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Abstract

Background: Corticomuscular coupling has been investigated for long, to find out the un-
derlying mechanisms behind cortical drives to produce different motor tasks. Although im-
portant in rehabilitation perspective, the use of corticomuscular coupling for driving brain-
computer interface (BCI)-based neurorehabilitation is much ignored. This is primarily due
to the fact that the EEG-EMG coherence popularly used to compute corticomuscular cou-
pling, fails to produce sufficient accuracy in single-trial based prediction of motor tasks in a
BCI system.
New Method: In this study, we have introduced a new corticomuscular feature extraction
method based on the correlation between band-limited power time-courses (CBPT) associ-
ated with EEG and EMG. 16 healthy individuals and 8 hemiplegic patients participated in
a BCI-based hand orthosis triggering task, to test the performance of the CBPT method.
The healthy population was equally divided into two groups; one experimental group for
CBPT-based BCI experiment and another control group for EEG-EMG coherence based
BCI experiment.
Results: The classification accuracy of the CBPT-based BCI system was found to be 92.81±
2.09% for the healthy experimental group and 84.53 ± 4.58% for the patients’ group.
Comparison with existing method: The CBPT method significantly (p−value < 0.05) out-
performed the conventional EEG-EMG coherence method in terms of classification accuracy.
Conclusions: The experimental results clearly indicate that the EEG-EMG CBPT is a
better alternative as a corticomuscular feature to drive a BCI system. Additionally, it is
also feasible to use the proposed method to design BCI-based robotic neurorehabilitation
paradigms.

Keywords: Corticomuscular-Coherence (CMC), correlation between band-limited power
time-courses (CBPT), Electroencephalogram (EEG), Electromyogram (EMG), Hybrid
Brain-computer interface (h-BCI), Hand Orthosis, Neurorehabilitation.
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1. Introduction

The field of bio-robotics has found extensive application in the field of assistive technol-
ogy and rehabilitation [1]. These include switching or controlling different neuro-prosthetic
devices, wheelchairs, and exoskeletons for therapeutic or daily living activities [2]. Some of
these rehabilitative settings are based on brain signals such as electroencephalogram (EEG)
or magnetoencephalogram (MEG) [3, 4, 5, 6, 7, 8, 9], while some others depend on bio-
signals such as electromyogram (EMG) [10, 11]. Using brain or muscle signals alone for the
actuation and control of external devices poses their own challenges. The brain signal based
controls often suffer from issues such as lower accuracy and need user-specific adaptation
for ensuring the reliability [12, 13, 14]. The performances of EMG-based controls are also
limited primarily because some of the patients suffering from neuro-muscular diseases may
have little or no residual EMG activity, and may suffer from the spasticity and fatigue-
related alterations in EMG activity [15]. Therefore, a new shift towards combining different
biological signals with the brain signals to enhance its practical usability is becoming pop-
ular and many new brain-computer interface (BCI) paradigms are coming up out of this
hybridization [16, 17, 18, 19, 20]. Researchers have tried many different ways of fusing EEG
and EMG signals to reduce the rate of false positives and enhance the reliability of the BCI
system for movement intention detection [21, 22, 23].

Researchers have also stressed that simultaneous activation of cortical and muscular
events lead to faster recovery from the motor disability and therefore a correlation between
cortical rhythm desynchronization and EMG activation should be an important feature
of neurofeedback provided in the rehabilitation process [24, 25]. Importantly, combined
EEG-EMG based BCI approaches developed so far, do not make use of the functional com-
munication between EEG and EMG directly as a feature for task classification, rather their
associated features are calculated separately and then combined sequentially or simultane-
ously using a balanced weight or Bayesian fusion approach [1, 26]. A popular method of
measuring the cortico-muscular interaction is to calculate the coherence between the EEG
and EMG signals, which is called the corticomuscular coherence (CMC). It reveals the mech-
anism of functional connectivity for the cortical neuron and the motor-unit synchronization
[27, 28]. Early works by [29, 30] have shown beta range coherence between MEG/EEG and
EMG signals to be significant in voluntary movement and sub-maximal static contraction.
Further studies have suggested that CMC is a contralateral phenomenon and it generally
gets affected by stroke [31, 32]. CMC is also found to be shifted from beta to gamma range
during dynamic force output [33] and different task-specific modulations are found due to the
demand of precision or muscle fatigue [34, 35]. Different finger motion classification has also
been done using CMC and researchers indicated its possible use for designing multimodal
BCI system for the movement intention detection [36, 37, 38]. Although, CMC gives a good
estimation of the functional interaction between the brain and muscle after averaging over
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multiple trials, the single trial based estimation of CMC may not be sufficiently accurate
to correctly trigger contingent neurofeedback. CMC needs longer epochs for having good
frequency resolution, which is difficult to accommodate in a single-trial based neurofeedback
generation as it would include a larger delay in the system [39, 40, 41]. This is primarily due
to the inter-trial inconsistency of the CMC caused by the presence of non-stationary changes
in the EEG data. One of the major concerns is the reduction in maximum coherence value
in case of stroke patients and its dynamic shift in frequency across different time segments
[41, 42]. Other pitfalls related to CMC includes lower information content, estimation vs.
frequency resolution issues, and lower signal-to-noise ratio (SNR), especially for slow finger
motions involving lower muscle mass.

