot water temperatures. The hot water drawing patterns of the DHW model are the same as the field 

trial results. 

 

2.4 Whole system model 
The HT-ASHP model, building model and DHW model above are integrated with other TRNSYS component models 

to compose a whole system, as illustrated in Figure 5. The heating distribution system includes radiators (Type 1231), 

valves (Type 11 and Type 647), piping (Type 31), temperature sensors (Type 911). Type 15 is utilized to model the 

weather data. 

 

 

 
 

Figure 5: Schematic of the whole system model in TRNSYS 17 Studio 

 

The heating system operates from 7.am to 11.pm every day observed from the monitoring data, and thus the heat pump 

model is also controlled on/off during that time. The temperatures within the dining room are maintained between 

19.5˚C and 21.5˚C. The DHW tank is maintained at 60˚C with a dead band of ±1˚C. The flow temperatures from the 

heat pump to the radiators are fixed to 76˚C which is the same as the field trial one (Shah and Hewitt, 2015).               

  

3. EXPERIMENTAL VALIDATION OF TRNSYS MODEL  
 

To validate the developed models, the whole system model above is simulated and calibrated where necessary. The 

weather data used for calibration and validation is the real data obtained from on-site measurement. The models are 

simulated with 1-minute time step.  

 

In Figure 6, the simulation’s predictions for the daily COPs of the heat pump model is compared with the field trial 

results (Shah and Hewitt, 2015). It can be seen from the figure that the daily COPs of the model highly fall within the 

uncertainty ranges of the experimental COPs (±5.59%), except some outliers respective to the measurement due to 

sensor malfunctions. It is noted that there is a total of 76 days (from 26/11/2014 to 10/02/2015) in which the field trial 

mentioned in this study was carried out.  
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Figure 6: Daily COP comparison between heat pump model and field trial results in 76 days (from 26/11/2014 to 

10/02/2015). 

 

In Figure 7, the simulation’s predictions for the space heating and DHW demand are compared with the house heat 

demand (space heating and DHW) of the field trial data. The regression line of the model relatively correlates with 

the one of the measurement, indicating that the whole house model can be a good test bed for conducting further 

simulations.     

          

 
Figure 7: Comparison between TRNSYS model and field trial data of daily house heat demand (space heating and 

DHW)/ daily heat output from the heat pump.  
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4. METHODOLOGY 
 

This paper aims at assessing the annual performances of the HT-ASHP when retrofitted into a mid-terraced dwelling 

in terms of different contexts combining house ages, locations and control. Therefore, a set of simulations is 

undertaken using the above validated models. 

 

Considering the dwelling ages, apart from the mid-terraced house which was built under the 1900s specifications 

mentioned in the above section, two more fabric configurations representative of the ‘70s and ‘90s built houses are 

investigated. Table 1 reports the summary thermal characteristics of the three reference buildings.        

  

Table 1: Thermal characteristics of three simulated buildings (Energy Saving Trust, 2005) 

 

House age 
External wall  

U-value 

(W/m2K) 

Roof 

U-value 

 (W/m2K) 

Floor 

U-value 

(W/m2K) 

Window 

U-value 

(W/m2K) 

Infiltration 

Air changes per 

hour  

1900s 1.64 1.42 0.67 4.8 1 

1970s 1 0.68 0.6 4.8 1 

1990s 0.55 0.35 0.45 4.8 0.5 

 
As for the effect of climatic conditions, the reference buildings are simulated interchangeably with three different 

weather profiles available in TRNSYS libraries. The selected climates are of three locations across the UK including 

Belfast, Aviemore and Camborne. Aviemore has severe weather with the heating degree days (HDDs) of 3203, 

whereas Belfast (2475 HDDs) is milder following by Camborne (HDDs of 1840) where is mildest. It is noted that the 

base temperature of 15.5˚C is used to calculate the HDDs. 

 

Regarding the control, the heat pump model is simulated with fixed water flow temperature (76˚C) and weather 

compensation strategy. The minimum flow temperature regarding the weather compensation control is set at 55°C if 

the ambient temperature is 15°C and above, while the maximum flow is set at 76°C corresponding to the ambient 

temperature of 0°C and below. Although the set-up for the flow temperature regarding weather compensation control 

could reduce the radiators’ efficiency, the purpose of this is to provide a wider view of the retrofit HT-ASHP’s 

performance. 

 

5. RESULTS AND DISCUSSION 
 

5.1 Annual COP 
Climatic conditions highly influence the annual performance of the retrofit HT-ASHP. Aviemore, where is most 

severe, has the lowest yearly COPs which are about 2.03 for the fixed flow temperature and from 2.15 to 2.24 for the 

weather compensation strategy (Table 2). In contrast, Camborne where is the warmest location accounts for the annual 

COPs of about 9.9% and 18.6% higher than the ones in Aviemore in terms of fixed flow temperature and weather 

compensation, respectively. The HDDs of Belfast are lower than those of Aviemore but higher than those of 

Camborne, so the heat pump efficiency is higher in Belfast than in Aviemore but lower than in Camborne.    

