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Abstract 

In recent years, metal oxide based, inexpensive, stable electrodes are being explored as a potent 

source of high performance, sustainable supercapacitors. Here we report on the employment of 

industrial waste red mud as a pseudocapacitive electrode material. Mechanical alloying was used 

to produce uniform red mud nanoparticles which are rich in hematite (Fe2O3) and lower amounts 

of other metal oxides. The effect of milling time, up to 15 hours, with particle size and 

electrochemical stability was studied. The electrochemical measurements for the evaluation of 

supercapacitive properties were evaluated by using cyclic voltammetry (CV), galvanostatic 

charging/discharging (CD) analysis and electrochemical impedance spectroscopy (EIS). The 

samples with 10 hours of milling exhibited the highest stability as well as the best pseudocapacitive 

behaviour. A high specific capacitance of ~317 Fg-1 was achieved at a scan rate of 10 mVs-1 using 
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a 6 M aqueous KOH solution. The modified electrode showed a sp. capacitance of ~180 Fg-1 at an 

elevated current density of 6 Ag-1 with an extraordinary retention of ~97% even after 5000 cycles. 

A detailed quantitative electrochemical analysis was carried out to further shed light on the charge 

storage mechanism. The formation of uniform nanoparticles, and increased electrode stability, was 

correlated with the high performance of the electrode. This work presents two significant benefits 

for our environment in areas such as energy storage, as it allows for the production of a stable and 

efficient supercapacitor electrode, and in waste management with new applications for the 

treatment of red mud waste. 

1. Introduction 

The exploitation of non-conventional renewable energy sources is of significant worldwide interest 

due to the increasing global demand for energy, the rapid exhaustion of fossil fuels and other non-

renewable energy resources, and environmental concerns such as global warming and climate-

change [1]. Among several energy storage devices, supercapacitors, owing to their high power 

density, high specific capacitance and superior cyclic stability, have a huge potential as portable 

power storage units, and can be used efficiently in many areas such as electric vehicles, consumer 

electronics etc. [2-6]. 

The charge storage mechanism in a supercapacitor is governed either by electrical double layer 

capacitance (EDLC) [7, 8] or by pseudocapacitance [9, 10].  In EDLC, the charge is stored 

electrostatically through reversible adsorption of electrolytes onto a high surface area and 

electrochemically-stable electrodes. The phenomena is related to a potential-dependent 

accumulation of charges at the electrode-electrolyte interface [11, 12]. In pseudocapacitance, the 

capacitance is faradic in origin [13] whereby an ultra-fast redox reaction takes place at or near the 

electrode and a faradic charge is passed as a function of electrode potential [14, 15]. Carbon-based 



materials such as activated carbon [16], carbon nanotubes [17], graphene [18, 19], reduced 

graphene oxide [20, 21] have been explored as EDLC materials whilst conducting polymers [22, 

23] and transition metal oxides [24, 25] have been utilised as pseudocapacitive supercapacitor 

electrodes.  

One of the most important factors for supercapacitor performance is the electrode material [1], and 

researchers across the globe are seeking inexpensive, stable and high-performance electrode 

materials [26, 27]. In the modern era of industrialization, a huge amount of different forms of 

organic and inorganic waste byproducts have been accumulating in the environment, resulting in 

air-water-soil pollution and an overall degradation of our ecosystems and quality of life [28-30]. 

Over the last decade, there is a worldwide drive towards waste management and researchers are 

utilising the byproducts in diverse directions for the betterment of the society [31, 32]. For 

example, different forms of agro-industrial organic waste have been effectively utilised for 

supercapacitor electrodes where biomass is converted to activated carbon [33]. A myriad of 

different agricultural waste types such as: cassava peel waste [34], coffee beans [35], sugarcane 

bagasse [36, 37] , rice husk [38, 39], sunflower seed shell [40], coffee endocarp [41], apricot shell 

[42], rubber wood sawdust [43], oil palm empty fruit bunch [44], argan seed shell [45], bamboo 

species [46] etc. are used as starting precursors for the porous activated carbon for EDLC. Chang 

et al. utilised waste filter papers as precursors to synthesise the activated carbon electrodes [47]. 