Therefore, we have investigated here a new method of estimating the functional relation
between brain and muscle activity which could be used in single trial basis to trigger neuro-
feedback contingent to the motor execution. This new method termed as CBPT builds on
two widely known phenomena associated with the EEG and EMG in relation to motor exe-
cution. While attempting a motor task the SMR desynchronization/synchronization occurs
in the primary motor cortex, while the EMG activity increases in the corresponding muscle
associated with the task. We hypothesized that if we are able to compute the correlation
between these changes in the EEG and EMG, we would be able to capture an index of
interaction between them. We may look at these two phenomena separately, which could
also serve the purpose, but we wanted to deal with corticomuscular relationship angle also,
which led us to check the dependency between the two signals in the form of a correlation
between them. The developed EEG-EMG interaction index builds on the rationale that for
hand rehabilitation it is better to use the relationship between the EEG and EMG signals
rather than merely looking at their presence regarding a movement onset. The proposed
index not only ensures that a person is engaged with the task both mentally and physically
but also gives us an estimate of the quality of this engagement by measuring the relationship
between the brain (EEG) and the muscle (EMG) signals. For comparison purpose, we have
equipped our BCI system to be operated with both CMC and CBPT features, but one at a
time. The current study highlights two aspects of the newly proposed CBPT method. The
first is its superiority over the CMC method in terms of the BCI performance. This has
been done by comparing two groups of the healthy population, where one group was given
CMC-based neurofeedback and another one was given the CBPT-based neurofeedback, in
the BCI environment. Second, we have also tested the feasibility of the CBPT-based BCI
system on hemiparetic stroke patients for triggering a hand orthosis device. This shows
the potential of the CBPT method to be applicable to the BCI-based neurorehabilitation
system.

2. Materials and Methods

2.1. System Overview

The BCI system developed to test the performance of the corticomuscular features un-
der consideration is equipped with a g.USBamp (g.tec, Graz, Austria) bio-signal amplifier,
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Figure 1: (a) Experimental environment: Participant is triggering the hand orthosis using the BCI paradigm.
Electrodes are connected to head cap and forearm muscle to acquire EEG and EMG signals. Neurofeedback
is also provided in a visual form in terms of virtual hand grasp, along with proprioceptive feedback using
hand orthosis. (b) EEG electrode placement: Electrodes were placed only at the positions which are colored
in red/green.

EEG cap (g.tec), Ag/AgCl-based EEG electrodes and sEMG electrodes for the data acquisi-
tion. The BCI paradigm, data processing, neurofeedback generation, and database manage-
ment were designed using a homegrown Graphical-User-Interface (GUI)-based application
in MATLAB with Simulink and MS-Access in the backend. The application was run on
a Dell Precision 7510 mobile workstation. Neurofeedback was provided in two modes: (i)
actual finger motion using a hand orthosis and (ii) visual feedback of the same motion on the
computer monitor. The hand orthosis, developed in-house, is an easy to wear, lightweight,
portable device, to support flexion and extension of the index finger, middle finger, and
thumb of patients with hand impairment [43]. The index and middle fingers were coupled
and driven jointly with a four-bar mechanism. The thumb was driven separately by another
four-bar mechanism. Each mechanism was driven by a servomotor having position feedback
controller. Hence only two motors need to be actuated for flexion and extension of the three
fingers [44]. The BCI was used here only to trigger the orthosis, after which it performs
one-time flexion-extension of the users’ fingers in a predefined trajectory similar to a normal
human finger trajectory. The experimental environment is shown in figure 1(a), while the
process flow of the two types of BCI discussed here, is shown in figure 2.

2.2. Experimental Protocol

The experiment was divided into three runs of approximately 7.5 min each with the
BCI setup described in Section 2.1. The first two runs were for gathering the training data
from which the features were extracted to build a classifier, which was to be used in the
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Figure 2: The process flows: (a) CMC-based BCI, (b) CBPT-based BCI.

Figure 3: The Timing diagram of the experimental paradigm during neurofeedback stage. Here, grasping
motion initiated at 5 s and completed at 8 s, as the orthosis always takes 3 s to complete the grasping
motion. If the initiation starts earlier than 5 s i.e. between 3 s to 5 s, then the trial terminates earlier than
8 s.

online feedback generation phase. The third run was to generate neurofeedback on the basis
of the trained classifier and thereby its accuracy was tested. All the runs were composed
of 40 trials equally divided between two classes of left and right-hand movement and the
appearance of the cues was random. Unlike the rest vs. movement paradigm using the one
hand only, we incorporated left vs. right-hand paradigm as it has been suggested in an
earlier study involving hemiplegic patients [45]. The importance of the orthosis used in this
study lies in the fact that we are projecting the CBPT method for building the BCI-based
hand rehabilitation therapy, wherein robotic feedback is often suggested for recovery. The
current approach of trigged-feedback was used in many previous studies as well, wherein the
orthosis was triggered once in a trial upon successful detection of the participants’ movement
intent [3, 46].