 

The building ages have another effect on the annual COPs of the heat pump. If the heat pump is retrofitted in the 

newer dwellings, its efficiency is reduced (see Table 2), and vice versa. This is because the better house inertia tends 

to make the heat pump working at lower loads.  

 

Weather compensation control has a strongly effect on the heat pump performance. In Belfast, the annual COP 

improvement of the heat pump employed weather compensation control compared to the one with fixed flow 

temperature is between 9.4% and 14.1%. The heat pump in Aviemore accounts for the enhancement from 5.9% to 

9.8%, while the improvement of maximum 19.2% can be obtained in Camborne. 
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Table 2: Summary results of simulated annual COP and electric consumption 

 

Location Age of 

house 

Annual COP [-] Annual electric use [kWh] 

Fixed flow 

temperature 

Weather 

compensation  

Fixed flow 

temperature 

Weather 

compensation  

Belfast 

1900s 2.13 2.43 11679 10049 

1970s 2.12 2.36 9163 7946 

1990s 2.12 2.32 7196 6271 

Aviemore 

1900s 2.04 2.24 13951 12678 

1970s 2.03 2.21 12774 11663 

1990s 2.03 2.15 8828 8113 

Camborne 

1900s 2.24 2.67 9412 7577 

1970s 2.23 2.62 8518 6899 

1990s 2.22 2.53 5583 4549 

 

5.2 Electric consumption, running cost and carbon emissions   
The annual electric use is reported in Table 2 and illustrated in Figure 8. As expected, the heat pump in Aviemore 

consumes the highest energy due to the severe weather, while the one in Camborne uses the lowest electricity thanks 

to the milder climate. Additionally, the 1900s built houses account for the highest energy utilization, whilst the 

buildings of the ‘90s consume the least energy thanks to the lower heat loss. Also, the heat pump employed weather 

compensation can reduce the energy use up to 19.5% compared to the one with fixed outlet water temperature.  

 

Based on the annual electric consumption, the running cost and carbon emissions of the retrofit HT-ASHP are 

quantified, as reported in Table 3. The electric price of 14.83 p/kWh observed in 2017 (Power NI, 2017) is used to 

calculate the running cost, and the carbon conversion factor of 0.333 kgCO2/kWh (DBEIS, 2017) for grid electricity 

is utilized to compute the annual CO2 emissions.      

 

The highest yearly cost of £2069 and carbon emissions of 4646kg are accounted for the heat pump with fixed flow 

temperature retrofitted into the houses of the 1900s in Aviemore. In contrast, the retrofit HT-ASHP employed weather 

compensation control according to the 1990 build houses in Camborne constitutes the lowest cost of £675/year and 

the lowest carbon emissions of 1515kg/year.    

 

       
 

Figure 8: Simulation results of annual energy consumption 
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Table 3: Running cost and carbon emissions results for three different house ages and locations across the UK 

 

Location Age of 

house 

Annual cost [£] Annual carbon emissions [kg] 

Fixed flow 

temperature 

Weather 

compensation  

Fixed flow 

temperature 

Weather 

compensation  

Belfast 

1900s 1732 1490 3889 3346 

1970s 1359 1178 3051 2646 

1990s 1067 930 2396 2088 

Aviemore 

1900s 2069 1880 4646 4222 

1970s 1894 1730 4254 3884 

1990s 1309 1203 2940 2702 

Camborne 

1900s 1396 1124 3134 2523 

1970s 1263 1023 2837 2297 

1990s 828 675 1859 1515 

 

6. CONCLUSIONS 
 

The developed and validated TRNSYS models have been used to analyze the annual performances of a variable 

capacity high temperature ASHP when retrofitted into a mid-terrace house in various contexts including dwelling 

ages, locations and control. The outcomes of the simulations indicate that all three factors have strong influences on 

the heat pump performance: 

 

• If the heat pump operates in the severe climates, its efficiency will reduce, leading to the rise of running cost. 

In contrast, the efficiency will increase if the heat pump runs in the warmer locations, resulting in lower 

running cost.      

• Newer buildings cause the decrease of COPs because the heat pump tends to work at lower loads, but more 

energy, cost and carbon savings can be acquired thanks to the lower heat loss of the modern buildings. 

• Weather compensation control can help the heat pump to improve its efficiency and energy savings up to 

19.2% and 19.5%, respectively, compared to the fixed water flow temperature. 

 

The simulation results related to annual efficiency, energy consumption, running cost and carbon emissions in this 

paper can be a good reference for further retrofit assessment of this kind of heat pump, which can help to motivate the 

demand.  

 

NOMENCLATURE 
 

𝑡 time (minute)   

𝑇 ambient temperature (˚C)   

𝑅𝐻 relative humidity (%) 

𝐸 energy for a defrost cycle (kWh) 

𝑄 cooling power (kW) 

𝑊 electric power (kW) 

 

Subscript   

𝑓𝑟𝑜𝑠𝑡 frosting  

𝑑𝑒𝑓          defrost 

𝑐          cooling 

𝑒          electric consumption   

𝑚𝑒𝑎𝑛          average  
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