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Abstract 

Understanding dynamic earth surface processes requires various spatial and 

temporal information to help produce patterns of landform change. Recent 

developments in sensor technology such as Structure from Motion (SfM), 

camera-mounted airborne Unmanned Aerial Vehicles (UAVs) and Terrestrial 

Laser Scanning (TLS) have provided a means of acquiring high-resolution 

spatial data on land surface topography. Through repeat surveys, these 

techniques enable much better understanding of what is termed 

‘geomorphometry’, where we can examine a geomorphic surface for change 

over space and time.  In coastal environments, change can involve significant 

alteration and generation of landforms over relatively short periods and, 

therefore, we require a means of measuring surface morphology quickly and 

over large areas. Here, we examine a section of a beach-dune system in NW 

Ireland using SfM-UAV and TLS plus baseline dGPS data points to assess the 

value of these techniques and to understand their effectiveness (and 

limitations). Issues such as accuracy, resolution and differences of Digital 

Elevation Models (DEMs) are assessed for their efficiency, associated 

challenges and relative performance over variations in terrain types and 

analytical approaches. We also examine the implications for differences in areal 

and volume calculations of the coastal landforms using the both approaches.  

We find that sensor performance is highly dependent on the terrain being 

measured, with undulations, slope, vegetation cover, acquisition resolution 

(point density) and interpolation issues all having pronounced impacts on 

effectiveness and data quality. In general, the TLS performed better over flatter, 

low-angled topography containing sparse/non-vegetated areas than in areas 
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with complex landforms where survey shadows appear to compromise final 

DEMs. The SfM-UAV shows good performance over different terrains with the 

exception of relatively flat, featureless areas such as sandy beaches and 

densely-vegetated surfaces where differences between techniques are greater 

than 1 m. Data acquisition however is much (x30) faster using a SfM-UAV with 

more extensive survey areas covered than using a TLS. 

 

 

Keywords: Structure from Motion, TLS, UAV, DEMs, beach morphologies, 

temperate regions. 
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1. INTRODUCTION 

The study of earth surface processes relies on multiple environmental datasets  

and within dynamically changing environments, three-dimensional digital 

elevation model (DEMs) are normally used to help quantify morphological 

change patterns (Pike, 1995, 2000; Evans et al., 2003; Hengl and Reuter, 

2008). Coastal systems in particular are affected by numerous environmental 

factors (sediment inputs, climate and meteo-marine conditions, vegetation and 

human activity etc.) that exhibit seasonal fluctuations and operate at a range of 

spatial scales (Carter, 1988). Understanding and monitoring of these factors 

and their influence in coastal-dune geomorphological evolution is thus 

challenging but is normally undertaken using regular topographic campaigns 

(Fabbri et al., 2017). Further, monitoring geomorphic change requires high-

resolution DEMs capable of capturing what can be significant alterations in 

coastal-landscape shape and extent even after single episodic events such as 

oceanic storms (Guisado-Pintado and Jackson, 2018). 

 

Only in the last 10-15 years have we seen significant developments in sensor 

equipment to provide researchers with vast quantities of 3D spatial data. Use of 

ground-based Global Position Systems (GPS) topographic information and 

aerial photography represent the early phases of recent developments in the 

field, where DEMs were created using photogrammetry and validated by ground 

GPS surveys (Chisholm, 1977; Chandler et al., 1989; Chandler, 1999; Lane, 

2000; Brasington et al., 2003).  
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Recently, we have seen the introduction of land- and air-based solutions for 

high-resolution surface topographic data including airborne LiDAR, Unmanned 

Aerial Vehicles (UAV) and derived Structure from Motion (SfM) and Terrestrial 

Laser Scanners (TLS), all linked to positional GPS information. This rapid 

acquisition of topographic data is now possible at spatial resolutions and 

extents previously inconceivable (Lane and Chandler, 2003; Heritage and 

Hetherington, 2007) and has resulted in huge advances in monitoring 

geomorphic changes through repeat topographic surveys (Wheaton et al., 

2010). Research areas such hydrology, land-use, archaeology, natural hazards 

and computer science (Sofia et al., 2016), and more recently seafloor 

geomorphometry (Lecours et al., 2015, 2016), are benefitting from these 

advances.  

 

TLS scanning provides a high spatial-resolution spread of survey points, 

particularly in areas where detailed analysis of surface change is needed. 

Preliminary studies (Bechet et al., 2016) show the huge potential of TLS to 

measure and map surface erosion at very fine scales (millimetre) and at short-

range distances (Abellán et al., 2009; Nield and Wiggs, 2011). The laser of the 

TLS has a footprint that increases in diameter with increasing distances to the 

target and high frequency scanning produces a dense grid of points 

representing the targeted area (Nield et al., 2011; Baddock et al., 2017). 

Distance from scanner position, terrain and slope, however, lead to an uneven 

distribution of TLS points across and along the surveyed area. Thus, a re-

gridding and interpolation process is a fundamental step in conventional digital 

elevation modelling (Li et al., 2004; Hancock, 2006; Bater and Coops, 2009; 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 
 

6 
 

Hilker et al., 2010; Rodríguez-Caballero et al., 2016) and is one of the main 

influences on accuracy achieved (Hancock, 2006; Bater and Coops, 2009). 

Amongst all the interpolation methods, ‘Near-neighbour’ or ‘Natural Neighbour’ 

has been proved to be the most effective in use at smoothing dense TLS points 

(Wang et al., 2011, 2013; Zhou et al., 2017), although other methods such as 

Inverse Distance Weighted are also used (Montreuil et al., 2013a). The final 

quality of the DEM generated, however, is also dependent on the field survey 

strategy adopted. For example, ensuring overlapping scans (Pirotti et al., 2013) 

as well as decreasing the incident angle of the TLS laser helps increase the 

likelihood of more efficient penetration through any vegetation canopy and 

therefore ground returns (Nield and Wiggs, 2011). Further, the terrain slope and 

soil type can influence TLS returns (Baltensweiler et al., 2017). Low stature 

plants can make it difficult to distinguish between ground and plant elevations in 

coastal marshes (Guarnieri et al., 2009) whereas dense grassland saltmarsh 

and other vegetated habitats normally require a type of vegetation filtering 

(Heritage and Hetherington, 2007; Coveney and Fotheringham, 2011; Pirotti et 

al., 2013). Finally, using a TLS in association with GPS data helps achieve 

more accurate datasets in the presence of vegetation for derived DEMs 

(Coveney et al., 2010).  

 

Photogrammetry is a well-established method that takes advantage of digital 

image processing to generate 3D models. Early applications focussed on 

producing DEMs using both photogrammetric principles and GPS (Lane et al., 

1994; Lane, 2000; Brasington et al., 2003). More recently, the development of 

the Structure from Motion (SfM) methods, based on stereoscopic principles, 
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have proved useful in producing 3D surface models using overlapping images 

from multiple viewpoints (e.g. James and Robson, 2012; Fonstad et al., 2013). 