There are a few recent reports on the utilization of inorganic wastes to produce activated carbon 

materials. Zhi et al. used waste tires [48]. Konikkara et al. synthesised activated carbon from solid 

leather waste and used as an EDLC [49]. Though wastes have been utilised in EDLC 

supercapacitors, there is hardly any report on the waste-derived non-carbonic pseudocapacitor 



electrode. Recently, Fu and coworkers produced a supercapacitor electrode based on industrial 

mill scale waste (iron oxide enriched) which exhibits a promising storage capability [50]. 

Red mud is an industrial waste which is generated during the bauxite ore processing [51]. Around 

120 million tonnes of red mud and other bauxite residues are produced yearly [52] and there have 

been many large-scale environmental disasters involving red-mud, most recently in Hungary 

(2010) [53] where 10 persons were directly killed in a red mud flood, over one hundred more 

injured, and a large area of land and river was environmentally decimated. Thus, red mud is an 

abundant material which has been repeatedly shown to cause environmental horrors. This 

byproduct is alkaline in nature [54] and contains a rich mixture of metal oxides [55].  This waste 

is very common in India and after activating the red mud, researchers have to-date mainly utilised 

it in wastewater treatment systems such as dye degradation [56], arsenic and other heavy metal 

adsorption processes [57, 58].  Though it comprises more than 50% hematite (Fe2O3) which has 

been deployed extensively in supercapacitor electrodes, surprisingly, the potential of red mud as a 

pseudocapacitive material has not been explored yet. 

In this report, the potential of hazardous red mud as a pseudocapacitor material has been explored. 

The as-received red mud from the industry was mechanically alloyed using a ball milling technique 

to produce uniform red mud nanoparticles. The milling time was varied as a function of particle 

size and electrode stability. The evaluation of electrochemical properties of mechanically activated 

waste nanoparticles exhibited impressive supercapacitor behaviour with a remarkable long-term 

stability. Furthermore, an in-depth electrochemical analysis has been undertaken to understand the 

origin of the storage mechanism, and hence we have established the feasibility of red mud as a 

promising, inexpensive electrode material.   

 



2. Experimental 

2.1. Materials  

Red mud (RM) was collected from National Aluminum Company Limited (NALCO), India.  The 

as-received powder was dehydrated for an hour at an elevated temperature (~110o C). The powder 

was further ground in an automated motor-pestle for 1 hour to produce the fine powder. All the 

electrolytes used herein were purchased from Fisher Scientific. All the aqueous solutions were 

produced with ultrapure DI water (Millipore-Q systems: electrical resistivity ~ 18 MΩ cm at room 

temperature (298 K). 

2.2. Method 

In order to prepare the RM nanoparticles, mechanical alloying using a planetary ball mill (Retsch, 

PM200) was employed. The powders were placed in a chrome steel bowl (volume ~ 60ml) filled 

with steel balls of diameter ~5 mm. The ball-to-powder mass ratio of 8:1 (ball: RM) was used. 

Milling, in the present study has been carried out at 150 rpm and was continued up to 15 hours 

with intermediate intervals of 1 hour. 

The un-milled red mud samples will be termed as RM-0, and the ball milled particles will be 

termed as RM-X. Where X represents the milling time in hours. For example, the red mud 

nanoparticles with 10 H of milling will be represented by RM-10. 

2.3. Characterization 

2.3. 1. Morphological measurements 

In order to analyse the chemical composition of RM-0, X-ray fluorescence microscopy was carried 

out, and the elemental details have been confirmed using TEM- energy dispersive x-ray (EDX) 



spectroscopy (Bruker S4 PIONEER). The morphology and particle size were monitored using 

Field-effect scanning electron microscopy (FESEM) and transmission electron microscopy(TEM) 

(JEOL 2100F).  The particle size was measured using a particle size analyzer (Melvin). The 

crystallinity and the crystal phases were determined by X-ray diffraction technique using Bruker 

D8-Discover with Cu-Ka radiation (λ= 0.154 nm) The Raman spectra were recorded using a 

Renishaw Raman spectrometer (inVia) using a 532 nm Laser source, using nominal power of 

25 mW for 60 seconds, 50 × magnification. 

