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Abstract This paper presents a new weighted local outlier factor method for anomaly 
detection, which is underpinned with three novel components: (1) a piecewise linear 
representation defined on the basis of the important points that consist of extreme points 
and additional points; (2) a set of new features which are used to identify anomalies 
given the new piecewise linear representation; (3) a weighting schema, assigning dif-
ferent weights to different features by accounting for the discriminant power of the 
features. The underlying idea of the proposed method is to characterize a time series 
with a set of four features and then discover abnormal changes by taking account of the 
closeness of any data points augmented with the new features. The comparative exper-
iments demonstrate that the proposed piecewise representation method has performed 
well in sequential time series data, and the weighted local outlier factor method has 
achieved better accuracy and RankPower in detecting anomalies from the same data 
sets in comparison with the conventional local outlier factor, normalized local outlier 
factor and HOT symbolic aggregate approximation methods.  
 
Key words: Anomaly detection, sequential data, feature extraction, weighted local out-
lier factor 

1. Introduction  

Anomaly detection techniques aim to find patterns that do not conform to expected 
behavior in the data set (Chandola, Banerjee, & Kumar, 2009; Huang, 2013). These 
patterns are often called anomalies, outliers, abnormal changes, surprises or discords in 
different contexts, frequently arising in real-world applications such as bioinformatics 
and finance (Huang, 2013; Chandola, Mithal, & Kumar, 2008; Keogh, Lin, & Fu, 2005). 
In this paper we present a new anomaly detection method called weighted local outlier 
factor (WLOF), which is able to extract and weight features in time series. 
     In the past decades, many anomaly detection methods have been developed in 
specific application domains, which can be broadly divided into two categories (Beigi, 
Chang, Ebadollahi, & Verma, 2011): modeling approaches (including rule-based, pat-
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tern-matching and model-based approaches), which require the prior knowledge of ap-
plication domains, and data mining approaches (including similarity-based and statisti-
cal approaches), which do not require any prior knowledge of application domains. 
Hadi used a modeling approach based on statistical estimation of the distribution pa-
rameters to identify anomalies in multivariate samples (Hadi, 1994). Tandon, et al. used 
a Parametric Statistical Modeling approach based on association rule mining-based 
techniques for network intrusion detection (Tandon, & Chan, 2007). Keogh, et al. used 
distance based approaches to identify the anomalies in time series (Keogh, Lin, & Fu, 
2005). Sun, et al. proposed an algorithm to compute the neighbourhood for each node 
in bipartite graphs using random walk with restarts and graph partitioning and then used 
the neighbourhood information to identify abnormal nodes (Sun, Qu, Chakrabarti, & 
Faloutsos, 2005). Some researchers have combined modeling approaches and data-min-
ing approaches to identify the anomalies in data streams. For example, Chandola et al. 
proposed a framework for modeling categorical data with a desired set of characteristics 
and a set of separability statistics, which are  helpful for understanding the performance 
of similarity measures for outlier detection (Chandola, Boriah, & Kumar, 2008). In ad-
dition, Aydin, et al. proposed a modified kernel-based tracking methods for detecting 
the anomalies of railway traffic (Aydin, Karakose, Akin 2015), and Jin, et al. proposed 
a method for detecting bearing anomalies and fault prognosis using the Kalman filter 
approach (Jin, Sun, Que, Wang, Chow, 2016). Moreover several surveys have also been 
reported in the literature on outlier detection for different application areas (Hodge, & 
Austin, 2004; Zhang, Meratnia, & Havinga, 2008; Gupta, Gao, Aggarwal, & Han, 
2014). 
    The nature of anomalies determines which anomaly detection techniques would be 
applied. According to the suggestions of Chandola, Banerjee, & Kumar (2009), anom-
alies can be grouped into three categories as follows. (1) Point anomalies: a data in-
stance is considered as anomalous with the rest of the data, such as in the case of credit 
card fraud. (2) Contextual anomalies: a data instance is anomalous in a specific context, 
but not otherwise. Contextual anomalies have been investigated in time series data 
(Weigend, Mangeas, & Srivastava, 1995) and spatial data (Kou, Lu, & Chen, 2006). (3) 
Collective anomalies: a collection of data instances is anomalous with respect to the 
entire data set. Collective anomalies can be found, for example, in electrocardiogram 
data (Keogh, Lin, & Fu, 2005).  
     In this paper we focus on collective anomalies in different types of sequential data. 
In order to find the collective anomalies, we need to segment a time series into a set of 
sub-series of data, i.e. subsequences. Piecewise linear representation (PLR) (Keogh, et 
al., 2001; Yankov, et al. 2007; Keogh, et al., 2008) is a common feature representation 
method which has been used to obtain the main features of time series data or data 
streams. The main idea of the PLR is using the K connective straight lines to represent 
a time series with length n(K<<n). The advantages of PLR are summarized as follows: 
1) a low-dimensional index structure and 2) high computational efficiency (Keogh, et 
al., 2001; Yan, Fang, Wu, & Ma, 2013). In fact, PLR can obtain higher precision with 
a larger number of segments, but that would require more computation time. Keogh et 
al. also proposed a Piecewise Aggregate Approximation (PAA) method for dimension-
ality reduction in time series data (Keogh, et al., 2001; Keogh, et al., 2008; Palpanas, 
et al., 2004), which segments a time series using a fixed size window and uses the 
average value of each sub-segment to collectively represent a time series. Park et al. 
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used the monotonic sliding windows segmentation algorithm to represent a time series, 
and demonstrated good results for a smooth time series data (Park, Kim, & Chu, 2001). 
However, real world data often include a great deal of noise and the number of segments 
required is often very large. Peng et al. used the Landmark Model to segment a time 
series through selecting segment points according to their minimum distance/percent-
age principle which is a smoothing process and is implemented as a linear time algo-
rithm (Peng, Wang, Zhang, & Parker, 2000). Pratt et al. proposed an important point 
segmentation method that compresses a time series by selecting some of its minima and 
maxima (Pratt, & Fink, 2002). In this paper we adopt a Piecewise Linear Representation 
method based on Important Points (PLR_IP).  
    Given a new representation of time series data, we also need a method for measuring 
the difference between data objects (instances) embedded in subsequences in order to 
detect collective anomalies. Therefore, a PLR method can be used to segment a time 
series into an alternative representation, and distances of the objects within their neigh-
bourhood can be used to find the anomaly. For instance, Ramaswamy et al. used the 
distance in the k-nearest neighbourhood to rank the outliers (Ramaswamy, Rastogi, & 
Kyuseok, 2000). Their approach can be used to compute the top n outliers. Breunig et 
al. used a local outlier factor (LOF), whose value depends on how isolated objects are 
with respect to the surrounding neighbourhood, as a measure for determining outliers 
(Breunig, Kriegel, Ng, & Sander, 2000). Although that approach can find meaningful 
outliers, there are two issues with the LOF method. One is that it does not work well 
for those features with different orders of magnitude as  the features with large magni-
tude will determine the results, whereas the features with smaller magnitude will have 
little effect. Another is that the LOF method can recognize the anomalies in time series 
data based on their original values (Breunig, Kriegel, Ng, & Sander, 2000), but when 
anomalies are interleaved in regular frequency spectrums or other complex anomalies, 
the LOF is not able to do so.  

In order to address these two issues above, we propose the WLOF, in which all se-
lected features will be taken into account in detecting anomalies. Importantly, we pro-
pose to construct four features to represent time series data, three of which are defined 
on the basis of the PLR_IP, representing three different aspects of a time series. First of 
all, we average the data points in a subsequence that corresponds to a sliding window. 
The second and third features are defined as the number of important points and the 
maximum angle of the subsequence, respectively, which are designed mainly for find-
ing anomalies in regular spectrums. Finally, Lin et al used the Symbolic Aggregate 
Approximation (SAX) method (Lin, Keogh, Lonardi, & Chiu, 2003) to map a time se-
ries into a character string like “cbccbaab”, every character in the alphabet representing 
the feature of one segment (Keogh et al., 2006). Similarly, to represent a segment with 
a feature, we propose a new feature which is the difference between the values of im-
portant points in a subsequence and then compute the maximum difference between 
important points in a sliding window which may cover several segments. This feature 
represents the maximum change in all the segments involved in a sliding window. 
Therefore these features constitute a core for the WLOF method to find anomalies in 
time series data.  