When mounted on UAVs, these offer a low-cost, flexible and versatile 

alternative for acquiring high-resolution remote sensing data. Previous studies 

from Micheletti et al. (2015a) have stimulated a wide community of geoscientists 

(including non-experts) to use SfM photogrammetry as a key tool in generating 

3D models and developing digital surface mapping over various scales (Eltner 

et al., 2016). However, some limitations still exist in SfM. For example, 

understanding the influence of survey design over complex morphologies 

(Westoby et al., 2012; Eltner and Schneider, 2015) and the critical role of a 

dense deployments of carefully measured GCPs and their inclusion in the 

image processing (Micheletti et al., 2015a; Micheletti et al., 2015b; Coveney 

and Roberts, 2017; James et al., 2017a, 2017b) are important considerations. 

Camera calibration, lens distortion and a derived ‘doming’ effect also play an 

important role in final surfaces derived (James and Robson, 2012; Eltner and 

Schneider, 2015; Carbonneau and Dietrich, 2017; O’Connor et al., 2017). The 

effect of surface texture, particularly in vegetated areas and in flat or low texture 

environments, are difficult for image reconstruction (Mancini et al., 2013; Eltner 

et al., 2015) as well as a varying camera altitude relative to ground surfaces 

which ultimately complicates image matching (James et al., 2017a). Other 

important aspects such as the influence of illumination conditions in off-nadir 

flights needs to be considered to create contrast within homogeneous surfaces 

(James and Robson, 2012; Gienko and Terry, 2014; Gómez-Gutiérrez et al., 

2015; Seymour et al., 2018). All these aspects are important in the quality level 

achieved for the final 3D surface model (Eltner et al., 2016). Some of the latter 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 
 

8 
 

are still not properly addressed within geomorphology given that most 

photogrammetric processing by researchers is usually conducted using ‘black 

box’ software (James et al., 2017b). 

 

SfM and TLS techniques generate dense point clouds (PC) of 3D data of the 

landscape, rapidly propelling these as the ‘new generation’ of field approaches 

for understanding geomorphometry in coastal environments. The exploitation 

and challenges in the use of these remote sensing applications in coastal 

geomorphology has been reviewed by French and Burningham (2009). For 

instance, Westoby et al. (2012) and Ružić et al. (2014) tested the capabilities 

and performance of SfM to produce surface models of complex coastal cliffs. 

Other studies have used the SfM to build 3D models of coastal boulders 

(Gienko and Terry, 2014) whereas Harwin and Lucieer (2012), and more 

recently Casella et al. (2016), assessed the spatial and temporal accuracy of an 

UAV-based image capture to map and monitor natural coastal landscapes. 

Similarly, the use of TLS in coastal environments has increased in the past 

decade; studies of beach nourishment (Pietro et al., 2008), monitoring of small 

bedforms and aeolian systems (Mancini et al., 2013; Montreuil et al., 2013b; 

Pelletier and Jerolmack, 2014; Baddock et al., 2017; Fabbri et al., 2017; Smith 

et al., 2017) are just some examples. In all cases, the ultimate goal of using 

these technologies is the quantification of volumetric and areal changes 

between successive topographic surveys by the application of Geomorphic 

Change Detection (GCD) concept (James et al., 2012) and producing a DEM of 

Difference (DoD).  
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All of the above examples have focused in the use of either the TLS or the SfM 

and have successfully demonstrated that although both do help overcome 

classical problems of poor spatial resolution when quantifying topographic 

changes, some limitations remain when they are used in the presence of dense 

vegetation and over low relief/texture areas. However, only Westoby et al. 

(2012), Mancini et al. (2013), and more recently, Seymour et al. (2018) and 

Medjkane et al. (2018), partially combined both techniques in a coastal cliff 

section and over a low relief coastal area, to compare results and their relative 

performances. However, none of the above studies account for vegetation 

filtering correction, particularly over highly variable terrain within temperate 

coastal beach-dune environments.  

 

This study assesses the applicability, limitations and effectiveness of using TLS 

and SfM-UAV techniques for 3D mapping when used over a complex beach-

dune system in north western Ireland. Rather than using a monotype 

environment (as in previous studies e.g. Casella et al., 2016), we have used a 

study area with a range of terrain types incorporating a flat beach, cobble ridge, 

sparsely vegetated foredune up to a well-developed (>20 m) and fully vegetated 

dune system. We present an approach for the application of vegetation filters 

for TLS and SfM-UAV based on the use of GPS as a benchmark across this 

range of surface terrain to better elucidate the major sources of error in DEMs. 

The work examines for the first time, which technique may be better suited to 

monitor particular coastal beach-dune morphologies and types within 

temperate, high-energy (dynamic) dune fringed coasts and explores the 
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limitations and advantages that each technique has, in relation to the presence 

of vegetation or low texture surfaces. 

 

2. STUDY AREA  

Five Finger Strand, located on the north coast of County Donegal (NW Ireland), 

extends approximately for 1.7 km in a N‐S direction between the Five Finger 

Rock and Lagg Point at the narrow inlet of Trawbreaga Bay (Fig.1). The 

intertidal zone, around 350 m wide, is in a modally dissipative (Wright and 

Short, 1984) and backed by a large vegetated dune system (Jackson et al., 

2016) with landforms reaching 25-30 m in height. Mean spring tidal range is 3.3 

m and semi-diurnal, and the open coast is swell wave‐dominated with a modal 

significant wave height of 2.2 m and 9 s wave period. The main wave approach 

direction is from W and SW, which are fully refracted within the headland-

embayment system. The system, which has been modally-attuned to a large 

swell wave environment, periodically undergoes significant morphological 

changes over various spatial and temporal scales that manifest in the 

development and movements of dynamic nearshore bars and a nearshore ebb‐

tide delta (Cooper et al., 2007; O'Connor et al., 2011). In the past 20 years, the 

system has experienced an overall shoreline retreat of around 60 m along the 

northern part of the beach. As a result, the beach and intertidal area are highly 

dynamic, with nearshore bars migrating onshore and alongshore at varying 

temporal and spatial scales in response to modal and high-energy conditions 

(Jackson et al., 2016). The northern part of the beach presents a mean beach 

slope of less than 2% where dunes reach 25 m height; this situation changes 

slightly towards the south where the dune field is made up of multiple sand 
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ridges of variable height, backed by a dune field of some 10 m maximum height. 

The area of interest in this study is in the southern section (see Figs. 1, 2) 

where a complex dune-beach system with a range of dune topographies and an 

adjacent sand/cobble beach is located. 

 

 

Figure 1: General location map of the study area. Black box shows Five Finger Strand, NW 

Ireland and the red box highlights the study area.  

 

 

3. METHODOLOGY 

3.1. Data acquisition and processing 

In this study, topographical data was acquired using both a TLS and a SfM- 

UAV to capture the surface of a section of beach and dune morphology. 

Derived point clouds (PCs) were post-processed to ultimately create associated 

DEMs from each technique. The vertical, absolute accuracies of the datasets 

obtained by both TLS and SfM-UAV methods were compared with a Global 
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Navigation Satellite System (GNSS) spot point survey (benchmark). Finally, 

both techniques were compared through the calculation of a DEM of Difference 

(DoD) for quantification of volumetric, areal and topographic differences and 

derived implications for coastal geomorphology analysis. 

 

Surveys were undertaken in the southern section of the Five Finger Strand (Fig. 