2.3.2. Electrochemical measurement 

The cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical 

impedance spectroscopy (EIS) measurements were performed on an Autolab Potentiostat 

Galvanostat PGSTAT302N (Metrhom, Netherlands). For the electrochemical characterization, CV 

measurements were carried out in a three-electrode set-up, consisting of Ag/AgCl as the reference 

electrode, platinum wire as the counter electrode and glassy carbon electrode (GCE) modified with 

red mud particles as the working electrode. For this purpose, 5 mM of Potassium Ferro/ Ferry 

cyanide in 0.1 M KCl was used as the standard electrolyte.  The CV scans were measured between 

-0.3 V to 0.7 V. In order to find out the sp. capacitance from the CV, a similar set of electrodes 

were utilised, and the measurements were recorded in a 6 M KOH electrolyte solution within the 

scan range -1.0 V to 0.2 V. The scan rates were varied, and the sp. capacitances were evaluated 

from the CV curve. The galvanostatic charging/discharging analysis was recorded in a chrono-

potentiometry mode with the same 3-electrode set-up and similar electrolyte (6 M KOH) as used 

in the CV measurements. For the CD analysis, the pre-defined cut-off voltages were obtained from 

the CV measurements. The impedance measurements were carried out in the FRA potential scan 

mode with a similar electrode-electrolyte set-up where red mud coated GCE act as the working 



electrode, along with platinum wire counter and Ag/AgCl reference electrode. All the 

measurements were carried out at room temperature. For EIS measurements, a sinusoidal 

alternating current (a.c.) voltage with root mean square (r.m.s.) value of 10 mV was applied as a 

perturbation. The frequency of the a.c. voltage was varied from 0.1 Hz to 100 kHz. The as-obtained 

Nyquist plots were fitted using the vendor provided NOVA software. 

 

3. Results and discussions 

3.1. Morphology analysis of RM-0 

The as-obtained RM powders were at first dehydrated in an oven for 1 hour at 110°C and then 

ground to obtain moisture and chunk-free microparticles. The chemical components were analysed 

using XRF analysis and are represented in Table 1.  From the table, it is quite evident that RM 

consists mainly of hematite and maghemite (Fe2O3) (~55%) and alumina (Al2O3). It also includes 

quartz (SiO2), complex oxides of titanium and trace amount of various other metal oxides 

(magnesium, manganese, sodium etc.). In order to have a direct morphological visualization of 

this red mud powder, an FESEM image was taken and is shown in Fig. 1a. From the figures, it is 

quite evident that the RM-0 red mud particles have no uniform shape, size and particle distribution. 

A representative TEM image of RM-0 is shown in Fig. 1b. An EDX-TEM study of RM-0 is 

presented in Fig. S1. The presence of iron, aluminum, silicon, sodium, calcium, titanium, 

manganese is confirmed from the EDX spectra. To further confirm the crystalline phases, wide-

angle X-ray diffraction analysis was carried out and is represented in Fig. 2a. The XRD patterns 

are similar to the previous reports [59, 60] and show the presence of crystalline hematite, 

maghemite, goethite, alumina, ilmenite, sodium oxide, gibbsite, calcite and silica [60, 61]. 



Raman spectroscopy was also carried out to probe different vibrational modes of the metal oxides 

present in the red mud and represented in Fig. 2b. The main peaks were attributed to the following 

modes: Fe2O3 hematite: Eg mode at 291 and 404 cm-1, A1g at 223 and 502 cm-1 [62]; ilmenite 

FeTiO3: Eg
5 mode at 146, and AG

1 662 cm-1 [63]; CaCO3 calcite: Eg mode at 152 cm-1 [64].  