     After presenting the WLOF method in detail, we then present experimental results 
to evaluate it. The experiments have been carried out over 17 benchmark datasets and 
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the comparative analysis against other approaches  to demonstrate the effectiveness of 
the proposed WLOF method in discovering more anomalies within the time series data.  
 
The paper is organized as follows. In Section 2, we introduce the concept of PLR_IP 
and WLOF. In Section 3 we present the experimental results over 17 data sets which 
show that the proposed method can find local outliers. In Section 4 we discuss the effect 
of different parameters. Finally, Section 5 presents conclusions and future work. 
 

2. Methodology 

2.1 Notation 

2.1.1 Time series and subsequences 
Time series or sequential data exist in many real world domains such as commercial, 
economic, medical, and gene expression data. These domains typically involve large 
amounts of data and are updated regularly which make it very difficult to detect anom-
alies directly in the original time series data. Thus, we separate a time series sequence 
into a set of relatively short subsequences using a sliding window. Firstly, we give some 
definitions of a time series sequence and subsequences as follows: 
Definition 1： Time series 

A sequence of pairs, 𝑇 = [(𝑍&, 𝑡&), (𝑍*, 𝑡*),… (𝑍,, 𝑡,)], (𝑡& < 𝑡* < ⋯ < 𝑡,) where 
is a data point in a d-dimensional data space, and is the time stamp correspond-

ing to the time at which occurs (1 ≤ 𝑖 ≤ 𝑛). 
Definition 2: Subsequence (Keogh, Lin, & Fu, 2005) 

    Given a time series 𝑇 = [(𝑍&, 𝑡&), (𝑍*, 𝑡*),… (𝑍,, 𝑡,)], a subsequence  of T is a 
sampling of length of contiguous position from , that is, 𝐶5,6 =
78𝑍5, 𝑡59,… , (𝑍5:6;&, 𝑡5:6;&)<  for . To get a set of subse-
quences	𝐶6 = {𝐶&,𝐶*,… , 𝐶,;6:&}, sliding windows can be defined and used, where 
each subsequence corresponds to a sliding window, where overlap between two adja-
cent sliding windows can be adjusted on the basis of different applications. 

2.1.2 Anomalous features of a subsequence  
A subsequence could be anomalous compared with subsequences or contain an anomaly, 
which can be characterized with various features of the subsequence, such as average 
value and the maximum difference between values of important points, etc. In this study, 
four features have been identified. Prior to defining them, we define the extreme points, 
important points, piecewise linear representation and fitting error. 
 
Definition 3：Extreme points (Yan, Fang, Wu, & Ma, 2013) 
    Given a 1-dimentional time series, 𝑇 = [(𝑍&, 𝑡&), (𝑍*, 𝑡*),… (𝑍,, 𝑡,)] , if 
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( and ) or if ( and ), the point is an ex-
treme point.  
 
Definition 4: Important points  
Extreme points are important features of time series, but sometimes the distance be-
tween two neighbouring extreme points is too large, making it difficult to find an anom-
aly. For this reason, we introduce a concept of important points that consist of extreme 
points plus additional points identified by the following two step procedure. The first 
step identifies several extreme points that represent largest distances between extreme 
points in the data, and the second step ensures that the distance between the neighbour-
ing points is not too large. The set of important points is obtained by a two step proce-
dure below. 
  Step1: select extreme points as important points. The first and last data points of sub-
sequences are selected as important points. Then suppose that there are L extreme points 
in 𝑇 = [(𝑍&, 𝑡&), (𝑍*, 𝑡*), … (𝑍,, 𝑡,)], where . For a specified number of important 
points required and parameter , if ,  extreme 
points are selected as important points iteratively as follows. At each iteration, the data 
point is selected where  satisfies: 

                                                      (1) 

where  is the set of subscripts of extreme points that have not yet been selected as 
important points, D is a distance measure, and  is the currently selected im-

portant point that is the nearest to . If , all the extremes are se-
lected as important points. Note that since we aim to find the abnormal change of time 
series and because the change in time t is uniform, this means that the distance between 
two adjacent data points at t is the same, we only select the important points based on 
the Z value. 
 
 Step2: select some additional points as important points if necessary. The remaining 

important points are also selected iteratively as follows. Suppose, 
𝑃 = [8𝑍AB, 𝑡AB9, 8𝑍AC, 𝑡AC9,… (𝑍AD, 𝑡AD)], where 𝑡AB, 𝑡AC, … , 𝑡AD  is the set of important points 
which have been selected. At each iteration the data point is selected, where 

,   is obtained as follows:  

 
𝑎 = 	arg max

&KLKM;&
𝐷[𝑍AO, 𝑍AOPB]                                              (2) 

 
 i.e. we identify the largest distance between the currently selected important points. If

, all the extremes are selected as important points and the remaining 
𝑔 − 2 − 𝐿 important points are obtained using formula (2). 
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Here we give an illustration of important points. Suppose that Figure 1 shows a se-

quence of a time series and six important points are required, and . First of all, 

the beginning point b1 and end point b2 are selected as indicated by the yellow circles, 
and then we need to select two extreme points as important points according to step 1 
of definition 4. Firstly, e1 is selected and then e2 is selected according to formula (1) as 
indicated by the red circles. Now we have selected all extreme points with the number 

given by , thus the rest of the extreme points m1, 

m2 and m3 cannot be selected as important points. With this situation, we need then to 
select two additional points as important points according to the step 2 of definition 4 
to ensure none of the differences are too large. The largest difference in Z values be-
tween neighbouring points is between b1-e1. So a1 is selected as an important point, and 
then a2 is selected according to formula (2) since after a1 has been added the largest 
difference in Z values is between a1-e1. Points a1 and a2 are indicated by the green cir-
cles. Since large differences between points will affect feature extraction, the six im-
portant points identified should be more suitable for this purpose.    
 
Definition 5：Piecewise linear representation (PLR) of time series based on im-
portant points (Yan, Fang, Wu, & Ma, 2013) 
    Given a time series , 𝑇 = [(𝑍&, 𝑡&), (𝑍*, 𝑡*), … (𝑍,, 𝑡,)], where the set of important 
points is , 𝑇′ = [(𝑍&U , 𝑡&U ), (𝑍*U , 𝑡*U ),… (𝑍6U , 𝑡6U )] , where , 
then a PLR of can be obtained by first defining a set of functions: 𝑇M =
[𝑓&, 𝑓*,… , 𝑓6;&)] , where represents a linear fitting function between the points 

and . The PLR of  is obtained by replacing each point in with 

the point from the function  corresponding to the same time point. The fitting se-

quence can be expressed as follows: . In this paper set 

represents the set of important points, and represents the set of fitting sequences. 

 
 

Fig. 1 Illustration of important points  
 
Definition 6: Fitting error of PLR 

1
2

b =

1( 2) 2, , 6,
2

g where gb b- = = =ê úë û

Z1
' = Z1 ,Zm

' = Zn andm < n
T

jf
' '( , )j jZ t ' '

1 1( , )j jZ t+ + T T

jf

T '' = [(Z1
'' ,t1 ),(Z2

'' ,t2 ),!,(Zn
'' ,tn )]

'T ''T



 7 

    Having defined the fitting sequence which has the same size with original se-
quence , the fitting error between the fitting sequence and original sequence is de-
fined as follows: 

                                                                        (3) 

where n is the length of original sequence, and  respectively express the original 
sequence value and fitting sequence value at the same time ti. A smaller fitting error 
shows that the fitting sequence better reflects the original sequence. 