1 red box section and Fig. 2) delimiting a 200 m x 40 m strip (≈8,000 m2). The 

area of interest is characterised by the presence of a flat beach, gravel ridge 

and sparse vegetated foredune and more developed and densely vegetated 

dune ridges inland. Therefore, the study site represents a complex dune-beach 

transition system offering a range of surface conditions to measure and where 

to compare these techniques. The survey was conducted during low tide and 

favourable wind conditions (~5 ms-1) covering the intertidal area (see Fig. 2) up 

to the bottom dune edge limit (dune toe) and extending landward over a range 

of beach/dune topographies.  
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Figure 2: Scheme of scanner locations for the surveys performed. DGPS-derived profiles used 

as benchmark reference for SfM-UAV and TLS PC comparison and validation of UAV- and TLS-

derived DEMs. The red boxed section represents the TLS survey area and black dots are the 

vertical points used for geo-referencing of the TLS point cloud. The orthophoto in the 

background is derived from the SfM-UAV survey. 

 

 

3.1.1. The Terrestrial Laser Scanner: Technical specifications and survey  

The FARO Focus 3D X330 single return laser scanner was set at 1/8 resolution 

(approximately 11 million points per scan) with a point density of one point 

every 12 mm at a distance of 10 m away from the scanner.  

 

A total of 27 scans station locations were established across the site and 

divided into 2 rows each approximately 15 m apart (see Fig. 2) ensuring 

extensive over-lapping coverage (covering a total linear area of 11,520 m2) and 

reduction of survey shadows in the lee of topographies. Six reference spheres 

were used as GCPs for each scan. Three of these spheres remained stationary 

from the previous scan allowing scans to be stitched together using these 

common spheres. The spheres were surveyed with a RTK dGPS system 

(Trimble 5800) to a precision level of 0.03 m in x, y and z for subsequent geo-

referencing into the Irish National Grid coordinates system (see Fig. 3).  

 

Post-processing for the TLS data included: a) scan registration, b) model 

georeferencing, c) data filtering, d) vegetation correction, and e) generation of a 

DEM. Steps a), b) and c) were performed using Faro Scene software where 

scans were stitched together using overlapping retroflective targets (spheres) 
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as shown in Fig. 3. After stitching the scans, the mean target distance error was 

0.004 m, however this increased to 0.035 m when the stitched scans were re-

projected onto Irish National Grid Coordinate system using the dGPS locations 

of spheres at the edges of the study site (due to the error introduced by the 

GPS).  Given the variable point density, resulting from the TLS PC (Table1) a 

default stray filter was applied to delete outliers and remove vertical anomalies, 

while a dark scan filter removed less accurate points of low reflectance. 

Increasing noise with distance from the scanner was limited by applying a 60 m 

distance filter to each scan. Since extremely dense point collection was 

concentrated in the proximity of scanner positions, with density decreasing with 

the distance from the station position, resampling was conducted to create more 

uniform densities of points. The TLS PC was therefore resampled to 0.01 m 

resolution within Faro Scene to produce a more uniform dataset, particularly in 

areas close to the scanner where extremely high point densities require 

considerable processing power. This resulted in a TLS PC of approximately 

18.6 million points and a mean point density of 2,326 per m2. 

 

3.1.2. The SfM-UAV survey: technical specification and survey  

An eBee fixed wing UAV was used in the generation of high-quality aerial 

surveying and ortho-photography following the SfM approach. The maximum 

flight duration is 50 minutes and it has a cruise speed of 11-25 ms-1. Emotion 

software allows automatic generation of a full flight plan, based on GPS 

waypoints, and calculates the drone’s required altitude, displaying its projected 

trajectory. A RGB 18.2MP camera was used to acquire regular image data in 
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the visible spectrum in JPEG format that has a maximum ground resolution of 

around 0.0275 m per pixel at 100 m elevation. 

 

The survey was conducted during favourable weather conditions with a wind 

speed of approximately 5 ms-1 at an altitude of 115 m with 70% forward overlap 

and 80% lateral overlap resulting in 0.033 m pixel size for ground image 

resolution. A fixed altitude flight was considered adequate as the elevation 

range was in the region of 30 m. All imagery was collected off-nadir. The UAV 

ground speed was around 10 ms-1 and the flight took 14 minutes to map the 

whole coastal-dune system in form of a gridded flight along the southern area. 

The gridded flight further increased image overlap. The result was a dataset 

with an average point cloud density of 101 per m2 (808,630 points) from 117 

calibrated images (Table 1).  

 

For the SfM-UAV, the post-processing consisted of a) geo-referencing, b) 

vegetation correction, and c) generation of a DSM and a DEM (Fig. 3). Data 

were georeferenced using 10 checkerboards targets (GCPs) placed throughout 

the study area which were also dGPS-fixed and processed through Pix4d 

Mapper Pro software, resulting in a mean RMS error of 0.021 m. The dGPS 

used has an overall accuracy of +/- 0.03 m that propagates into the datasets. 

The SfM-UAV derived data were processed using Pix4d in which internal and 

external camera parameters were optimized in order to minimize any vibrations 

associated with the camera and UAV. This process was followed by a 

densification of the PC in order to improve the point cloud quality, reduce noise 

and improve subsequent surface and volume measurements. The resulting PC 
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has an average point spacing of 0.13 m with a more even distribution of points 

over the study area (i.e. average point spacing among zones range between 

0.124 and 0.137 m) than the TLS point cloud (Table 1) that resulted in less 

uniform point spacing between zones.  

 

Table 1 

 

3.1.3. The Global Navigation Satellite System (GNSS): the benchmark 

survey 

An RTK dGPS survey was carried out together with data acquisition by TLS and 

UAV flight on the 17th of July 2017. This survey was used as a benchmark and 

designed to collect 10 checkerboards targets (GCPs) to geo-reference the UAV 

flight and 8 vertical retroflective targets in the form of spheres (SP) for each 

scan, which were used to georeference and merge the TLS acquisitions (see 

Figs. 2, 3). Finally, 1424 surface ground level points along four transects evenly 

distributed from the intertidal area across the dune extent were collected for 

calibration and comparison against the TLS and SfM-UAV point clouds. 

Horizontal coordinates were referenced to Irish National Grid while the vertical 

values were also corrected to the mean sea level using Malin Head (Ireland) 

Station. Accuracy for all GPS points was 0.03 m in the x, y and z. 
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Figure 3: Workflow of methodology for data acquisition where (1) refers to data acquisition and 

post-processing for TLS, (2) refers to SfM-UAV survey details and post-processing, and (3) 

represents the GPS survey. Note interactions between benchmark survey (GPS) and TLS and 

UAV surveys. 

 

 

3.1.4. Vegetation correction method 

The separation of ground bare earth and the canopy is an essential part of 

building accurate DEMs but it can be challenging within densely vegetated 

areas where laser penetration to the ground surface is not always easily 

achieved. Using a TLS in a vegetated area could result in the capture of 

different depths of a canopy depending on the penetration. On the contrary, the 

UAV only captures what is visible across a surface, either the vegetation 

surface when it is present or the ground where it is visible. Vegetation elevation 
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derived-errors within laser scan data in such areas have been reported 

previously (e.g. Heritage and Hetherington, 2007). Correction includes the use 

of a filter based on the selection of the lowest elevation (Smith et al., 2017), the 

use of GPS ground measurements to optimise window size for point cloud 

filtering (Guarnieri et al., 2009; Montreuil et al., 2013b), the development of 

Grid-based lowest Elevation point Filter (Coveney and Fotheringham, 2011) and 

the use of GPS validation points (Coveney et al., 2010). .  