3.2. Electrochemical Characterization 

3.2.1. Cyclic voltammetry study 

In order to find out the effect of ball milling on the red mud samples, cyclic voltammetry was 

carried out on a three-electrode system with red mud modified GCE electrode as the working 

electrode, platinum counter electrode and Ag/AgCl as a reference electrode. Fig. 3 represents CV 

scans of all red mud samples. CV scans were executed using a 0.1 M KCl aqueous solution 

containing 5 mM Fe(CN)3-/4- redox couple within a scan range -0.30 V to +0.70 V with a scan rate 

of 50 mV s-1. For the RM-0 powder, a set of redox peaks are observed around ~0.10 V (cathodic) 

and ~0.56 V (anodic) with the peak anodic and cathodic current of 5.8 Ag-1 and -5.9 Ag-1 

respectively. With increased milling time, the peak currents are found to enhance, with maximum 

peak currents of 59.1 Ag-1 and ~-58.0 Ag-1 observed in RM-10. There is a significant (~10-fold) 

enhancement in the peak current density which is suggestive of improved charge transfer kinetics 

[65] and a better electron transfer pathway in case of RM-10 sample. Different voltammetry 

parameters such as the anodic and cathodic peak potentials, separation potential, coulombic 

efficiency, and half-cell potential are calculated for all samples (RM-0 to RM-15) as represented 

in Table-2. The separation potential (the difference between the anodic and cathodic peak 

potentials) (ΔEdiff) is a qualitative measurement of reversibility of redox reactions, where a smaller 

value indicates a better reversibility [66]. ΔEdiff was measured to be ~258 mV for RM-0 sample, 



indicating the redox reaction is somewhat quasi-reversible in nature. The ΔEdiff for RM-3 sample 

was found to be ~ 313 mV implying a poor reversibility. The value is least for the RM-10 sample 

(~195 mV) and thus the reversibility is much improved. Further milling re-enhanced ΔEdiff (~305 

mV for RM-15 particles). 

The ratio of cathodic to anodic peak current represents the coulombic efficiency (η%) of the 

electrode materials. η was further evaluated from the cyclic voltammetry curve and is also 

tabulated in the table (Table 2). The η value for the RM-0 was found to be 96%, inferring a high 

charge retention of 5 mM Fe(CN)3-/4- redox couple in 0.1 M KCl solution. All samples exhibit 

efficiencies >96% with the maximum of ~98% being obtained for the RM-10 sample.  

The mean of the cathodic and anodic peak potentials (half-cell potential) can be used to estimate 

electrochemical reversibility and the cell stability of the electrode material. The half-cell potential 

as a function of the milling time is shown in Table 2. From the table it is evident that there is a 

constant drop in the half-cell potential with milling times up to 10 hours, to a minimum of ~227 

mV. Up to 10 hours of ball-milling, we observed a significant enhancement in current density, and 

continuous decrement in half-cell potential, and thus RM-10 samples unveiled the best 

electrochemical performance. After more than 10 hours of milling, the half-cell potential 

interestingly increased to ~231 mV for the RM-15 powder, which demonstrates a reduction in 

electrode stability. This is also consistent with the previous observations: i) the current density for 

RM-15 samples were less ii) ΔEdiff was higher and iii) the coulombic efficiency reduced in 

comparison to the RM-10 sample. In the following section, the morphological and structural 

changes in the red mud particles during milling will be explored and correlated to the 

electrochemical data.  

 



3.3. Morphology analysis of ball-milled RM 

The FESEM images for the ball-milled samples are shown in Supplementary Fig. S2. In general, 

from the Fig. S2, it is evident that the particle size tends to reduce with the increase in ball mill 

time. In addition to this, the particle shape changes to ‘spherical like’ in nature. The particle size 

tends to decrease with milling time up to 10 hours and then after, further reduction is seized. The 