All the trials within a particular run start with a 3 s of preparatory period, during which
there was a GetReady message on the screen. A beep sound occurred after 2 s within this
preparatory stage and lasts for 0.5 s. Then at the end of the preparatory stage, an image
of a fisted hand appeared either at the left or right side of the screen. The participants had
to make a hand grasp attempt while wearing the orthosis in one of the hands, according to
the issued cues. The healthy participants wore the hand orthosis on their right hand and
the patients wore the orthosis on their impaired hand. The grasp-attempt was not a full
execution but to exert the finger-tip force on the finger-mount caps attached to the orthosis
end-effector, so that the EMG signals may be generated in the forearm muscle. Attempted
motions are often suggested rather than imagined movements as it is more intuitive and
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consequently enhances the BCI performance [47]. In the training phase, the cue lasted for
5 s and in the feedback phase it lasted for 2 s and then the neurofeedback is triggered for
3 s. Thus after elapsing of 5 s after cue, a blank screen appeared in both the training and
feedback phases to mark the end of that trials. The gap between the two trials was random
between 2 s to 3 s, during which the screen remains blank. Although the appearances of
the left and right cues are random, their total appearance in a particular run is equal, i.e.
in the run of 40 trials; 20 are left and 20 are right. Therefore it would be a balanced
classification problem where the chance level is 50%. Figure 3 shows the timing diagram of
the experimental paradigm. The grasping action was initiated by the participants within
the 3 s to 5 s period in the trial (i.e. 0 s to 2 s after the cue, as the cue was given at 3 s),
and once initiated, the orthosis performs the grasping motion for the fingers and it takes 3 s
to complete. For example, if it starts at 5 s(shown in figure 3) then it is completed at 8 s,
which is the maximum length of the trial.

2.3. Data Acquisition

The data were recorded from the three EEG and two EMG channels sampled at 512 Hz.
The EEG channels were recorded in bipolar mode from C3, Cz, and C4 based on 10 − 20
international system electrode positions. The electrodes were actually placed around the
specified channel locations (C3, Cz, and C4), keeping the designated area in the middle. The
placement of the EEG electrodes on the scalp is shown in figure 1(b) with red/green colored
circles. The EEG electrodes were placed at FC3, CP3, FCz, CPz, FC4, CP4 locations
according to the 10-20 international system. The channels CP3, CPz, and CP4 were in
bipolar with respect to FC3, FCz, and FC4 accordingly. The EMG electrodes were also
placed bipolarly on right and left flexor-digitorum-superficialis (FDS) muscle (i.e. FDSR

and FDSL, respectively). Signals were filtered with a pass-band of 0.1 to 100 Hz with a
notch filter at 50 Hz to remove power-line artifacts.

2.4. Participants

16 healthy and 8 hemiplegic patients having no prior experience in operating a BCI
system participated in the experiments. The patients, who had no history of epilepsy and
scored at least 7/10 in Hodgekinsons mini-mental test score, were considered for the exper-
imentation. The participants were sitting in an upright position at approximately 0.5 m to
0.6 m distance from the screen. The demographics of the patients along with their impaired
conditions measured in terms of Action Research Arm Test (ARAT) score are shown in Ta-
ble 1. ARAT measurement, introduced by Lyle et al. [48] is also a reliable way of testing the
upper-limb functionality by checking the grasp, grip, pinch and gross-movement activities.
The healthy participants were randomly divided into two groups of 8 people, namely H1 and
H2. The group distribution was well balanced with group mean age in H1 as 30.5±2.4 years
and H2 as 30.87±2.6 years; all of them were male and right-handed. The group H1 per-
formed the CMC-based BCI task and the group H2 performed the CBPT-based BCI task.
All the participants gave written consent before the experiment, and all experimental pro-
cedures were approved by the institute ethics committee at Indian Institute of Technology,
Kanpur.
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Table 1: Demographics of the Patient Group (P)

Variables
Participant ID

P01 P02 P03 P04 P05 P06 P07 P08
Age (years) 59 48 71 35 24 45 62 51
Gender M M M F M F F F

Impaired side L L L R L L L R
Dominant side R R R R R R R R

Time since stroke (months) 17 8 8 3 8 6 6 48
ARAT Score 32 27 34 7 12 4 40 26

2.5. Feature Extraction and Classification

After the training runs were over, the acquired EEG and EMG data along with the
time-stamps, trigger, and label signals were fed to a data processing algorithm for feature
extraction and classification. The algorithm first takes out all the trial segments from the
two runs guided by the trigger and label signals, to make the training dataset. Then CMC
or CBPT (CMC for H1; and CBPT for H2) feature extraction techniques were applied
separately on the training data to train a support vector machine based classifier with a
linear kernel. To determine which optimal time segment would be suitable for extracting
the CMC/CBPT features, we windowed the 2 s time period after the cue, with a window
size of 1 s and a shift of 128 ms. Out of these time windows, the best one having the highest
10-fold cross-validation accuracy was chosen for the neurofeedback generation in the online
feedback phase. This has been depicted in figure 4. In the online neurofeedback phase, the
1-s time window between the 0-2 s period after the cue, pre-selected during the training
phase, was used for the calculation of the CMC/CBPT features. Suppose, from the analysis
of the training dataset, it is seen that the 1-s period between 0.128-1.128 s yielded maximum
cross-validation accuracy, then this period was only used for the CMC/CBPT calculation in
the online feedback phase. The identification of this 1-s period for CMC feature extraction
is subject specific. The CMC- and CBPT-based feature formation process is presented in
the following section.