According to Definition 5, we develop a segmentation method called PLR_IP, using 
the important points to segment the time series. Now we further define four features 
that will be used to characterize subsequences, each of which corresponds to a sliding 
window, for anomaly detection as follows.  

 
Definition 7: The maximum angle of a subsequence 
    Let , 𝑇′ = [(𝑍&U , 𝑡&U ), (𝑍*U , 𝑡*U ),… (𝑍MX,U , 𝑡MX,U )] be the important points in a given subse-
quence, where  is the number of important points; for simplicity we express this 
as , 𝑇′ = [𝐼&, 𝐼*,… 𝐼MX,)]. Define  to be the angle between the vectors 𝑉A;&,Aand 𝑉A,A:&, 

where 𝑉A;&,Arepresents the vector from to and 𝑉A,A:&represents the vector from 
to , for .  is called the degree of anomaly of the ith important 

point as shown in Fig.2. The maximum angle of the subsequences corresponding to a 
sliding window is denoted  and is given by 

 (4)                                
Note that there is no degree of anomaly defined for the first and last important points 
of a subsequence. The angles are decided by important points; and the fitting data 
points don’t affect the angles. 

 
 

 

 

 

 

Fig.2 The angle or degree of anomaly of the important point, where I1, I2 and I3 are 
important points according to definition 4.  
 
Definition 8: Number of important points in a subsequence  
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The number of the important points in a subsequence, denoted as ,is defined as 

                (5)    

where   𝑇′ = [(𝑍&U , 𝑡&U ), (𝑍*U , 𝑡*U ),… (𝑍MX,U , 𝑡MX,U )] where 	𝑡&U < 𝑡*U < 	… < 𝑡MX,U . is a set 
of important points of the time series . represents the number of important points 

in computed by Definition 4. 
 
 
Definition 9: Average value of a subsequence  
The average value of , denoted as ,is defined as 

    (6)    

where is the beginning position index of the sliding window and is the end 
position index of the sliding window. represents the value of the data points in the 

sliding window . 
 
Definition 10: The maximum difference between values of important points in a  
subsequence 

   (7)    

where ℎA = |𝑍AU −	𝑍A;&U | is the difference between  and  with respect 
to Z, where   𝑇′ = [(𝑍&U , 𝑡&U ), (𝑍*U , 𝑡*U ),… (𝑍MX,U , 𝑡MX,U )] are the important points in the slid-
ing window. 
 
 
2.1.3 A weighted local outlier factor method 
 
According to the features of the time series that have been defined above, we propose 
a new anomaly detection method called the “weighted local outlier factor”, which as-
signs different features with different weights, and then uses these weighted features 
for anomaly detection. The relevant definitions are given below. 
 
Definition 11: The distance between two subsequences P and Q in the new feature 
space. 
    We have defined four features in Definitions 7 to 10, which give us a four dimen-
sional feature space. We can then compute the distance between two different subse-
quences in this space. Supposing subsequence P is represented by the point 

and subsequence Q by the point  in the four dimensional 

feature space, where  represent the four features respectively and the number 
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of subsequences n is determined by the size of the sliding window. The weighted Eu-
clidean distance is defined as follows: 

   (8)    

where are weights, which are assigned to these four features and . In order 

to determine appropriate weights, we use the sum of the values of each feature and want 
to ensure that for a given feature, the larger its sum, the smaller its weight. This ap-
proach can avoid a feature with a large sum determining the result with other features 
being irrelevant. One way of achieving this is as follows:  

                                                                                            (9) 

where 𝑆𝑢𝑚& = ∑ |𝑥c|,
cd& for feature x and similarly for the other features y, l and m. 

The idea is that instead of using the normalized sum, i.e. , we use the 

mean of the normalized sum of the other three features to ensure that the larger sums 
have the smaller weights. An empirical comparison between the weighted local outlier 
factor and the local outlier factor is presented in Section 3. 
 
Definition 12: The k-distance of subsequence object P: ( Breunig et al, 

2000) 
    Here each of the subsequences is viewed as one object which is represented by the 
four features . For any positive number k, the k-distance of object P, denoted 
as kwdist(P), is defined as the wdist(P,O) (see definition 11) between P and an object 

, where is the set of subsequence objects such that: 
 
(1) For at least k objects it holds that , and 
(2) For at most k-1 objects it holds that  
These constraints are defined for the k-distance of object which represents the dis-
tance between and the kth nearest object . Fig.3 shows the k- distance of subsequence 
object P. The definition of the reachability distance of an object is given as follows: 
 

( ) 2 2 2 2
1 2 3 4wdist , ( ) ( ) ( ) ( )p q p q p q p qP Q w x x w y y w l l w m mº - + - + - + -

iw
4

1
1i

i
w

=

=å

4

1
4

1
3( )

j i
j

i

j
j

Sum Sum
w

Sum

=

=

-
=
å

å

4

1

i
i

j
j

Sum
w

Sum
=

=

å

( )kwdist P

, , ,x y l m

O DÎ D

' \{ }O D PÎ ( , ') ( , )wdist P O wdist P O£
' \{ }O D PÎ ( , ') ( , )wdist P O wdist P O<

P
P O



 10 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.3 The k-distance of subsequence object P: for k=4. 

 
Definition 13: The k-Weighted local reachability densities of subsequence object P 
( Breunig et al, 2000): 

                         (10)    

where𝑘𝑤(𝑃) = {𝑄 ∈ 𝐷\{𝑃}:𝑤𝑑𝑖𝑠𝑡(𝑃,𝑄) ≤ 𝑘𝑤𝑑𝑖𝑠𝑡(𝑃)},
. We can then give the definition of 

the weighted local outlier factor of an object based on the reachability distance of an 
object as follows: 
Definition 14: k-Weighted local outlier factor of an object P (Breunig et al, 2000)  

                                  (11) 

According to definition 14, we can get the k-weighted local outlier factor of each of the 
subsequence objects , and the larger the value of the k-weighted outlier factor, the 
larger the anomaly. From here on this will simply be referred to as the weighted outlier 
factor, where it is dependent on a constant k. 

2.2 Anomaly detection algorithm based on weighted local outlier factor 

2.2.1 Selection of important points 
Based on Definition 4, we present pseudo-code for selecting important points, as shown 
in Algorithm 1. Therefore, we segment the time series into g-1segments using the g 
important points. The description of this method is as follows. 
 

Algorithm: Select important points 
Input: The number of important points and parameter  

( )kwdist p

( )

( )
- ( , )

k

k
Q kw P

kwlrd P
reach wdist P Q

Î

=

å

{ }- ( , ) max ( ), ( , )kreach wdist P Q kwdist Q wdist P Q=
P

( )

1 ( )
( )

( )

k
Q kw P

k
k

wlrd Q
k

WLOF P
wlrd P

Î=
å

P

g (0,1)b Î

wdist(P,R) 
P 
wdist (P,S) 

R 

S 

O 

wdist(P,T) 

T 

wdist (P,O) 



 11 

time series  
Output: Important points set  

0: Initialise: g; ; ; ;  
1: ←Computing the extreme points,  L=|FI|(  is the 

set of subscripts of extreme points, is the number of extreme 
points) 

2: ← (𝑍&, 𝑡&) and (𝑍,, 𝑡,) 
 If  

;
 

( represents the number of extreme points that need 
to be selected, represents the number of additional 
points that need to be selected)

 else  
;𝑛𝑢𝑚𝑏𝑒𝑟𝐴𝑃 = 𝑔 − 2− 𝐿 

end 
3:  

 ← ,  if  

←delete the selected extreme point in  
i=i+1; 

4: end for 
  
 Compute according to formula 2  

← ,the middle of largest segment 
i=i+1; 

 end for 
5: Output important points set  

 
Algorithm 1 Pseudo-code for selecting important points 

2.2.2 A new method based on weighted local outlier factor 
The proposed anomaly detection algorithm is based on the weighted local outlier factor 
as shown in Algorithm 2. It involves the following main steps: 
Step 1: Uniform scaling. This operation can enlarge or shrink data points by scaling 
them into the range of 0 and 1. 
Step 2: Smooth the data using the locally weighted scatterplot smoothing. In order to 
find the extreme points, we must smooth the original data set to avoid finding too many 
extreme points. 
Step 3: Selection of important points. We select the important points according to For-
mula 1 and Formula 2 in Definition 4. The selection of important points is shown in 
Algorithm 1. 
Step 4: Compute the features of subsequences. (1) the maximum angle of the subse-
quences, (2) the number of important points in the subsequences, (3) the average of the 
subsequences, and (4) the maximum difference between values of important points of 
the subsequences.  
Step 5: Compute the weighted local outlier factors. Here we compute the weighted local 
outlier factors of each subsequence based on Definition 14. And then we rank these 
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weighted local outlier factors and the larger the value of the k-weighted outlier factor, 
the larger the anomaly. 