TEM image for RM-10 sample is shown in Fig. 4, which showed uniform distributions of 

spherical, crystalline, RM nanoparticles of diameter 30-50 nm. Particle size analysis is a semi-

quantitative approximation to get an estimate of the particle size distribution. In order to draw a 

correlation between particle size with milling time, particle size analysis was carried out and is 

represented in supplementary Fig. S3.  From the figure, it is evident that the average particle size 

of RM-0 (Particle size ~210±40 nm) reduces with ball milling up to 10 hours of milling. For RM-

10 sample, the average particle size was found to be ~45 ±10 nm. Interestingly, the average particle 

size slightly increased for RM-15 sample (diameter ~65±20 nm). It is reported earlier that longer 

ball-milling process introduces grain growth (due to cold-welding) and microstrains in the system 

and as a consequence, the particle size increased [67, 68]. Thus, the possible grain growth in RM-

15 sample is responsible for the sudden reduction in current density and enhancement in half-cell 

potential of CV studies. RM-10 sample is found to offer the best electrochemical properties and 

thus will be explored further for supercapacitor application. For comparison purposes, the 

untreated RM-0 particles would be utilised.  

 

 

 



3.4. Supercapacitor analysis 

3.4.1. Cyclic Voltammetry (CV)  

Fig. 5 represent the Cyclic voltammetry graph for RM-0 and RM-10 particles in 6 M KOH solution 

at a scan rate 10 mVs-1 using 3-electrode assembly as mentioned earlier.  

There is a substantial enhancement in the sp. current density (~ 16 times) and integrated area under 

the CV curve for RM-10 particles compared to the untreated sample. RM-10 shows a shallow 

broad reduction hump around ~-0.42 V which matches with the pseudocapacitance values of Fe2O3 

[69]. The charge storage mechanism in case of hematite is reported to be similar to that of the 

magnetite [70], where the reaction and storage mechanisms are correlated with the redox reactions 

accompanied by the diffusion mediated intercalation [71]. Fig. 6a represents the cyclic 

voltammogram of RM-10 sample at different scan rates from 10 to 200 mVs-1.  

 The specific capacitance of the RM 10 sample is evaluated from the CV curve by 

employing the following equation [72, 73]: 𝐶𝑠 = 0.5[𝐼/{(𝑑𝑣/𝑑𝑡)/𝑚}]   (1) 

Where, 𝐶𝑠 is the sp. capacitance, 𝐼 is the total current obtained from the CV curve,  𝑑𝑣/𝑑𝑡 is the 

scan rate, and 𝑚 is the active mass of RM-10 on the glassy carbon electrode. The multiplication 

factor 0.5 is originated to take care of either cathodic or anodic current. 

The total current 𝐼  can also be calculated by integrating the area of the  CV curve defined as [73, 

74]: 

𝐼 = ∫
𝑖(𝑉)𝑑𝑉

(𝑉𝑓−𝑉i)

𝑉𝑓
𝑉𝑖

    (2) 

Where, 𝑉𝑖 and 𝑉𝑓 are the lowest and highest voltage of the potential range. The specific capacitance 

of RM 10 as a function of scan rate is plotted in Fig. 6b. At the lowest experimental scan rate (10 



mV s-1) a sp. capacitance of ~317 Fg-1 was obtained. At the same sweeping potential (10 mV s-1), 

a sp. capacitance value of ~21 Fg-1 was calculated for the RM-0. The poor capacitive performance 

of the RM-0 sample could be correlated with the non-uniform macro- RM particles with poor 

electrical conductivity.  At the highest experimental scan rate (200 mVs-1) a sp. capacitance of ~ 

72 Fg-1 was achieved for RM-10.  

The total amount of charge stored in an electrode is governed by the contributions of both 

capacitive and the intercalation processes. The capacitive component consists of ion 

adsorption/desorption reactions at the electrode/electrolyte (double layer) and very fast faradic 

surface redox reactions (pseudocapacitance) [75, 76]. The appearance of these divergent energy 

storage mechanisms can be calculated and distinguished from the other by examining the CV scans 

at different scan rates according to the following power law [76, 77], 

 𝑖 = 𝑎𝑣𝑏   (3) 

Where, 𝑖 is the scan rate dependent current, 𝑣 is the scan rate and 𝑎 and 𝑏 are the adjustable 

parameters.  When b is close to 1, the current is predominantly capacitive in nature, whereas b 

values closer to 0.5 signify the current flow at any fixed potential relates to a diffusion-controlled 

phenomenon [75]. Using this technique, charge storage kinetics at each potential can be mapped. 