2.5.1. CMC-based feature:

The functional interaction between two signals x and y in the frequency domain is es-
timated by the coherence values calculated for the frequencies of interest. The magnitude-
squared coherence value between x and y at frequency f can be calculated by the following
the standard formulation [49].

Cxy(f) =

∣∣∣Sxy(f)
∣∣∣2∣∣∣Sxx(f)

∣∣∣2 × ∣∣∣Syy(f)
∣∣∣2 (1)

where,

Sxy(f) =
1

n

n∑
i=1

xi(f).y∗i (f) (2)
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Figure 4: The CMC estimation of a particular trial to show how the windowing for the CMC calculation is
different from the windowing of suitable time segment selection for CMC feature extraction.

Sxx(f) =
1

n

n∑
i=1

xi(f).x∗i (f) (3)

Syy(f) =
1

n

n∑
i=1

yi(f).y∗i (f) (4)

Here, Sxy(f) is the cross-power spectral density of x and y, while Sxx(f), Syy(f) are
the auto-power-spectral density of x and y respectively. For each of the coherence value
calculation, the significance can be checked corresponding to a desired level of confidence α
with the following equation [50],

CL(α) = 1 − (1 − α)
1

n−1 (5)

where n is the number of segments and CL is the level of coherence value to meet the
α confidence level. Further, we would like to clarify that while calculating the coherence
the data segment was divided into 15 segments, (i.e. n = 15). This means that the 1 s
period, which was used for the coherence calculation, was divided into windows of 125 ms
with 62.5 ms shift i.e. the overlap between the two consecutive windows was 50%. The
confidence limit can be changed by changing the number of segments the data is divided
into, which is n. We have experimentally set the number n for coherence calculation to 15,
by considering spectral smoothing aspect for keeping the confidence limit as low as possible.
It is true that if we increase the value of n (i.e. increasing the number of segments and
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reducing the window size) the coherence spectrum would be smoothed and the CL would
go down; but at the same time, the magnitude of the peak coherence will also go down. The
reverse is also true; that is if we keep n small, then CL and the peak coherence magnitude
will also go higher and the coherence spectrum would be jittery. Hence, there should be a
trade-off for choosing the value of n so that the coherence spectrum could be smooth enough
and CL is lower enough as compared to the peak coherence magnitude. After doing several
trials with the value of n we kept it at 15, in order to get an optimal performance. It is to
be noted that we haven’t done any sum of coherence estimates across frequency ranges but
only the maximum coherence value above the chance level over the spectrum of 15-40 Hz
(i.e. Beta and Gamma range) was considered as the CMC features.

Thus the coherence between one channel of EEG and one channel of EMG can be calcu-
lated for the frequency f from their cross and auto power spectral density using equation (1)-
(4). The EMG signal was rectified before CMC calculation. To form the feature vector, we
considered only the contralateral and midline coherence values between EEG and EMG
within beta (β) and gamma (γ) frequencies. In a particular trial, the coherence spectrum
between 15 Hz to 40 Hz for the channel combinations C3−FDSR, Cz−FDSR, Cz−FDSL

and C4 − FDSL were first obtained. The maximum coherence value over the coherence
spectrum from all the four different channel combinations was grouped together to form a
feature vector of four elements corresponding to that particular trial. Thus an 80×4 feature
space was generated from two training runs where each of the classes had 40 × 4 feature
space. These features were then used to train a support vector machine (SVM) classifier.
Here we have considered only those values of coherence which met the 95% confidence level
criterion. As we have taken n = 15 during coherence calculation, therefore according to
equation (5), any coherence value less than 0.19 is considered insignificant and is replaced
by zero during feature generation.

2.5.2. CBPT-based feature

In this method, we have used the correlation between the band-limited power time-
courses associated with EEG and EMG signals to measure the functional interaction between
brain and muscle. The calculation of the CBPT index is described as follows.

Suppose we have raw EEG data and EMG data from ith trial, which are denoted as
rEEGi and rEMGi, respectively. As CBPT focuses on correlating the change in EEG
and EMG band-power, therefore, a key thing is to find desired frequency bands where
this change occurs simultaneously. It is widely known that Sensorimotor Rhythm (SMR)
desynchronization happens both in mu (8−12 Hz) as well as beta (16−24 Hz) bands related
to the motor execution/imagery [4]. Recently, the importance of beta band is also stressed
upon relating to the stroke rehabilitation [51]. Hence, we needed to look at both mu and
beta ERD to determine which SMR desynchronization would be more suitable for CBPT.
We have compared the mu and beta ERD based on their distribution over the trials and
chosen the frequency band which has less inter-trial variability, irrespective of the median
value of the distribution. From the figure 5 we can see that although the median of beta
ERD is more than the mu ERD, the distribution of mu ERD is more compact than the
beta ERD, meaning that the inter-trial variability is less in case of mu. Therefore, we have
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Figure 5: The ERD distribution of the mu and beta bands to show the contralateral activation during the
motor task. The distribution of C3 Mu and C3 Beta is during right-hand task and C4 Mu and C4 Beta is
during left-hand task. The distribution is plotted over healthy group H2 (who used the CBPT based BCI)
for all the calibration stage trials. It can be seen that although the median of the ERD for Beta band is
almost twice as that of Mu, the distribution of Mu ERD is more compact over the trials (i.e. the inter-trial
variability is less.)