At the end of the process, the weighted local outlier factor of each subsequence is 
outputted; the larger values of the weighted outlier factors represent larger anomalies. 
We will show the sample largest values of the weighted outlier factor of subsequences 
over different data sets in Section 3. 

2.2.3 Metrics for Measurement 
Huang (2013) introduced two metrics, which will be used in this study to measure the 
performance of the anomaly detection algorithms. Suppose the dataset D of n objects 
contains  true anomalies. We use our proposed method to find anomalies that would 
be ranked within the top 10.  Let  be the number of true anomalies which are de-
tected by our proposed method in D. Then, we define the accuracy measure of anomaly 
detection as follows:        

                                     Accuracy=                                                                      (12) 

The second measure is called “RankPower" also introduced in (Huang, 2013). Suppose 
denotes the rank of the ith true anomaly.  Then, 

                                    RankPower=                                                    (13) 

Larger values of the two metrics imply better performance. 

3. Experimental results 

Since we are using the sliding window method to obtain the subsequences, we need to 
set several parameters before conducting an evaluation. We obtain the maximum anom-
aly values by searching from a minimum value of k=5 to maximum k=20 with a step=1 
for the proposed k-weighted local outlier factor method. We use the important points to 
segment the time series for piecewise linear representation. In Section 3.1 we vary the 
number of important points to evaluate the effect of the piecewise linear representation, 
and set it to 10% of the length of the time series in Section 3.2. The sliding window 
method needs to specify the size of window. Here we set the window sizes to be larger 
than the time period of the system in time series data in order to find anomalies. We 
also did the comparison experiments for 50% smaller and 50% larger than our selected 
window sizes in Section 4. In terms of selecting the extreme points and additional points, 
we set the parameter with a value of 1/2.  
     The experiments start by obtaining the subsequences and selecting important points 
with the parameter , by sliding a window of length w across the time series T and then 
obtaining the features for each of the subsequences, and finally computing the weighted 
local outlier factor for each subsequence. Note that the index of subsequences goes 
from 1 to (n − w) + 1. The experiments using the piecewise linear representation is 
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based on important points on the 17 data sets as shown in Table 3, which were down-
loaded from the website (www.cs.ucr.edu/~eamonn/). 

 
Algorithm: weighted local outlier factor Algorithm 

Input: Window size w; required number of important points g ; smooth-
ing parameter s; Times series set D 

Output: Weighted local outlier factor of data points  
0: Initialise: w,g, m, s, set of feature values: FV 
1: Perform uniform scaling of the times series D 
2: Smooth the times series D 
3: Select gimportant points  according to algorithm1 
4: Subdivide the times series D into subsequences according to the 

sliding window size w; 
5: for each subsequence 

FV←compute feature values of each subsequence 
 according to the definitions (7)-(10) based on im-
portant points  

end for 
6: Compute the weighted local outlier factor for each subsequence 

based on FV of each subsequence 
7: Output weighted local outlier factor of each subsequence 

Algorithm 2 Pseudo-code for weighted local outlier factor  

3.1 Experimental results of piecewise linear representation based on important 
points (PLR_IP) 

This Section reports the evaluation results on the important points (PLR_IP) to obtain 
the subsequences. Table 3 presents a summary of some statistics about the 17 data sets 
used in this work for the comparison between PLR_IP and piecewise linear representa-
tion based on the piecewise aggregate approximation (PLR_PAA). In the evaluation,  
the number of segments over these data sets is determined by the number of important 
points, from 40 to 100 which is 8% to 20% of the data points for a data set containing 
500 points. In the rest of the experiments, we set the number of important points as 10% 
of the data points. If the length of a data set is larger than 500, we separate the data set 
into several segments, each of them consisting of 500 data points. If there are less than 
500 data points in the last segment, it will be combined with the preceding one as illus-
trated in Column 3 of Table 3. For example, 500*6+750 in the first row of Table 3, the 
last segment is 250, which is combined with the previous segment with 500 data points. 
We then compute the average fitting error. These data sets will then be used to detect 
anomalies in the following sections. We compute the average fitting error of PLR_IP 
and average fitting error of PLR_PAA for the different segment numbers (40-100) 
which is the number of segments of PLR_IP and the number of intervals of PLR_PAA. 
Fig.4 shows the experimental results for the ECG stdb_308_0 dataset, while the results 
for all the datasets, which are averaged over the number of segments, are shown in the 
last two columns in Table 3. We used the t-test to examine the differences between the 
fitting errors of PLR_IP and PLR_PAA over all the data sets. The single side paired t-
test value is 0.22, which indicates that the difference between the PLR_IP and 
PLR_PAA errors over these data sets is not statistically significant. However, as Table 
3 shows, the PLR_IP method indeed gets less fitting error on 9 data sets. 

'T

'T
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Examining all the data sets, we find that PLR_IP has larger fitting errors for the data 
sets that have too many peaks such as Space Shuttle Marotta Valve Series and Respi-
ration data set. On the other hand, PLR_IP has smaller fitting errors for data sets with 
fewer peaks such as Aerospace L-1t and stdb_308_0. Overall, the PLR_IP method can 
effectively fit these sequential datasets. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

Fig.4 Comparison results for ECG stdb_308_0（1:500） 
 
 

Table 3 Compared results of fitting error 

Number Data set 
Time se-
ries length Type 

Error of 
PLR_IP 

Error of 
PLR_PAA 

1 chfdb_chf13_45590 500*6+750 Real 1.3 1.46 

2 Lighting2 637 Real 0.72 1.27 
3 OliveOil 570 Real 0.67 1.06 
4 chfdb_chf01_275 500*6+750 Real 1.30 1.13 
5 stdb_308_0 (ECG) 500*9+900 Real 0.92 1.03 
6 Respiration 500*8 Real 3.39 2.15 

7 
Space Shuttle Marotta 
Valve Series1 

500*10 Real 1.31 1.04 

8 
Space Shuttle Marotta 
Valve Series2 

500*10 Real 1.31 1.02 

9 Aerospace L-1q 500*2 Real 1.41 1.8 
  10 Aerospace L-1b 500*2 Real 6.18 4.95 
  11 Aerospace L-1j 500*2 Real 6.09 4.89 
  12 Aerospace L-1p 500*2 Real 1.13 1.8 

13 Aerospace L-1t 500*2 Real 1.1 1.33 
14 ltstdb_20321_240(ECG) 500*6+750 Real 0.67 1.57 
15 xmitdb_x108_0 500*6+750 Real 1.25 0.83 
16 respirationppt20 500*3+701 Real 2.44 1.68 
17 ltstdb_20321_43(ECG) 500*6+750 Real 1.17 1.79 

P value of t-test(all row) 0.22 
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3.2 Anomaly detection in electrocardiograms 