 

To analyse elevation measurements due to the presence of vegetation five 

distinct zones across the site (Figs. 2, 4) with different vegetation characteristics 

were evaluated. Zone 1, the intertidal area and dry beach was characterised by 

low variation in slope (topographic heights between 1.0 to 2.0 m) and the 

absence of vegetation. Zone 2 was characterised by the presence of a cobble 

ridge and an incipient foredune (heights from 2.6 to 5.0 m) which was partially 

vegetated with Ammophila sp. Moving landward, Zone 3 was represented by a 

smooth dune surface with low cover of grass that increased in height towards 

Zone 4, which had a steep dune ridge (topographic heights 8-12 m). Finally, 

Zone 5 had a complex densely vegetated dune field (dune topographic heights 

ranging from 12 to 32 m). 
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Figure 4: Upper part represents a topographic profile showing boundaries of delimited zones 

used in the analysis. Below pictorial overview of zones distinguished in the TLS and SfM-UAV 

comparisons and a representative topographic cross-shore profile of the study area differencing 

the zones. Zone 1: The beach comprising wet and dry sand. Zone 2: Cobble ridge and foredune 

area characterised by undulations. Zone 3: Smooth dune surface covered by low vegetation. 

Zone 4: Dune ridge face. Zone 5: Dense dune vegetation field.  

 

 

Using the method developed by Montreuil et al. (2013b), vegetation coverage 

was evaluated from a series of 2 x 2 m quadrats by conducting GPS-field 

measurements at bare-ground level. The first step involved choosing a set of 2 

representative quadrats based on vegetation coverage and diversity in each 

zone where to carry out a 10-point random sampling programme of vegetation 

height. For each representative quadrat (2 per zone) the maximum and mean 

vegetation height (m) was calculated using the central body of the plant as a 

reference based on previous sampling program. The second step consisted of 
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calculating the maximum (Zmaxveg), minimum (Zminveg) and mean (Zmeanveg) 

elevations from the TLS and SfM-UAV PCs using representative cell size 

windows of 0.1 m, and finally comparing these values against the previous 

DGPs measurements (see Table 2). Zone 1 was excluded from the analysis 

given the absence of vegetation. 

 

Table 2 

 

The final step was the generation of DEMs with the purpose of calculating 

surface volume, areal and topographic variations (DEM of Difference –DoD-) 

between both surveys. The DoD is frequently used to assess and quantify 

spatial patterns of geomorphic change through time (Brasington et al., 2003; 

James et al., 2012). Here, however, we use the DoD as the difference between 

two datasets gathered by different technologies (TLS vs SfM-UAV) rather than 

between (temporally) successive surveys. The subtraction of one from the other 

(e.g. SfM-UAV from TLS) highlights the areas of dominant differences after 

vegetation correction filter. The Geomorphic Change Detection (GCD) add-in of 

ArcGIS (Wheaton et al., 2010) was used for quantifying uncertainties 

independently for each DEM and for propagating them through the DEM of 

difference. The calculations were ran using a propagated error scheme (based 

on individual RMS errors, 0.035 m for TLS and 0.021 m for the SfM-UAV) which 

combines the error from TLS and SfM-UAV surfaces into the elevation 

differences calculations. Results (Figs. 8, 9, results section) are provided with a 

confidence interval of 95%, which guarantees the accuracy of the results (see 

Wheaton et al., 2010 for further details on method). 
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4. RESULTS 

4.1. Spatial analysis of Point Clouds  

By using the closest individual point of each PC to the benchmark survey 

(planar distance) correlation among TLS, SfM-UAV and ground GPS points is 

presented in the absence of vegetation error correction. Given the variability of 

point distribution and density (Table 1) in each PC, the average planar distance 

of compared pairs varies from 0.09 m for the GPS-TLS to 0.04 m for the GPS-

SfM-UAV. 

 

In general, regression plot lines (Figs. 5a-5e) and histograms of differences 

(Figs. 5f, g) demonstrate good correlations between GPS field measures and 

the compared TLS vs SfM-UAV point clouds, thus confirming previous 

investigations about the general adequacy of these techniques (Mancini et al., 

2013; Zhou et al., 2017). Further, the analysis of standardised residuals (ZR) 

(i.e. a measure of the strength of the difference between the observed and 

expected value in a regression analysis) was used to assess the linear 

regression between the GPS ground truth measures and both the TLS and the 

SfM-UAV surveys (Fig. 5). A symmetric bell-shaped histogram of the residuals 

indicates that the variance is normally distributed (differences between 

measured and expected values are small) whereas asymmetric histograms 

indicates significant differences (location and value of the residuals).  
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Figure 5: From a) to e): Fit of Linear regression for TLS and SfM-UAV elevations versus the 

benchmark (GPS) for each of the five zones identified in Fig. 2. Inserts show histograms of 

regression residuals. f) and g) show frequency histograms of differences for GPS-TLS and GPS 

versus SfM-UAV respectively.  

Table 3 

 

In Zone 1, the GPS-TLS comparison shows a near 1:1 fit between 

corresponding points (R2 = 0.999, p<0.05) with a low dispersion of data (Table 

3), whereas for the SfM-UAV, more scattered values are present and a lower 

correlation is found. The GPS versus SfM-UAV histogram of residuals confirms 

that significant differences (-0.5> ZR <0.5) corresponds to points surveyed in 

extremely flat and higher moisture areas where the SfM-UAV seems to fail.  

 

Moving landward, in Zone 2, the presence of undulations associated with 

cobble ridges and low, partially vegetated foredunes, results in a better 

correlation among the GPS and SfM-UAV dataset (R2 = 0.976, p<0.05) and 

lower dispersion compared to GPS values (Table 3, Zone 2). Scattered values 

for the TLS-GPS comparison corresponds to ZR >1 (over 19% of the values 

show differences > 0.3 m) which are mainly located in vegetation corridors and 

shadow areas favoured by foredune morphology. Along the smooth dune 

surface with patches of low vegetation (Zone 3) both the TLS and the SfM-UAV 

show good correlations with respect to the benchmark (R2 = 0.97, p<0.05), 

however, different patterns in linear distribution of points is evident. The 

interpretation of the SfM-UAV ZR histogram (Fig. 5, Zone 3) shows that for 13% 

of the points, differences between heights are > 0.3 m that corresponds with the 

presence of sparse and medium sized vegetation. However, only 5% of these 
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differences account for the TLS PC therefore suggesting that an over-estimation 

of the SfM-UAV compared to TLS and the benchmark can be expected in this 

zone.  

 

In Zone 4, scattered values in both linear regressions show the disparity 

between TLS and SfM-UAV when a trend is not clear. The complex topography, 

where slopes range from 30% to 70%, and the presence of dense and vertically 

developed vegetation, seems to influence the performance of both techniques. 

Looking in detail at the ZR and the dispersion of the data (Table 3, Zone 4), 

both the TLS and SfM-UAV over-estimate heights by over 0.3 m in 25% of 

cases. However, for the TLS, points where these differences are shown seem 

to correspond to abrupt changes in height where survey shadows are likely, 

whereas for the UAV, those are mainly linked to densely vegetated areas. 