chosen the mu band for the calculation of CBPT. The change in EMG power occurs in a
larger frequency spectrum, 5 to 150 Hz, with a peak in between 50− 60 Hz. But the SNR is
comparatively low for the signal below 15 Hz. Therefore, we have taken the EMG frequency
band between 30 Hz and 50 Hz, i.e. the rising edge of the power spectrum [52]. Thus, the
EEG and EMG signals were band-pass-filtered in their desired frequency bands, e.g. mu (µ)
band [8 − 12] Hz for the EEG signal and [30 − 50] Hz for the EMG signal. After the band-
pass filtering, we denote EEG and EMG signals as bEEGi and bEMGi, respectively. Then
bEEGi and bEMGi are squared to get the band-power pEEGi and pEMGi respectively.
The pEEGi and pEMGi are then smoothed using a moving window average (window size 1 s
for EEG and 30 ms for EMG) to get smEEGi and smEMGi, respectively. This smoothing
step is necessary to get the gradual change in the EEG and EMG data. Without smoothing
the fluctuations in the signal would be high, resulting into lower correlation coefficients. The
smoothing time window was selected empirically for the EEG and EMG signals to increase
the feature separation between the two classes. Finally the correlation between smEEGi

and smEMGi is calculated over a suitable time period of 1 s which falls between 3 s and
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Figure 6: Process flow of the CBPT feature calculation.

5 s within a trial, where 3 s is the instant of cue appearance. The correlation is given by
the equation (6).

ρ(smEEGi, smEMGi) =
cov(smEEGi, smEMGi)

σsmEEGi
.σsmEMGi

(6)

where, ρ(smEEGi, smEMGi) is the correlation coefficient between smEEGi and smEMGi;
cov(smEEGi,smEMGi) is covariance between smEEGi and smEMGi; and σ(smEEGi)
and σ(smEMGi) are the standard deviation of smEEGi and smEMGi respectively. Thus
CBPTi denoted by

∣∣ρ(smEEGi, smEMGi)
∣∣ is the band-power correlation index at the ith

trial between one specific channel of EEG and another specific channel of EMG. In our
study, we have calculated this index for the same combination as in the case of CMC (i.e.
C3 − FDSR, Cz − FDSR, Cz − FDSL, and C4 − FDSL) to make a feature vector of four
elements. This process is depicted in a block diagram in figure 6. It is to be noted that
the correlation values below an arbitrary threshold were set to 0, so as to avoid the effect of
misleading correlations. Our current investigation focuses on finding out the discrimination
between the two classes based on the developed EEG-EMG interaction index, which is also
found to be varying between the patient and the healthy participants, bearing the evidence
that the impaired corticomuscular interaction can be reflected by the developed EEG-EMG
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Figure 7: The process of EEG and EMG signal transformation in a single-trial, for the calculation of CBPT
index, is shown in two-panel row-wise. An example is taken from the 1st trial of participant P01 of group
H2 during 1st run of the training session. The Left panel is showing the transformations of the EEG signal
and the right panel is showing the transformations of EMG signals. The correlation is calculated between
the EEG and EMG signal portion shaded with green color in the bottom row of the figure.

interaction index.
In the example shown in figure 7, we have taken the data of one particular trial from

the participant P01 of group H2 and shown how to process the EEG and EMG signals,
step-by-step, to reach up to smoothened power variation from the raw signals. We then
selected a suitable time window, the same for both EEG and EMG signals, and calculated
the correlation coefficient between them. In this example, 0 s to 8 s is the entire trial period
in which the cue appeared at 3 s. We have taken a time span of 3.536 s to 4.536 s to calculate
the correlation, whose absolute value is the CBPT index. It is to be noted that the best
time span of feature extraction has been calculated for each participant separately, (the time
span having the highest 10-fold cross-validation accuracy on the training data is selected for
a particular participant, which was kept fixed in the feedback phase); hence it is not fixed
for all participants.
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2.5.3. Advantage of CBPT over CMC

In order to illustrate why CBPT is a novel methodological advancement over the con-
ventional CMC, we highlight next the importance of CBPT in finding the relation between
EEG and EMG when the changes corresponding to a single corticomuscular phenomenon
is occurring in two different frequency bands in the two different signals (EEG and EMG),
whereas CMC looks for the interaction between the EEG and the EMG at the same fre-
quency. This is also evident from the power spectral density (PSD) of the EEG and the
EMG signals as they differ quite a bit. For example, the EEG signal modulations regarding
the motor actions are confined in 8-30 Hz, while the corresponding changes in the EMG may
happen beyond 30 Hz as EMG has a much wider spectrum. In the following example, we
would see how the CBPT can handle such situations.