Electrocardiograms (ECGs) are time series data recording the activities of the heart, 
which are detected by electrodes attached to the surface of the skin and recorded or 
displayed by a device external to the body. Given their importance, many annotated 
data sets have been collected. This experiment has conducted evaluation on three ECG 
datasets, chfdb_chf01_275,  chfdb_chf13_45590 and stdb_308_0 as shown in Figs. 5, 
6 and 7, respectively. Fig.5 and Fig.6 are very simple and it is easy to find the anomaly 
but Fig.7 shows very complicated ECG data where it is difficult to find the anomaly. 
Fig.5-7 show the original time series (blue line) and the esult using PLR_IP (red line). 
Table 4 shows the experimental results of the ECG chfdb_chf01_275 using the WLOF 
and LOF (vector) method which uses the vector of all values of the original subse-
quence as the input to the LOF method ( Breunig et al, 2000), in which the window size 
is set to w=400 and the number of important points is  set to m=375. In this study, we 
only present the results detected in the top 10 subsequences at most and rank them based 
on the WLOF values. As seen from Table 4 the strongest outlier is in subsequence 1991. 
Because the window size is 400, the strongest outlier data point sequence is thus in 
between 1991-2390, and the second strongest outlier data point sequence is 2163-2560. 
The rank 1 and rank 2 overlap with the anomaly area as shown by the yellow circle in 
Fig.5. The anomaly is also detected by the LOF (vector) method in rank 1. 
 
Table 5 shows the results of the ECG chfdb_chf13_45590 using the WLOF and the 
LOF (vector) method, in which the window size is set to w=250 and important point 
number is set to m=375. The strongest outlier is subsequence 2728. Because the win-
dow size is 250, the strongest outlier data point sequence is in between 2728-2977, in 
which a possible anomaly area is presented with the yellow circle in Fig. 6. The anom-
aly is not detected by LOF (vector) method until rank 4. Table 6 shows the results of 
the ECG stdb_308_0 using the proposed WLOF and LOF (vector) method, with the 
window size w=400 and important point number m=550. The strongest outlier is in 
subsequence 1939. Because the window size is 400, the strongest outlier data point 
sequence is thus in between 1939-2388, and the rank 3 also includes the anomaly area 
indicated with the yellow circle as shown in Fig.7. The anomaly is detected by the LOF 
(vector) method in rank 6. 
       
 

 
 
 
 
 
 
 
 

Fig. 5 The time series anomaly found in electrocardiogram chfdb_chf01_275 (marked in yellow circle). 
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     Table  4. Results of the ECG chfdb_chf01_275 for window size = 400 
 Rank 1 2 3 4 5 6 

WLOFMeth
od 

Subsequence 
number 1991 2163 1992 2669 2670 2672 

LOF(vector)
Method 

Subsequence 
number 2388 2663 2389 146 522 315 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 The time series anomaly found in chfdb_chf13_45590 (marked in yellow circle) 
 
      Table 5. Results of the ECG chfdb_chf13_45590 for window size = 250 

 Rank 1 2 3 4 5 6 
WLOF 
Method 

Subsequence 
number 2728 2010 865 148 864 2154 

LOF(vector) 
Method 

Subsequence 
number 1151 578 3 2728 3444 2585 

 
        
 
 
 
 
 
 
 
 
 
 

Fig. 7 The time series anomaly found in electrocardiogram stdb_308_0 (marked in yellow circle). 
 
 
Table 6. Results of the ECG stdb_308_0 with the window size = 400 

 Rank 1 2 3 4 5 6 
WLOF 
Method 

Subsequence 
number 1939 3411 2242 3750 3412 4194 

LOF(vector)
Method 

Subsequence 
number 1505 1418 1386 1393 4485 2544 

3.3 Anomaly detection in Space Telemetry 

Figs.8 and 9 show two Space ShuttleMarotta Valve series that were annotated by a 
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NASA engineer (Keogh, Lin, & Fu, 2005). In Fig.8, the expert annotated the anomaly 
as “Poppet pulled out of the solenoid before energizing”. In Fig. 9, the expert annotated 
the anomaly as “Poppet pulled significantly out of the solenoid before energizing”. Ta-
bles 7 and 8 show the results of the Space Shuttle Marotta Valve Series 1 and Space 
Shuttle Marotta Valve Series 2 using the WLOF and LOF (vector) methods, where the 
window size is set to w=500 and important point number m=500. The strongest outlier 
subsequence for series 1 according to WLOF starts at 2098 and because the window 
size is 500 it is therefore the subsequence from 2098-2597, which overlaps with the 
anomaly area as shown by the yellow circle in Fig. 8. The strongest outlier subsequence 
for series 2 according to WLOF is 369-868 which does not overlap with the anomaly 
area as shown by the yellow circle in Fig. 9. However, the 8th strongest outlier subse-
quence for series 2 is 4030-4529 which does overlap with the anomaly area. Note that 
none of the subsequences identified by the LOF method in Tables 7 and 8 overlap with 
the corresponding anomaly areas in Figs. 8 and 9. 
 
 
 
 
 
 
 
 
 
 

Fig. 8 The time series anomaly found in Space Shuttle Marotta Valve Series 1 (marked in yellow cir-
cle) 

 
 
Table 7. Results of the Space Shuttle Marotta Valve Series 1 for window size = 500 

 Rank 1 2 3 4 5 6 
WLOF 
Method 

Subsequence 
number 2098 2594 4234 4233 2595 99 

LOF(vector)
Method 

Subsequence 
number 515 493 477 479 481 483 

 
 
 
 
 
 
 
 
 
Fig. 9 The time series anomaly found in Space Shuttle Marotta Valve Series 2 (marked in yellow circle) 
 
Table 8. Results of the Space Shuttle Marotta Valve Series 2 for window size = 500 

 Rank 1 2 3 4 5 6 7 8 
WLOF
Method 

Subsequence 
number 369 1091 99 7 596 146 889 4030 
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LOF 
(vector) 
Method 

Subsequence 
number 683 1905 1995 9 13 17 25 35 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 The original time series of patients’ respiration (blue line) and the segmented re-
sult (red line). 

 
 Table 9. Results of the patients’ respiration for window size = 150 

 Rank 1 2 3 4 5 6 7 
WLOF 
Method 

Subsequence 
number 2908 2909 2946 702 1262 2947 3390 

LOF(vector) 
Method 

Subsequence 
number 3073 3074 3075 3072 3076 3038 3077 

3.4 Anomaly detection in patients’ respiration 

The Respiration dataset is a time series showing a patient’s respiration (measured by 
thorax extension). The dataset consists of manually segmented data labeled with ‘awake’ 
and ‘sleep’ (Keogh, Lin, & Fu, 2005). Fig.10 shows the original time series of patients’ 
respiration (blue line) and the segmented result (red line). As Fig.10 shows, there are 
three different stages (0-2950, 2951-3300, and 3301-4000). Table 9 shows the detected 
results on the Respiration dataset using the WLOF, with the settings of the window size 
w=150 and important point number m=400. The strongest outliers are subsequences 
2908 and 2909, so given the window offset 150, the strongest outlier data subsequence 
is thus 2908-3057, which includes the change from the first stage to the second stage, 
and the rank 7 subsequence is 3390-3539 which is just above the  change from the sec-
ond stage to the third stage. The LOF (vector) method finds relevant subsequences in 
all ranks from 1-7, but they all correspond to the same anomaly from the second stage 
to the third stage, with the subsequences all being just below the boundary between 
these stages. 
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3.5 Anomaly detection in Aerospace data 

This section presents the experimental results of the anomaly detection on the Aero-
space time series data set (Keogh, Lonardi, & Ratanamahatana, 2004) as shown in Figs. 
11-15. Fig.11shows the data set L-1j which is Impulse with one impulse negated inver-
sion. Table 10 shows the results of the AerospaceL-1j, with the window size setting of 
w=30 and important point number m=100. The strongest outlier is subsequence 480, 
thus the segment 480-509 overlaps with the anomaly of AerospaceL-1j with one nega-
tive impulse as shown in Fig. 11. The anomaly also is detected in rank 1 using the LOF 
(vector) method. The same parameters for AerospaceL-1b sequence with one impulse 
amplitude doubled as shown in Fig.12 and Table 11. The strongest outlier is subse-
quence 471, thus the segment 471-500 overlaps with the anomaly with one impulse 
amplitude doubled as shown in Fig.12. The anomaly is also detected in rank 1 using the 
LOF (vector) method. 
 