Finally, in Zone 5, linear regression again shows a very high R2 correlation 

despite some points being scattered around the fit line as shown in the 

residuals histogram for the TLS. The complexity of Zone 5 does not allow 

favouring one technique over the other. Respectively, 56% and 61% of TLS and 

SfM-UAV points show a difference in height > 0.3 m compared to the 

benchmark.  In general, in the absence of a vegetation error correction, 

incidences of greatest differences shown against GPS points corresponds to 

flatter and densely vegetated areas for the SfM-UAV whilst for TLS it is a 

combination of slope, vegetation and distance to the scan location (point density 

and distribution). 

 

4.2. Vegetation filtering and DEMs generation 
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The results of the relationship between measured vegetation heights versus 

that estimated from SfM-UAV and TLS are summarised in Table 2. Fig. 6A 

shows a strong correlation (R2 > 0.99, p < 0.05) between the minimum TLS and 

SfM value (Zminveg) and Zgps indicating that the minimum value of the PCs data 

within each quadrat of 2x2 m could adequately represent the topographic 

surface for most of the zones. The mean difference between the two values is 

<0.3 m for the TLS and around 0.44 m for the SfM-UAV. It has to be noted than 

in all cases, greater values are associated with zones with height vegetation 

and dense coverage (i.e. zone 4 and 5) indicating reduced laser penetration 

and derived surface problems for image reconstruction using the SfM-UAV. 

 

 

Figure 6: A) Linear correlations between the minimum value of vegetation in each 0.1 m cell 

window (Zminveg) and measured GPS (Zgps) for each of the representative quadrats within each 

zone. B) Linear correlations between (Zmaxveg-Zgps) and maximum vegetation height 

measurements (m) for each of the representative quadrats surveyed. 
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Similarly, a statistically significant correlation (R2>0.54; p<0.05) between 

Zmaxveg-Zgps and field measurements of vegetation is found for the TLS 

indicating that there are few cases in which it is detecting the top of the 

vegetation canopy whereas a much strong correlation (R2 = 0.73) is found for 

the SfM-UAV (Fig. 4b) particularly in very dense areas (zones 4, 5). Fig. 6 and 

Table 2, therefore, verifies that from both technologies the minimum value 

within each cell size can be used as the best representation of the ground 

surface, at least for most of the study area. This is in line with previous studies 

from Coveney and Fotheringham (2011) that indicates that the minimum value 

within each quadrat could adequately represent the ground if the laser can 

penetrate the vegetation. In addition, the analysis demonstrated that the GPS 

field measurements are adequate to validate quantify and filter vegetation from 

TLS and SfM-UAV PCs prior to retrieving a DEM of the study area. 

 

4.3. DoD for coastal geomorphic change detection  

For each technique, two DEMs, at 0.2 and 0.5 m resolutions, were generated 

using Natural Neighbour binning as an interpolation method and the minimum 

value within a 0.1 m cell size to account for vegetation filtering (see Fig. 7). 

Further, a DoD was performed for the each pair of DEMs. Since the DEM 

generated from the SfM-UAV is subtracted from the TLS-DEM, spatially positive 

differences in elevation are represented in blue (SfM-UAV higher than TLS) and 

negative (SfM-UAV lower than TLS) in red.  
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Figure 7: Digital Elevation Models of the study area gridded at 0.2 m and 0.5 m cell size. Top 

section corresponds to SfM-UAV derived DEMs and bottom section corresponds to TLS derived 

DEMs. Top right and bottom right panels show the point density (m
2
) achieved in each survey. 

 

 

The comparison between the two DEMs (resolutions of 0.2 and 0.5 m 

respectively) shows that, although not very significantly, final DEM resolution 
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influences the resulting 3D topographic differences (Zdiff) as shown in Fig. 8. In 

this respect, the total area of detectable change (i.e. with a probability greater 

than the confidence interval) increases from 47% to 48% when increasing the 

cell size leading to a difference of ± 300 m2 in areas with negative and positive 

differences, respectively (Fig. 8B). 

 

Focusing on the 0.2 m resolution DEM, areas with the highest differences (Zdiff > 

± 0.7 m) are concentrated, almost exclusively, along the seaward part of zone 1 

corresponding to the wet sandy beach and in the north-eastern corner of zone 

5, corresponding to a dense vegetated dune field (Fig 8). Both areas are 

believed to be subjected to heavy interpolation given the resulting point density 

and point distribution (Table 1). This leads to the occurrence of occluded areas 

that forces a rougher interpolation of points thus affecting the SfM-UAV vs TLS 

comparison.  

 

The detailed analysis of zones 1 to 5 allows a better understanding of local 

elevation differences occurring between the two overlapping DEMs extracted 

from the TLS and SfM-UAV. In zones 4 and 5, 63% of the area presents 

detectable differences whereas in zones 1 and 3 differences account for 36% 

and 29% of the total area, respectively. This result highlights the assortment of 

situations (patterns of differences between TLS and SfM-UAV) encountered 

amongst the zones and indeed across the study area (Fig. 8A).  

 

More pronounced positive elevation differences (Zdiff ≈ +0.45 m), representing 

areas where TLS < SfM-UAV, are concentrated towards the northern part of the 
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site (zones 4 and 5) and correspond to densely vegetated areas and steeply 

sloping relief due to the presence of dune ridges. Conversely, the lowest 

differences (Zdiff ≈ 0.20 m) are found along the southern and northern limits of 

zone 3 where sparse patches of low to medium vegetation (Zmaxveg > 0.30 m) 

are present (Fig. 8).  
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Figure 8: A) Cartography output of DoD showing elevation differences between SfM-UAV and 

TLS DEMs at 0.2 m (left) and 0.5 m cell resolution (right). B) Total 3D volume differences 

between 0.2 m (left) and 0.5 m cell resolution (right) models. 

 

 

The negative differences shown in red (TLS > SfM-UAV) correspond to zone 2 

(and also extend to the limits of zone 3) and zone 5. Significant negative 

differences are found in Zone 2 which is dominated by the presence of dune 

ridges and partially vegetated foredunes (Zmaxveg = 0.5 m) resulting in abrupt 

changes in topography (Figs. 4, 8) and Zdiff ranging from -0.51 to -0.30 m. These 

negative differences increase with the distance to TLS scan position (towards 

the outer edges of the study area). Similarly, across zone 5, a mixed pattern of 

negative and positive differences is found with a mean Zdiff ≈ -0.20 m, 

dominating the outer edges and some patches along the central area.  
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Figure 9:  A) Frequency histogram of differences (Zdiff) for 0.2 m cell resolution DEM of whole 

study area. From B) to F) zonal histograms of Zdiff (m) for zones 1 to 5 showing positive and 

negative elevation changes (in blue and red respectively). 

 

 

The DoD histogram (Fig. 9A) reveals that 96% of the differences are in the 

range -0.5 to 0.5 m and 64% between just -0.21 to 0.21 m, suggesting that after 

vegetation filtering, there are still other variables accounting for differences 
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between both techniques. The TLS and SfM-UAV DEM modelled differences 

follow a quasi-Gaussian distribution, where most of the differences are lower 

deviations in elevation ≤ ± 0.7 m (Fig 9, A) corresponding to the surface of 

around 3700 m2 (Fig. 8 B). In terms of volumetric differences (on a cell-by-cell 

basis, the DoD depth multiplied by cell area and summed for those areas), the 

total volume of difference between both DEMs accounts for 273 m3 (32% 

positive and 68% negative differences as shown in Fig. 8B). 