Again suppose, there are two signals x and y. The signal x has the components 13 Hz,
10 Hz, and 31 Hz, while y has the components 18 Hz, 26 Hz, and 39 Hz. We have mod-
ulated the 10 Hz component in x such that its amplitude starts decreasing after 1 s and
simultaneously there is an increase in the signal amplitude of the 26 Hz component of the
signal y. The pictorial representation of the signals x and y along with their components
are shown in the figure 8. Now, there is no common frequency where the changes in the
x and y are occurring, rather the modulations are on the different frequencies. From the
coherence plot of the x and y as shown in figure 9, we see that the information indicating
the relationship between x and y is ambiguous here. Moreover, the coherence spectrum is
below the confidence limit (0.19).

Next, we use the CBPT technique to capture the modulation relation between x and
y, following a similar process as given in the Section 2.5.2. The signal x is band-passed
over 9-11 Hz, while the signal y is band pass filtered over 25-27 Hz. Then the corresponding
band powers in those frequency bands were smoothened with an arbitrary window of 1 s and
30 ms respectively. The transformations of the signals between 1 s to 2 s period (where the
modulation happened) after the application of band-power smoothing are shown in figure 10.
Now, if we calculate the Pearson’s correlation coefficient between the transformed signals of
x and y, that would yield -0.7083 (p−value<0.05).

Thus the correlation co-efficient resulting from the CBPT computation facilitates the
measurement of interaction between the two signals, where the changes are occurring at
same/different frequencies, unlike the CMC which measures the interaction only at the same
frequency. In the next section (Section 3), the BCI accuracy results of the single trial based
CBPT, as compared to CMC for the same motor task, are presented to show how CBPT
overcomes the lower-performance of CMC in generating contingent neurofeedback, which is
an essential criterion for corticomuscular feature driven BCI for neurorehabilitation. These
two advantages clearly establish the rationale behind engineering a new corticomuscular
feature (CBPT), which builds on the limitations of CMC as discussed above.

3. Results

We describe the results obtained from each experimental group regarding the feature
distribution and classification accuracy. The classification accuracies are compared between
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Figure 8: The signals x and y. The components of x along with their superposition are shown in (a); the
same of y is shown in (b). Both the components 10 Hz and 26 Hz in x and y respectively are modulated so
that the amplitude of the former decreases and the amplitude of the later increases after 1 s.

the CBPT-based method and CMC-based method for the healthy participants. Then the
performance of CBPT-based BCI on the patient population is described.

In figure 11, we have shown the average CMC feature distribution of all the participants
within group H1 for the left and right-hand tasks. The average CMC feature for a particular
participant is calculated by taking the average of all the features calculated during the BCI
task execution, and further averaged over all the participants. As the features are composed
of the maximum coherence values of the C3 − FDSR, Cz − FDSR, Cz − FDSL, and
C4 − FDSL channel combinations, the average feature is actually the average of all these
maximum values across all the trials.

From the average CMC features distribution of healthy group H1 (figure 11), it can be
seen that the maximum value of 0.36±0.02 occurred in the case of C3−FDSR, during right-
hand task, and the values for other channel combinations were 0.33 ± 0.02 for Cz − FDSR,
0.3 ± 0.01 for Cz − FDSL, and 0.31 ± 0.02 for C4 − FDSL. During Left-hand task (figure
11), the average CMC features were 0.27±0.01 for C3−FDSR, 0.27±0.01 for Cz−FDSR,
0.34 ± 0.02 for Cz − FDSL, and 0.35 ± 0.02 for C4 − FDSL. It is quite evident from these
CMC average feature distributions that for H1 group C3−FDSR and Cz−FDSR coherence
in right-hand task are clearly higher than those in left-hand task. Also, we notice that the
Cz − FDSL and C4 − FDSL coherence are clearly higher during left-hand task than those
in right-hand task for healthy participants of group H1. Next, the CBPT features are shown
in figures 12-13. CBPT features are basically the absolute values of correlation calculated
for the same channel combination as in the case of CMC (i.e. C3 − FDSR, Cz − FDSR,
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Figure 9: The coherence spectrum for the x and y signals. There is no distinctive feature in the coherence
spectrum which can capture the modulation relationship between x and y, although it is there and also the
coherence spectrum is below the confidence limit (CL = 0.19).

Table 2: The average CMC and CBPT feature values
CMC features(H1) CBPT features(H2) CBPT features(P)
Right Hand Left Hand Right Hand Left Hand Right Hand Left Hand

C3FDSR 0.36± 0.02 0.27± 0.01 0.41± 0.03 0.14± 0.01 0.21± 0.03 0.16± 0.03
CzFDSR 0.33± 0.02 0.27± 0.01 0.40± 0.03 0.13± 0.02 0.22± 0.02 0.14± 0.03
CzFDSL 0.30± 0.01 0.34± 0.02 0.13± 0.02 0.39± 0.06 0.15± 0.03 0.18± 0.04
C4FDSL 0.31± 0.02 0.35± 0.02 0.13± 0.02 0.39± 0.06 0.14± 0.03 0.19± 0.03