Fig.13 shows AerospaceL-1p sequence which is the sine with phase advance. Table 
12 shows the results of the AerospaceL-1p sequence using the WLOF and LOF (vector) 
method, where the window size is set to w=30 and important point number m=100.The 
strongest outlier is subsequence 481, the segment 481-510 overlaps the anomaly of 
AerospaceL-1p as shown in Fig.13. The LOF (vector) method cannot detect the anom-
aly in ranks 1-10. Fig.14 shows the AerospaceL-1q sequence which is the sine with 
phase delay. Table 13 shows the results of the AerospaceL-1q sequence using the 
WLOF and LOF (vector) methods, with the window size setting of w=30 and segment 
number m=100. The strongest outlier subsequence according to WLOF is 503-532 
which does not overlap with the anomaly area as shown by the yellow circle in Fig. 12. 
However, the 2nd strongest outlier subsequence is 439-468 which does overlap with 
the anomaly area. This anomaly is in rank 1 for the LOF (vector) method.  

 
Fig.15 shows the AerospaceL-1q sequence which is the sine with shot noise. The 

data set has three anomalies with one cycle with a few large magnitude values. Table 
14 shows the results of the AerospaceL-1t sequence with the window size setting of 
w=30 and important point number m=100. The strongest outlier is subsequence 471, 
the segment is 471-500 which contains one of the anomalies in AerospaceL-1t as shown 
in Fig.14. Ranks 2, 3 and 4 correspond to the second anomaly and ranks 5 and 6 to the 
third anomaly. The LOF (vector) method obtains similar results for this data set. 
 
   

 
 
 
 
 
 

Fig. 11 The time series anomaly found in Aerospace L-1j data (marked in yellow circle) 
Table 10. Results of AerospaceL-1j data set for window size = 30 

 Rank 1 2 3 4 5 6 
WLOF 
Method Subsequence number 480 959 960 961 962 963 
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LOF (vector) 
Method Subsequence number 500 498 499 497 9 19 

 
 
 
 
 
 
 
 
 

Fig. 12 The time series anomaly found in Aerospace L-1b data (marked in yellow circle) 
 
 
Table 11. Results of AerospaceL-1b data set for window size = 30 

 Rank 1 2 3 4 5 6 
WLOF Method Subsequence number 471 959 960 961 962 963 

LOF(vector) 
Method Subsequence number 497 7 17 27 37 47 

 
 
 
 
 

 
 
 
 
 
 

Fig. 13 The time series anomaly found in Aerospace L-1p data (marked in yellow circle) 
 
 
Table 12. Results of AerospaceL-1p data set for window size = 30 

 Rank 1 2 3 4 5 6 
WLOF Method Subsequence number 481 708 645 472 480 648 

LOF(vector) 
Method Subsequence number 413 916 36 539 350 853 

 
 
 
 
 
 
 
 
 

Fig. 14 The time series anomaly found in Aerospace L-1q data (marked in yellow circle) 
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Table 13. Results of AerospaceL-1q data set for window size = 30 
 Rank 1 2 3 4 5 6 

WLOF Method Subsequence number 503 439 444 438 502 440 
LOF(vector) 

Method Subsequence number 440 439 172 675 109 612 
 
     

 
 
 
 
 
 
 

Fig. 15 The time series anomaly found in Aerospace L-1t data 
 
Table 14. Results of AerospaceL-1t data set for window size = 30 

 Rank 1 2 3 4 5 6 
WLOF Method Subsequence number 471 482 481 480 421 451 

LOF(vector) 
Method Subsequence number 480 481 482 500 450 449 

 
The experimental results for the other data sets given in Table 3 are shown in Table 
15. There are two anomalies in the Lighting2_TEST data set, which are detected in 
rank 1 and rank 2. There is only one anomaly for each of the other  data sets and the 
anomalies have been detected in rank 1 in four of the data sets and rank 3 in the 
other one. The results are compared with method LOF (vector) in Table 16. 
 
Table 15. The experimental results for 5 data sets. 

NO. 
Data Set  

Window 
size 

Number of 
Segment Optimal Rank  

Beginning 
point  

1 OliveOil_TEST 60 60 Rank 1 451 
2 Lighting2_TEST 20 100 Rank 1, Rank 2 457,473 
3 respirationppt20 250 200 Rank 1 1530 
4 xmitdb_x108_0(ECG) 250 400 Rank 1 4372 
5 ltstdb_20321_240(ECG) 100 400 Rank 1 719 
6 ltstdb_20321_43(ECG) 100 400 Rank 3 775 

4. Discussion  

Many rank based anomaly detection algorithms have been proposed such as LOF, Con-
nectivity-based outlier method (COF), and INFLuential measure of outlier by symmet-
ric relationship method (INFLO) (Huang, 2013). They have been used to detect anom-
alies in several public benchmark data sets. Some anomalies can be detected in rank 1, 
but they failed to detect some anomalies (Huang, 2013). The empirical results demon-
strate that our WLOF method outperforms the LOF method over the seventeen datasets 
in the different settings of the window and important points. Here we look at the effect 
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of different parameters. The important point number was set at 10% of the number of 
data points. We set the parameter window size according to the features of time series 
data, which should be larger than the length from one peak to next peak in time series 
data. In order to examine the effect of our feature extraction method, we also obtained 
results with the LOF method using the features from out method so it could be com-
pared with the LOF method using the vector of all original data points, which was used 
in section 3.The experimental results are shown in Table 16.  
    We also examine different window sizes for the WLOF, NLOF, LOF and LOF (vector) 
methods. The difference between WLOF and NLOF is that instead of constructing four 
features with different weights, NLOF normalizes the time series data by just mapping 
each data point into the range [0,1]. The difference between LOF and LOF (vector) is 
that the input values of the LOF method are the four features of subsequences obtained 
by our feature extraction method, whereas the input values of LOF (vector) is the vector 
of all original values of the subsequences. As Table 16 shows, all the anomalies can be 
detected by the WLOF method using the different window sizes in Section 3, and only 
one anomaly cannot be detected by the LOF method using our feature extraction 
method in rank 1-10 as shown in Table 16, however by contrast, 7 anomalies cannot be 
detected by the LOF (vector) method using the original data point values as the features. 
Therefore, this result illustrates that our feature extraction method and weighting 
method have achieved better performance than the LOF methods. For these window 
sizes, the WLOF can find 100% of the anomalies, the LOF method can find 95% of the 
anomalies and the LOF (vector) can only find 65% of the anomalies. The WLOF also 
obtains better rankings for most of these data sets such as data sets 1, 12 and 15, ob-
taining the best RankPower with a value of (5.12) compared to (3.39) for  LOF and 
(2.76) for  LOF(vector).  To examine the effect of other window sizes, as Table 16 
shows, reducing the window sizes by a half compared to Section 3, 11 anomalies cannot 
be detected by the LOF (vector) method (just 45% detection rate of the anomalies), 9 
anomalies cannot be detected by the LOF and 9 anomalies cannot be detected by the 
WLOF ( 55% detection rate), but there are two ranked at 10 by the LOF method. Rank-
Power also can reflect the performance of algorithms; the WLOF obtains a better Rank-
Power (1.83) than the LOF and LOF (vector) methods, which have RankPower of 1.32 
and 0.96 respectively. For one and half times the window size in Section 3, 7 anomalies 
cannot be detected by the LOF (vector) method and LOF method (they find 65% of the 
anomalies) but 2 anomalies are detected in rank 10 by LOF (vector), and 5 anomalies 
cannot be detected by WLOF (it finds 75% of the anomalies). And the WLOF also 
obtains a better RankPower (2.35) than the LOF and LOF (vector) methods, which have 
RankPower of 2.07 and 2.22 respectively.  
     We also carried out experiments with NLOF over these datasets. Unlike NLOF, 
which normalizes the time series, our new weighted method WLOF takes account of 
the relationship between  features by using  weights when  aggregating all feature to-
gether. Table 16 also shows the experimental results obtained using the NLOF, which 
achieves accuracies of 95%, 55%, and 85% and a RankPower of 2.32, 1.47, and 2.15 
for the different windows sizes, respectively. As Table 16 also shows, the WLOF 
method can obtain accuracies of 100%, 55%, and 75% and RankPower of 5.12, 1.83, 
and 2.35 for the different windows sizes, respectively. In other words, WLOF can obtain 
better RankPower than NLOF. As Table 17 shows, the accuracy of finding the anoma-
lies is 100% for =1/2, 80% for =2/3 and 75% for =3/4. These accuracies are bet-
ter than the results for  LOF (vector).  Overall, the experimental results demonstrate  
that our method can 