 

Closer inspection of the Zdiff frequency distribution of zonal histograms shows 

that for zone 3 (Fig. 9D), a largely vegetation-free (or very low) ground area, 

80% of cells fall with the range ± 0.2 m (575 m2 of the area) increasing to 99% 

for the range of difference between -0.5 to 0.5 m. On the other hand, across 

largely vegetated areas such as zones 4 and 5 (Figs. 9 E, F), 71% of the cells 

are within the range ± 0.2 m corresponding to 144 m2 and 1590 m2 respectively. 

In these areas, though 97% of the differences range between ± 0.5 m, two 

thirds of the total surface inspected present positive or negative differences 

induced by complex topographies (dune crest and slack) and vegetation 

density. 

 

In zone 1 (Fig. 9 B), only 36% of the surface depicts detectable change where 

cells ranging of ± 0.2 m only account for 68% (86% possess Zdiff of ± 0.5 m). 

Given the absence of vegetation in this area, it is suggested that the differences 

correspond to problems with SfM-UAV effective terrain reconstruction (Westoby 

et al., 2012). Despite the fact that in zone 2 only 41% of the total area present 

detectable differences between the TLS and SfM-UAV DEM models, and mostly 
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concentrated in the northern area, it is one of the zones with the largest 

differences. Accordingly, analysis of the Zdiff histogram reveals that 42% of cells 

range ± 0.2 m (Fig. 9 C) which increases to 89% for differences between the 

ranges ± 0.5 m, suggesting substantial deviations between the two techniques. 

 

5. DISCUSSION  

This work examines the use of TLS and SfM-UAV techniques for the optimal 

acquisition of high-resolution topographic data over certain complex coastal 

landforms. TLS and SfM-UAV techniques are popular because of their 

perceived ease of use and high level of automation, as well as their ability to 

cover large areas rapidly compared to standard topographical GPS surveying. 

This level of automation, however, does not consider the actual processing 

involved in the photogrammetric calculations, masking any source errors that 

finally hampers the accuracy of DSM (James et al., 2017a). Differences 

between SfM-UAV and TLS approaches are clear when comparing upfront data 

acquisition times. In this study, the survey with UAV flight took around 14 

minutes (plus 30 minutes of surveying the GCP with the GPS) and covered a 

larger area, while the TLS survey took 5 hours to complete in the field and 

required extensive manual post-processing. Results support the validation of 

both the SfM-UAV and TLS techniques in acquiring accurate and precise 

topographic data of complex coastal systems compared to a traditional 

topographic survey using GNSS although some limitations are identified. The 

validation procedure was assessed, on one hand, through comparison of point 

clouds generated from SfM-UAV and TLS with dGPS ground control points and, 
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on the other hand, testing the effect of spatial resolution and the application of 

vegetation filter was conducted using a DoD approach.  

 

5.1. Influence of point density and distribution  

Results suggest that the main differences between PCs are strongly related to a 

point distribution and point density issue (Table 1, Fig. 7). The fact that mean 

point distance is 0.09 and 0.04 m for the TLS and SfM-UAV, respectively, to the 

closest GPS point used in the comparison conducts to worse correlation for the 

TLS (Fig. 5) in poor density areas due to occlusions and survey shadows 

(Coveney et al., 2010). This leads to greater elevation differences when 

compared to either the SfM-UAV PC or the benchmark as there are no points in 

the cloud directly below to compare to and then the difference in elevation is 

calculated using the nearest point. This results in an exaggeration of the height 

difference between surveys. On the other hand, although the SfM-UAV survey 

had a reduced point density, the actual distribution is uniform across the site, 

leading to an apparently good agreement within more complex areas.  

 

The second source of discrepancy is related to the un-modelled presence of 

vegetation, especially in flat or very high roughness areas (i.e. foredunes) 

where a combination of low heights and vegetation can lead to laser scan 

occlusions (Pelletier and Jerolmack, 2014), and difficulties in surface 

reconstruction for the SfM-UAV (Micheletti et al., 2015a). This can be seen in 

the residuals, whose greatest differences correspond to vegetated points and 

ranges from 0.5 to 0.7 m, coincident with the mean height of vegetation existing 

in these zones. Furthermore, as reported previously by Mancini et al. (2013), 
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the different approaches in which ground elevations were acquired (SfM-UAV 

elevations by image processing, TLS by distance to the laser and the GPS 

values collected by a hand-held pole) can also affect correlations and histogram 

results. Nevertheless, both point clouds do show a consistent level of vertical 

accuracy albeit with local differences depending on the terrain surface (Fig.5). 

In particular, the SfM-UAV exhibits an almost ideal behaviour in comparison to 

the GPS points taken over complex topographies such as vegetated dunes and 

cobble ridges. Conversely, the TLS performs better over the beach surface and 

relatively flat and low to zero vegetation areas (e.g. Zhou et al., 2017) where 

final point density is > 3000 points/m2 (Table 2). 

 

Results from linear regression plots (Fig. 5) within each zone allow an initial 

understanding of the main differences between techniques in the absence of 

vegetation filtering. However, the fact that GPS point distributions were acquired 

along a cross-shore profile partially coincident with TLS scan positions may 

have biased TLS points’ representation. This is evident in zones 2, 3 and 4 

where the residuals correspond with measurements taken in low-density areas 

(coincident with greater distance from scan position). For instance, across Zone 

5, the complex topography forces the GPS points to be taken closer to the laser 

scanner positions, favouring good agreement among measures (GPS vs TLS). 

Therefore, the precision of the TLS with respect to GPS and further SfM-UAV in 

those areas is highly dependent on the joint impact from the topography (and 

vegetation) and the distance of the benchmark point to the TLS scan location. 

Precision reduces with the distance to the scanner and the presence of 
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changes in topography as it in itself generates shadows and the vegetation 

obstructs the laser (Fig 5, c, d, residuals). 

 

5.2. Influence of vegetation and DEM grid size  

The removal of data points that represent grass, shrubs or any other type of 

vegetation that may over-estimate the ground surface is important in the bare-

earth elevation model (DEM) generation (Smith et al., 2017). SfM-UAV and TLS 

models are equally influenced by the difficulties of occlusion from the presence 

of vegetation, which in turn affects the resulting surface and topographic 

reconstruction (Coveney and Fotheringham, 2011; Westoby et al., 2012). 

Elevation errors within TLS data in densely vegetated areas have been reported 

to be up to 1 m (Seymour et al., 2018) and although removal can be achieved 

through different techniques (Guarnieri et al., 2009; Coveney et al., 2010; Pirotti 

et al., 2013) optimal results are generally achieved in sparse or vegetation-free 

areas where laser penetration is much more likely.  