Cz − FDSL and C4 − FDSL). In order to get this distribution, we calculated the average
CBPT feature for each participant in a particular participant group by taking the average
of CBPT features across all the trials during the BCI task execution. Figure 12 shows this
distribution for healthy participants of group H2 wherein the CBPT values of C3 − FDSR,
Cz − FDSR ,Cz − FDSL, and C4 − FDSL are 0.41 ± 0.03, 0.40 ± 0.03, 0.13 ± 0.02, and
0.13 ± 0.02, respectively during right-hand task and 0.14 ± 0.01, 0.13 ± 0.02, 0.39 ± 0.06,
and 0.39±0.05, respectively for left-hand task. The same feature distribution in the patient
group P can be found in figure 13 for C3−FDSR, Cz−FDSR ,Cz−FDSL, and C4−FDSL

as 0.21±0.03, 0.22±0.02, 0.15±0.03, and 0.14±0.03 respectively during right-hand task and
for left-hand task they are 0.16± 0.03, 0.14± 0.03, 0.18± 0.04, and 0.19± 0.03 respectively.
From the distribution it can be seen clearly that C3−FDSR and Cz−FDSR CBPT values
are higher in right-hand task than that in left-hand task while Cz−FDSR and Cz−FDSL

CBPT values have reverse nature in healthy group H2. Similar discrimination between the
left and right-hand task is also evident for the patient group P from figure 13 although the
gap is not as wide as H2. The CMC and CBPT feature values are shown in Table 2.

The performances of the classifiers using CMC- and CBPT-based features are also plotted
for healthy groups H1 and H2 and patient group P in figure 14 in terms of classification
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Figure 10: The smoothened band power signals of (a)x(band pass filtered over 9-11 Hz and smoothing
window 1 s) and (b)y (band pass filtered over 25-27 Hz and smoothing window 30 ms) between 1 s to 2 s.
We can see that the modulation trend is vivid in the case of x, where it is decreasing and in the case of
y, where it is increasing. The Pearson’s correlation coefficient between these two variations of x and y is
-0.7083 with p−value<0.05.

Table 3: Classification accuracies of different experimental methods applied on different participant groups

Variables
CBPT H2 CBPT P CMC H1 CMC P

CA (%) TPs CA (%) TPs CA (%) TPs CA (%) TPs
P01 96.25 4.536 78.75 4.536 68.75 4.792 62.55 4.664
P02 91.25 4.536 90.00 4.664 67.50 4.664 70.00 4.280
P03 92.50 4.408 91.25 4.664 78.75 4.280 72.50 4.280
P04 95.00 4.536 82.50 4.408 75.00 4.408 68.75 4.664
P05 93.75 4.792 87.50 4.408 76.25 4.408 65.00 4.536
P06 91.25 4.536 83.75 4.536 78.75 4.664 72.50 4.536
P07 92.50 4.536 80.00 4.280 67.50 4.280 67.50 4.792
P08 90.00 4.408 82.50 4.792 70.00 4.664 77.50 4.664
Mean 92.81 4.536 84.53 4.568 72.81 4.520 69.53 4.552
Std 2.09 0.119 4.58 0.190 4.90 0.199 4.72 0.187

TPs: Time points

accuracy. It is to be noted that the CMC analysis for the patient group was done offline
just to confirm the superiority of the CBPT method over the CMC method for achieving
higher classification accuracy. The detail of classification accuracy for each group and for
each classification method is given in Table 2. The results show the average classification
accuracy of H1 for CMC method is 72.81 ± 4.90%, while the classification accuracy of H2
for the CBPT-based method is 92.81± 2.09%. A two-tailed paired t-test shows that CBPT-
based classifiers have provided significantly (p < 0.05) higher accuracy than the CMC-based
classifiers for the healthy participants. The time points from which the CMC and CBPT
features were calculated are also shown beside every CA values, which show that the average
time points for all the groups were above 4.5s. As mentioned in section 2.5 that 1 s time
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Figure 11: Average CMC feature distribution of healthy participant group H1 for different channel com-
binations. The vertical bars are depicting the standard deviation of the average CMC value across all the
participants.

Figure 12: Average CBPT feature distribution of Healthy participant group H2 for different channel com-
binations. The vertical bars are depicting the standard deviation of the average CBPT value across all the
participants.

history before the time point, was used for feature extraction, which means the starting
point of the feature extraction time window was approximately after 3.5s. Therefore, the
possible effect of the signal portion before the cue appearance, which may arise during the
smoothing step of the CBPT feature extraction was mostly avoided. The data from patient
group P were also analyzed offline using the CMC method. The offline analysis of CMC on
group P resulted in average CA of 69.53±4.72%, which was also significantly (p < 0.05) less
than the average CA using CBPT on the same group, which was 84.53± 4.58%. It is worth
mentioning that the comparison between healthy and patient participant populations for
the same classification method yielded higher accuracy in healthy groups than in patients.

4. Discussion

In the current scope of work, our objective is to find out a suitable neuromarker of cor-
ticomuscular functional interaction which can be used as an alternative feature to design
a BCI-based neurorehabilitation paradigm. The main motivation is to take into account
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Figure 13: Average CBPT feature distribution of Patient group P for different channel combinations. The
vertical bars are depicting the standard deviation of the average CBPT value across all the participants.