b b b
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Table 16: Experimental results of different window sizes and methods. Numbers indicate the rank of the 
subsequence containing the anomaly or two ranks where two anomalies were present. NO indicates that no 
subsequence containing the anomaly was found in the top 10 ranked subsequences. 

 
No. 

data set 

Window sizes are set as in Sec-
tion 3 

Window sizes 50% smaller  Window sizes 50% 
larger 

 
WLOF 
(NLO
F) 

 
 
LOF 

LOF(vector) 
WLOF 
(NLOF) 

 
 
LOF LOF 

(vector) 

WLOF 
(NLOF
) LOF 

LOF
(vec-
tor) 

1 stdb_308_0 1 (9) 9 NO 1 (1) 1 10 1 (1) 1 10 
2 chfdb_chf01_275 1 (1) 1 1 2 (1) 1 10 1 (1) 1 2 
3 chfdb_chf13_45590 1 (6) 1 4 NO (5) NO NO 4 (NO) NO 6 
4 xmitdb_x108_0(ECG) 1 (2) 2 NO NO (6) 6 NO 7 (8) 8 2 
5 

ltstdb_20321_43(ECG) 3 (2) 2 10 NO 
(NO) NO NO 7 (5) 5 NO 

6 ltstdb_20321_240(ECG) 1 (2)  2 1 6 (8) 8 NO 3 (4) 4 NO 
7 Space Shuttle Marotta 

Valve Series2 8 (8) 8 NO NO 
(NO)  NO NO 3 (2) 2 NO 

8 Space Shuttle Marotta 
Valve Series1 1 (1) 1 NO NO 

(NO)  NO 9 NO 
(NO) NO NO 

9 
Aerospace L-1t 

1,5 
(1,5) 1,5 1,5 1,2 

(1,NO ) 1,NO 1,5 1,6 
(1,6) 1,6 1,10 

10 Aerospace L-1q 2 (2) 2 1,2 8 (7) 7 9 1 (1) 1 NO 
11 Aerospace L-1p 1 (1) 1 NO 1 (1) 1 NO 1 (1) 1 3 
12 

Aerospace L-1b 1 (10) 6 1 NO 
(NO ) NO 1 NO (7) NO 1 

13 Aerospace L-1j 1 (8) 1 1 2 (9) 4 NO 7 (7) NO 1 
14 respirationppt20 1 (1) 1 1 1 (1) 1 2 6 (5) 5 1 
15 

Respiration 

1,7 
(5,NO

) 
5,NO 1,NO 

NO,NO 
(NO,N

O) 

10, 
NO 

(NO,NO
)NO, 
NO 

NO 
(NO) 

NO, 
NO 

1, 
NO 

16 
OliveOil_TEST 1 (1) 1 3 NO 

(NO) NO NO NO (7) NO NO 

17 
Lighting2_TEST 

1,2 
(8,9) 3,4 1,NO 3,9 

(NO,5) 
10, 
NO NO 1,2 

(7,8) 3,6 1,2 

Accuracy (95%)
100% 95% 65% (55%) 

55% 55% 45% (85%) 
75% 65% 65% 

RankPower (2.32)
5.12 3.39 2.76 (1.47) 

1.83 1.32 0.96 (2.15) 
2.35 2.07 2.22 

 
improve the performance of anomaly detection over the 17 data sets with the suitable 
window sizes in comparison with the LOF methods.  
    Now we compare our WLOF with the HOT SAX method which was proposed by 
Keogh, et al. (2005). The authors used their method to represent time series data and 
then find the discords based on the distance between subsequences. This method also 
needs to set several parameters. Window size for subsequences is needed and the pa-
rameter nseg, which is the number of symbols, is used to represent the subsequence. 
The element number of the alphabet which is set to 10 in this paper, represents that the 
HOT SAX method using the alphabet “ ” to represent the subsequence, more 
details can be found in reference (Keogh, Lin, & Fu, 2005). Table 18 shows the exper-
imental results. The accuracy of all different window sizes is 75% and the  RankPower 
is 2.61 for the window sizes in Section 3 and 2.93 and 4.62 for window sizes 50% 
smaller and larger respectively. Therefore, the WLOF obtained greater accuracy for the 
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window sizes set in Section 3 and the same results for window sizes 50% larger, but a 
lower accuracy for window sizes 50% smaller. While the HOT SAX method has better 
RankPower results for the smaller and larger window sizes, WLOF obtains the best 
RankPower (5.12) compared to the other methods for the window sizes set in Section 
3 and this is better than any of the results for other methods at any of the window sizes 
considered. 
Table 17 Experimental results for WLOF with different values of the parameter  

  WLOF =1/2 WLOF =2/3 WLOF =3/4 

1 stdb_308_0 1 9 NO 

2 chfdb_chf01_275 1 1 1 

3 chfdb_chf13_45590 1 1 1 

4 xmitdb_x108_0(ECG) 1 4 3 

5 ltstdb_20321_43(ECG) 3 3 3 

6 ltstdb_20321_240(ECG) 1 1 1 

7 
Space Shuttle Marotta Valve Se-
ries2 8 10 NO 

8 
Space Shuttle Marotta Valve Se-
ries1 1 NO 5 

9 Aerospace L-1t 1,5 1,2 1,2 

10 Aerospace L-1q 2 2 2 

11 Aerospace L-1p 1 1 1 

12 Aerospace L-1b 1 NO 1 

13 Aerospace L-1j 1 NO NO 

14 respirationppt20 1 1 1 

15 Respiration 1,7 4,NO 4,NO 

16 OliveOil_TEST 1 1 1 

17 Lighting2_TEST 1,2 1,2 1,NO 

 Accuracy 100% 80% 75% 
 
 
 
 
 
 
 
 
Table 18, Experimental results of different window sizes and methods 

 
No. 

data set 

Window sizes are set as in Sec-
tion 3 

Window sizes 50% smaller  Window sizes 50% 
larger 

HOT 
SAX 

Win-
dow 
sizes nseg   

HOT 
SAX 

Win-
dow 
sizes nseg   

HOT 
SAX 

Win-
dow 
sizes nseg   

1 stdb_308_0 
 10 400 40 6 200 20 1 600 60 

2 chfdb_chf01_275 1 400 40 1 200 20 1 600 60 

b

b b b
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3 chfdb_chf13_45590 

 1 250 25 1 130 13 1 280 28 

4 xmitdb_x108_0(ECG) NO 250 25 NO 130 13 NO 380 38 
5 ltstdb_20321_43(ECG) 1 100 25 1 50 5 1 150 30 
6 ltstdb_20321_240(ECG) 8 100 25 NO 50 5 NO 150 30 
7 Space Shuttle Marotta 