 

The TLS and SfM-UAV Zminveg values compare well with GPS ground survey 

points for most of the quadrats, with mean differences <0.04 and 0.06 m, 

respectively, in flat and sparse to low vegetation areas such as the inter-dune 

(southern part of zones 2 and 3). This therefore confirms the use of Zmin values 

as a suitable representation of the ground surface for building DEMs in these 

terrains and in the absence of airborne multi-return LiDAR (Montreuil et al., 

2013b). However, on more complex zones characterised by either the presence 

of dense vegetation or surface undulations the TLS overestimates heights by up 

to 0.5 m (zone 5 and zone 2, foredunes) whilst for the SfM differences can be 
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over a meter in zone 5, indicating that the topography of these areas represents 

the canopy of the vegetation. Furthermore, the fact that the correlation between 

Zmaxveg-Zgps and maximum vegetation measurements is R2=0.7253 (p<0.05) 

is suggesting the SfM-UAV is capturing the surface of the vegetation. On the 

contrary, this correlation for TLS is smaller (R2=0.54; p<0.05) indicating 

occlusion in dense vegetated areas that impede the laser to neither reach the 

ground nor the vegetation canopy. 

 

Given the differences in vegetation height and coverage across the site, a 

single estimation of vegetation height to be used in the DEM vegetation 

correction would have introduced a systematic error. However, the use of 

specific Zmin for 0.1 m cell size windows ensures that the vegetation correction 

changes with the terrain and across the DEM. Although this filtering technique 

has been shown to be more reliable over less vegetated areas (zones 2 and 3, 

Table 2) its applicability to densely vegetated areas with multi-layered canopies 

and complex topographies (zone 4 and zone 5) encountered some limitations. 

While the TLS and SfM-UAV-derived DEMs were corrected for vegetation, 

some remaining differences between them are likely to have been caused by 

the presence of unfiltered dense vegetation (Table 2, Fig. 6) as well as other 

technical issues discussed below related to survey design and DEM building.  

 

Similarly, the final cell size of the resulting DEM has to accomplish between 

filtering residual values for vegetation, maintaining a high level of spatial 

resolution for further coastal modelling (Coveney and Roberts, 2017) and a 

minimal threshold for vertical change detection (Eltner et al., 2015), particularly 
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in their use for post-storm effects in coastal areas. Smith et al. (2017) set the 

optimal DEM resolution in 0.10 m planimetric raster size for monitoring a dune 

blowout, Montreuil et al. (2013b) chose 0.5 m for a foredune area, whereas 

Coveney and Fotheringham (2011) uses 1 m in a salt-marsh environment. 

Given the average ground point density and the mean size of the vegetation in 

denser areas, two grids of 0.2 and 0.5 m planimetric raster size were chosen to 

overcome the noted vegetation residuals and to maintain resolution fine enough 

to infer differences between techniques. The DEM decimation although useful 

for downscaling data while retaining information, implies a loss of topography 

complexity and accuracy in any final models. As the DEM resolution was 

reduced, the spatial variations of elevation differences at a finer scale become 

averaged across larger pixels (Lu et al., 2017) leading to differences in the final 

balance of volumetric and vertical differences (Fig. 7B). This is particularly 

evident in complex areas such as zone 3, 4 and 5 due to the roughness effect 

introduced by larger grid size. 

 

5.3. Spatial variability across the DEM of Difference 

The main challenge in DoD analysis is to distinguish between actual 

geomorphic change and survey noise which requires particular approaches to 

quantify error (Wheaton et al., 2010; Williams, 2012). This error, moreover, 

varies according to the device used and survey design (James et al., 2017a) 

and normally arises at areas with high form and surface roughness and sparse 

survey point densities (Williams, 2012).  
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Areas with the highest differences (Zdiff) were concentrated in the most 

landward vegetated dune (zone 5) (Figs. 8, 9F) and in the wet part of the 

foreshore. Resulting differences are based on a comparison of interpolated 

values, and therefore this is likely to be less reliable within poor density areas 

where the outcomes of the interpolation can diverge from reality (Mancini et al., 

2013). Sandy beaches can be challenging environments for SfM-UAV as bare 

bodies of sand represent low-coloured variability in RGB images (Seymour et 

al., 2018), which ultimately affect matching between images and reconstruction 

of the surface (Eltner et al., 2016; 2017). Differences encountered between the 

TLS and the SfM-UAV (Fig. 8A) in zone 1 can be explained by the low variation 

in texture of the imagery, as well as the flatness, that characterises this zone. 

The acquisition of a larger number of images (and from different angles) to 

enhance overlapping, as well as from different solar angles to create contrast in 

this part of the foreshore, may have facilitated the recognition of textures in this 

zone (Fonstad et al., 2013; Mancini et al., 2013) and thus mitigated derived 

DEMs errors. 

 

Positive-sign errors or differences between TLS-SfM found in zones 4 and 5 are 

reflecting the influence of vegetation in laser returns at low incidence angles. 

Many authors (Rosso et al., 2006; Coveney and Fotheringham, 2011; Zhou et 

al., 2017) have demonstrated that the ability of the scanner to accurate derive 

heights in densely vegetated areas and within variable relief, even with filtering 

techniques applied, is less compared to less or non-vegetated locations. In 

these densely vegetated areas, low-point densities prevented accurate 

determination of the ground earth surface as reported in zone 5 and to a lesser 
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extent in zone 4. The results, however, could have been slightly improved by 

increasing the number of TLS surveys (overlapping of scans) from different 

angles and positions though it would be more time demanding and post-

processing prevents its use in large areas or rapid survey situations. Similarly, 

vegetation coverage in these areas (Fig. 8, zone 4 and 5) may complicate 

image matching and reconstruction for the Structure from Motion approach due 

to its variable appearance from different viewing angles and movements forced 

by wind (Eltner et al., 2015). Therefore a high degree of overlap might be 

required for this type of terrain to assure an accurate reconstruction of the 

surface and to increase point density and quality (Micheletti et al., 2015a). 

Moreover, varying camera altitude relative to the ground, normally driven by 

complex and highly variable topographies (James et al., 2017a) as reported 

here could have complicated image matching which adds to the problem of 

feature matching due to the presence of vegetation.  

 

The negative differences where mostly localised in sloping flanks (interdunes of 

zone 2 and zone 5) in line with previous works by Coveney (2013) in a coastal 

marsh or Westoby et al. (2012) in a coastal cliff environments. Across the 

foredune (northern section of zone 2) the oblique data capture geometry of the 

laser scanning seems to be more sensitive to the sporadic presence of 

vegetation and surface roughness (significant lateral canopy depth resulting 

from low incidence angle afforded by a tripod-mounted TLS). The presence of 

vegetated areas in coastal systems (Guarnieri et al., 2009; Pirotti et al., 2013; 

Fabbri et al., 2017) therefore requires further improvements in data collection 

through optimising acquisition geometry, decreasing the survey angle of 
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incidence and increasing the number of scans from different positions and thus 

increasing the probabilities of complete penetration though the canopy. On the 

contrary, the SfM-UAV performed well in zones with complex topographies as 

reported here for the foredunes due to images taken from above the surface 

(nadir flight).  

 

6. CONCLUSIONS 

TLS and SfM-UAV techniques are popular because of their relative ease of use 

and high level of automation. This, however, can neglect important technical 

procedures and workflow involving terrain complexity and result in lower quality 

DSMs. Further, given the ease of processing through automated workflows and 

user-friendly software, the critical analysis and understanding of the source of 

errors and uncertainties in the data is not always apparent.  