Figure 14: The comparison of classification accuracies among different participant groups undergoing dif-
ferent experimental methods. The top and bottom of each box represent the 25th and 75th percentiles
respectively. The horizontal red line represents the median and the whiskers are drawn from the ends of the
interquartile ranges to the minimum and maximum values.

the corticomuscular interaction rather than the usual approach of considering separately
computed cortical and/or muscle activity based features. The issue of integrating EEG and
EMG in an optimal manner is very critical and studies on this matter often lack clinical
validation [1]. Although there are several examples of combining EEG and EMG features
in the hybrid BCI literature, they only feed separately calculated EEG and EMG features
to a classifier in a simultaneous or sequential manner for decision making. In contrast to
that in our work, EEG and EMG signals are considered together, to come up with a unique
feature that depicts the interaction between the two. So there is no fusion of features at
the classification stage, rather it is done in the feature extraction stage. The CBPT over-
comes the limitation of CMC based approach, which fails to achieve sufficient accuracy in
single-trial based classification of motor tasks. It is also a shift in conventional paradigm
of the BCI, which are not based on corticomuscular interaction, although it is important in
rehabilitation perspective. It has also the potential to promote both mental and physical
engagement of patients with the task, essential for an effective motor-recovery. The two
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possible ways of generating such features are discussed in this paper. The results obtained
from the experiments indicate the superiority of the CBPT-based method over the conven-
tional CMC-based method. The performance of CBPT method is found satisfactory for both
healthy and patient groups, for use as a possible mode to drive a BCI-based neurofeedback.
Additionally, a careful observation of the results presented in the study, reveals that the
proposed index has comparatively lower values for the patients than that for healthy indi-
viduals (see figure 12-13). This clearly shows that the index is able to capture the quality
of interaction between EEG and EMG signals, as the corticomuscular interaction generally
gets compromised due to stroke. Hence, we argue that the CBPT index is presented here
as a measure of corticomuscular interaction.

CBPT could also be advantageous because of the fact that the magnitude of EMG
activity is not important, rather the change in the activity during a task execution is crucial
for capturing the correlation between EEG and EMG. The choice of CMC is motivated by
the fact that it is associated with descending drives which modulate muscular activity before
the movement onset [37, 53]. Moreover, the dependence on EMG only is not as reliable as
the stroke patients often suffer from the muscle spasticity resulting in involuntary EMG
activation [31]. The EEG-EMG coherence has already shown its potential to be used as an
indirect measure of motor recovery which is often linked with neuroplasticity; the neuronal
reorganization after stroke [54, 55]. Therefore, further research can be carried out to find
out similar measures in terms of CBPT.

As most of the stroke patients in the current study are impaired in left hand (6 out
of 8 patients), the features are not so separable for right motor cortex-left forearm muscle
(C4 − FDSL) which is shown in figure 13, where the CBPT feature distribution of the
patient group is shown. In the case of patients, the distinction between the two classes for
CBPT features are not as high as the healthy group. The dominant CBPT features during a
particular task in healthy participants are always greater than the dominant CBPT features
of patients during that task. Thus it is indicative that the newly proposed CBPT feature is
very closely related to the CMC and hence may be a plausible candidate to inquire about
corticomuscular interaction. Moreover, in terms of feature separability, CBPT has a clear
advantage over CMC, which is further proven by the classification accuracies calculated on
the basis of these two features.

The classification accuracy comparisons as shown in figure 14 brings out the fact that the
CBPT-based classification has resulted in significantly (p < 0.05) higher accuracy than the
CMC-based classification for both the healthy and patient groups. Also, we find that for the
same method, the classification accuracy of healthy participants is comparatively greater
than that for patients. The lower performance rate of the patients may have occurred
primarily due to the reduced corticomuscular-connectivity resulting from stroke. Also the
other factors like mood and fatigue, both physical and mental, could contribute to lower
accuracy as the patients are often found to experience a much higher level of fatigue after
stroke.

Although the feasibility of CBPT feature to be used in BCI-based neurorehabilitation
system is established here, the motor functional recovery of the stroke patients resulting
from its usage can be explored in further studies. The significance of CBPT and CMC as
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an indirect outcome measure of recovery can also be explored. Importantly, the variability
of CBPT-based BCI performance with fatigue is yet to be tested, as there are many studies
on CMC suggesting the fact that the corticomuscular interaction is greatly affected due to
fatigue [35, 40]. The patient performance using CBPT and CMC may be further improved
by making the BCI paradigm more interesting for the participants, using virtual reality
platforms. As the current BCI-based on CBPT needs residual muscle activity and may
not be feasible with patients in a flaccid stage, the motor-imagery BCI-based on only EEG
signals can be clubbed together with the current paradigm to make a multi-modal or hybrid
BCI to cater for all the phases of stroke recovery.

5. Conclusion

This paper introduced the correlation between band-limited power time-courses (CBPT)
associated with EEG and EMG signals, as a feature to trigger a BCI operated hand orthosis-
based neurorehabilitation system. This is a novel technique in line with combined EEG-
EMG-based BCI approaches. It outperformed the traditional corticomuscular-coherence-
based BCI classification, as the test results in healthy and patients groups have amply
demonstrated. Therefore, it can be concluded that the CBPT-based classification could be
a highly efficient alternative for designing BCI-based neurorehabilitation system powered by
corticomuscular-interaction.
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