Valve Series2 1 500 50 1 250 25 1 750 75 

8 Space Shuttle Marotta 
Valve Series1 1 500 50 1 250 25 10 750 75 

9 
Aerospace L-1t 1,NO 30 10 1,NO 15 5 1,2 45 15 

10 Aerospace L-1q 1 30 10 1 15 5 1 45 15 
11 Aerospace L-1p 1 30 10 1 15 5 1 45 15 
12 Aerospace L-1b NO 30 10 1 15 5 1 45 15 
13 Aerospace L-1j 1 30 10 1 15 5 1 45 15 
14 respirationppt20 1 250 25 1 130 13 1 380 38 
15 Respiration 1,7 150 15 4,10 80 8 1,2 230 23 
16 OliveOil_TEST NO 30 10 NO 15 5 NO 45 15 
17 

Lighting2_TEST 10,NO 40 10 10,NO 30 5 NO,N
O 60 15 

Accuracy/ RankPower 75%, 2.61 75%, 2.93 75%, 4.62 
 
In respect of computational complexity, we compare the WLOF and HOT SAX meth-

ods. Suppose n is the size of data sets. Keogh, et al. (2005) have pointed out that the 
complexity of their method is , although they also proposed heuristics to reduce 
complexity (Keogh, Lin, & Fu 2005), and they later showed an algorithm that can 
exactly find discords in just O(n) time, with  “two linear scans through  the database 
and a limited amount of memory based computation” (Yankov, Keogh & Reb-
bapragada, 2007). The WLOF and the LOF have the same complexity, but differ from 
that of HOT SAX. Breunig  et al. have analyzed the complexity in (Breunig et al, 2000). 
The complexity of WLOF and LOF is as follow: 

                                                                                    (14) 
where  is the time for a k-nearest neighbour search   

For low-dimensional data, the complexity is . For medium to medium high-di-
mensional data the complexity is . For extremely high-dimensional data, 

the complexity is .  

With respect to the effect of the weighted local outlier factor, Fig. 16 shows the results 
of important points selection for ECG data set chfdb_chf13_45590 whose parameters 
are given in Section 3.2. The symbol‘*’ represents the extreme points and ‘o’ represents 

2( )O n

( ) ( * )kT n O n t=

kt

( )O n
( *log )O n n
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the additional important points computed by formula 2. As Figure16 shows, the selected 
important points can segment the time series data and this can help to obtain the four 
features defined. Table 19 shows the four feature values for the first seven subsequences 
of chfdb_chf13_45590 and we also find Sum1=647, Sum2=77224, Sum3=3915 and 
Sum4=2569, which are obtained as noted after formula (9).  Notice that the feature ‘the 
number of important points in the subsequence’,  Sum2 is much larger than the other 
features, which would then dominate the experimental results of the LOF method that 
uses the four features as input, and so it is unable to find the anomaly in 
chfdb_chf13_45590 near the data point 2700 as shown in Figure 6. Therefore, we used 
our WLOF method to allocate different features with different weights. We use the sum 
of the values of each feature to ensure that for a given feature, appropriate weights are 
used as given in formula 9. Table 16 shows, for chfdb_chf13_45590, the WLOF method 
can find the anomaly in rank 1. In summary, the WLOF can make use of all the features 
in anomaly detection. 

 
Fig. 16  The selected important points of time series ECG chfdb_chf13_45590 

 
Table 19. 4 feature values for the first 7 subsequences of chfdb_chf13_45590 

Subsequence number 1 2 3 4 5 6 7 

maximum angle 0.28 0.29 0.29 0.28 0.28 0.26 0.27 

the number of important points 26 25 24 24 23 23 23 

Average value 
-1.19 -1.18 -1.17 -1.17

  
-1.17 -1.17

  
-1.17 

maximum difference between 
values of important points 

0.78 0.78 0.78 0.78 0.78 0.51 0.47 

 
    To investigate the discriminability of the four features, we have carried out more 
experiments on the combinations of these four features, analyzing the effect of combi-
nations of any three features. Table 20 shows the results of any three features. Features 
2, 3, 4 can obtain best results with accuracy 100% and RankPower (3.28). However, as 
shown in Table 16, the addition of feature 1 results in a higher value of RankPower 
(5.12).  The experimental result of combining feature 1, 2, 4 is 0% of accuracy, which 
indicates that feature 3 “average of the subsequence” is playing a very important role 
in anomaly detection. Therefore, the use of the four features together can effectively 
identify the anomalies, but including more features does not necessarily  improve the 
results. For example, in the case of the LOF (vector), where the vector of all values of 
the original subsequence are used as the input features for the LOF method, the accu-
racy is low as shown in Table 16.  
 
Table 20. How any tree features affect the results 

  
Features 
1,2,3 

Features 
2,3,4 

Features 
1,3,4 

Features 
1,2,4 

1 stdb_308_0 1 5 NO NO 

2 chfdb_chf01_275 2 1 3 NO 

3 chfdb_chf13_45590 NO 3 NO NO 

4 xmitdb_x108_0(ECG) NO 1 2 NO 

5 ltstdb_20321_43(ECG) 3 6 10 NO 
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6 ltstdb_20321_240(ECG) 6 8 NO NO 

7 
Space Shuttle Marotta Valve Se-
ries2 3 7 3 NO 

8 
Space Shuttle Marotta Valve Se-
ries1 10 1 2 NO 

9 Aerospace L-1t 1,2 1,6 1,7 NO 

10 Aerospace L-1q 1 4 1 NO 

11 Aerospace L-1p 3 1 6 NO 

12 Aerospace L-1b 6 1 2 NO 

13 Aerospace L-1j NO 1 NO NO 

14 respirationppt20 2 1 3 NO 

15 Respiration 1,3 2,8 1,2 NO 

16 OliveOil_TEST 1 1 NO NO 

17 Lighting2_TEST 1,2 2,4 1,4 NO 

 Accuracy 85% 100% 75% 0% 

 RankPower 3.19 3.28 2.5 0 
     
     This section has discussed the experimental results using our WLOF method com-
paring with LOF, NLOF, LOF (vector) and HOT SAX methods. The experiments show 
the new features can work better than LOF(vector), and our weighting method can work 
better than the Normalization method as shown in Tables 16 and 18. The effect of the 
proposed new features is presented in Table 20. The assessment of different parameter 
values of is given in Table 17, with the experimental results demonstrating that the 
WLOF method can obtain better accuracies than the LOF (vector) for different val-
ues. From all the experiments, it can be found that our important points, features and 
weighting method can obtain better accuracy and RankPower. 

5. Conclusion and future work 

In this paper, we have proposed a new WLOF method along with three novel compo-
nents. The component PLR_IP, which consists of extreme points and additional points, 
can effectively fit the original time series with the appropriate values of the parameter

. The four features, three of which are defined on the basis of the PLR_IP method, 
represent different aspects of time series data as the input for the WLOF method. Finally, 
the weighting schema, which gives the four features with different weights, has made 
effective use of the discriminant power of all the features together. These novel com-
ponents effectively characterize the time series data and underpin the WLOF, with the 
experiments over the seventeen datasets illustrating their effectiveness in anomaly de-
tection.  
      The comparison between our weighting method and the normalization method 
demonstrates that the PLR_IP method can effectively extract the features of time series 
and assist the WLOF method in detecting the anomalies of the time series data. The 
experimental results also show that the WLOF method can obtain better results over 

b
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the 17 data sets than the LOF method, NLOF method,  LOF (vector) method and com-
parable with HOT SAX method. These results indicate that using our feature extraction 
method can improve the performance of anomaly detection of the LOF method, and 
our weighting method is better than the normalization method.  
    One particular issue with the proposed approach is that a number of parameters need 
to be set prior to the application to anomaly detection. To overcome this shortcoming 
in practice, we plan to conduct a further study in line with the current research results, 
including (1) investigating other features for anomaly detection analysis, for example 
considering the geometrical information of data points; (2) considering a new weighting 
method which can capture the relationship of all features, and (3) revising the WLOF 
model to reduce the number of parameters required. 
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