 

Coastal morphological studies have seen a rapid increase in the use of these 

techniques in recent years, however, most of these have focused on the use of 

just one method in acquiring surface topopgraphic data or do not consider 

complex coastal-dune systems especially in temperate regions. Here, our study 

includes two data acquisition techniques (TLS and SfM-UAV) and extends over 

the beach-dune continuum (including the beach, the transitional foredune and 

the fully developed dune field) and therefore incorporates a good range of 

textures, environments and morphologies to help test the applicability of both 

techniques between each other and over particular surface changes. 
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In this study, we carried out a conventional coastal survey following best 

practices reported in the literature, concerning errors and their mitigation for 

topographic surveys, using both TLS and the SfM-UAV, to create optimal DEMs 

using the best possible analysis for each sensor and analytical procedure. We 

demonstrate that final DEMs are a product of the type of coastal environment 

being surveyed and the surface features present. In the SfM-UAV survey, 

technical and environmental aspects such as the varying camera altitude and 

derived feature matching issues, the presence of vegetation and difficulties for 

surface recognition from above as well as image reconstruction problems due to 

low contrast patches of light sand are believed to have had an  influence of the 

final DEM produced. Similarly, in the TLS survey, high incidence angles and the 

presence of vegetation both in flat and undulated zones resulted in occlusion of 

laser penetration, which likely propagated to the DEM generation. Although, 

these artefacts are believed to produce uncertainties in the comparison analysis 

reported here (and in the differences encountered in the vegetated dune field, 

the foredune and to a lesser extent the foreshore), we agree with Seymour et al. 

(2018) that some of them are still difficult to predict or avoid in temperate and 

complex coastal areas and further research is needed.   

 

1. Our results suggest that both the TLS and SfM-UAV survey methods are 

in general good tools to derive topographic information in beach/dune 

systems although some discrepancies within particular terrain types 

arise. Total survey time required for each shows that surveys using an 

UAV are faster to implement over TLS surveys but the lower quality of 
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surface models generated over flatter terrain using SfM-UAVs needs to 

be considered. 

2. Differences among TLS and SfM-UAV derived surface morphologies are 

largely insignificant in mild-slope terrains or in the absence of vegetation 

whereas in complex vegetated areas they can vary greatly suggesting 

that a combination of environmental and technical factors and not a 

function of a unique variable are responsible.  

3. Temporal comparisons of DEM of Differences (DoDs) created from TLS 

surveys and then subsequently from SfM-UAV are not recommended as 

local variations from surface reconstruction, laser penetration and point 

density as well as seasonal changes in vegetation may lead to 

misinterpretation of morphological changes.  

4. In general, TLS surveys produce more realistic surface models across 

beach and sparsely vegetated (back beach) areas. SfM-UAV-derived 

surfaces are poorer representations of the morphology under patchy, 

moist flat sandy and low texture surfaces. In both cases, survey shadows 

and errors increased as vegetation density increased although SfM-UAV-

derived surfaces showed better than expected performance in sparse 

vegetated and relief areas (foredunes) given that data acquisition is 

performed using a nadir-view.  

5. Our results show for the first time, that beach and dune monitoring 

requiring high precision using TLS and/or UAVs should be cognisant of 

local terrain type and vegetation densities, as well as derived artefacts 

before embarking on survey deployment design and subsequent 3D 

surface derivation and comparisons.  
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6. Our study demonstrates a clear advantage in data acquisition of the SfM-

UAVs over TLS for surveying surface morphological changes (e.g. from 

storm wave erosion) because of rapid survey time and ease of 

deployment, particularly along long stretches of coastal foredunes.  

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 
 

45 
 

TABLES 

Table 1. Resulting variability in point density (m2), average point spacing (m) 

across the zones for both Point Clouds. Note the uneven distribution of points 

influenced by terrain characteristics particularly in the TLS with an average point 

spacing increasing towards zone 5, whereas for the SfM-UAV average point 

spacing does not change significantly. 

 

 

  

Number of points Average Point Spacing 

(m) 

Point Density per m
2
 

SfM-UAV TLS SfM-UAV TLS SfM-UAV TLS 

Zone 1 69317 3599276 0.131 0.018 89 4597 

Zone 2 78707 2808192 0.124 0.021 85 3049 

Zone 3 231361 6523969 0.134 0.025 92 2591 

Zone 4 36272 792675 0.137 0.029 114 2493 

Zone 5 391273 4883803 0.124 0.034 113 1412 

Study Area 806930 18607915 0.13 0.025 101 2326 
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Table 2. Summary of measured vegetation (Zgps) versus Maximum (Zmaxveg) and mean (Zmeanveg) estimated vegetation height for 

the study area. Note that two quadrats are studied in each area and results are presented for both the TLS and the SfM-UAV PCs. 

Zone/

quadr

ats 

Field measurements of vegetation  TLS SfM-UAV Type 

Maximum height 

(m) 

Mean height 

(m)  Zmaxveg-Zgps Zmeanveg-Zgps Zminveg-Zgps Zmaxveg-Zgps Zmeanveg-Zgps Zminveg-Zgps  

2 

0.50 0.26 0.65 0.60 0.56 0.74 0.35 0.04 High size vegetation 

0.45 0.27 0.17 0.09 0.04 0.48 0.09 0.04 Medium size vegetation-

foredune 

3 

0.20 0.11 0.12 0.09 0.06 0.29 0.08 0.06 Low size vegetation 

0.50 0.27 0.34 0.32 0.29 0.40 0.20 0.20 High size vegetation 

4 

0.60 0.25 0.30 0.15 0.10 0.43 0.14 0.75 Medium size vegetation 

0.60 0.23 0.40 0.27 0.20 0.40 0.20 0.55 Steep Dune Medium size 

vegetation 

5 

0.62 0.47 0.70 0.64 0.58 0.70 0.78 0.95 Steep Dune High Size vegetation 

1.00 0.51 0.88 0.75 0.85 1.30 1.32 0.97 Steep Dune High Size vegetation 
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Table 3. Main statistics from Point Cloud correlation analysis between GPS and both the TLS and SfM-UAV at each zone. Note: 

mean values (x), range (RG) and standard deviation (∂). 

 

 

 

 

 

 

 

 

 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 

𝑥 RG ∂ 𝑥 RG ∂ 𝑥 RG ∂ 𝑥 RG ∂ 𝑥 RG ∂ 

GPS 1.54 1.94 1.54 4.1

1 

2.52 0.59 3.49 2.6

1 

0.6

2 

8.4

3 

7.0

8 

2.1

0 

19.9

9 

20.4

2 

4.3

6 

TLS 1.57 1.89 1.57 4.2

4 

3.32 0.70 3.59 3.1

3 

0.6

7 

8.5

8 

7.5

7 

2.1

5 

20.3

2 

20.7

4 

4.3

7 

SfM-

UAV 

1.59 2.49 1.59 4.1

9 

2.88 0.64 3.67 2.8

9 

0.6

6 

8.6

7 

7.2

2 

2.1

3 

20.3

4 

20.4

2 

4.3

4 
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HIGHLIGHTS 

 TLS performs better than UAV over flat beach than in vegetated dunes and vice 
versa 

 UAV-derived point clouds 30 times faster than TLS operations 

 Survey design and post-processing methodology important in reducing DSM 
errors 

 3D surface derivation should take cognisance of terrain complexity and type  
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