To determine b values, log 𝑖 vs. log 𝑣 was plotted for different potentials and the slope of the best 

linear fit data provides the b value. As an example, the slope of the linear graph of log 𝑖 vs. log 𝑣 

was plotted for different potentials and represented in supplementary Fig. S4.  The b values for 

different potentials were obtained for RM-10 in 6M KOH solution and the variation of b with 

applied potential is plotted in Fig. 7a, which suggests that there is a large variation in the b values 

at different potentials. Maximum and minimum ‘b’ values of ~0.75 and ~0.30, respectively, were 

obtained which suggests that the charge storage mechanism in the RM-10 system is a combination 



of both surface dependent capacitive charge storage and diffusion driven intercalation/de-

intercalation phenomena [76].  In order to make out how the electrode structure offers such explicit 

distinctions and to differentiate the sp. capacitance contribution from the inner and outer surface 

of the electrode, Trasatti’s method [76, 78, 79] was employed.  

The basic method originates from the postulation that the surface and diffusion-controlled storage 

mechanisms are manifested by different kinetic models and have different responses towards the 

sweeping rate [78]. When the scan rate is high, the charge is stored only at the easily accessible 

outer surface because of the slower diffusion of electrolyte ion to the inner surface of RM-10. Thus, 

the contributions from the subsurface regions can be excluded. On the other hand, at relatively low 

scan rate the ions can diffuse through and the total charge stored is an additive effect of both the 

inner and outer surface of the RM-10 modified glassy carbon electrode. Fig. 7b exhibits a plot of 

1/Cs
 for RM-10 as a function of square root of sweeping rate (𝑣)within 10-100 mV s-1. In this 

region, the contribution of both surface and diffusion-driven storage mechanisms are prominent 

[76]. The sp. capacitance at very slow scan rates was estimated from the intercept of the best fit 

linear plot with the 1/Cs axis [78]. The total sp. capacitance of ~417 Fg-1 was obtained. In order to 

extract the surface-governed capacitance, the specific capacitance (Cs) graph was plotted as a 

function of 𝑣−1/2 and represented in Fig. 7c. Here the linear region intercepts of the plot with the 

Cs
 predicted the surface governed capacitance at higher scan rate as ~76 Fg-1.  After calculation, 

the results predict that the ~82% of the total sp. capacitance arises from the diffusion-controlled 

processes and the residual capacitance of ~ 18% is surface governed. Thus the charge storage 

mechanism is dominated by diffusion controlled pseudocapacitance [14]. The presence of only 

pseudocapacitive metal oxides in RM and absence of any porous carbon-based (higher surface 

area) material, limits the surface capacitance [77] and as the RM-10 modified GCE electrode stores 



more charges in the inner surface due to the low ionic solvation radius [80] and high ionic mobility 

of the electrolyte [80]. The presence of surface adsorbed solvent molecules (water), which could 

enhance the accessibility of ions into electrodes, may facilitate the improved ionic diffusivity [81]. 

3.4.2.  Galvanostatic Charging/Discharging Analysis 

To determine the sp. capacitance and cyclic stability, the RM-10 modified GCE was 

galvanostatically charged/discharged within the same potential range as in the CV scan (-1.0 to 

0.2 V vs. Ag/AgCl reference electrode), in the same 6M KOH electrolyte. The specific capacitance 

values for RM-10 nanoparticles from the galvanostatic charging/discharging analysis were 

evaluated from the following equation [72] 

𝐶𝑠 = −[𝑖/{(𝑑𝑣/𝑑𝑡)𝑚}]   (4) 

Where 𝐶𝑠 is the gravimetric sp. capacitance, 𝑚 is the active mass of the electrode and𝑑𝑣/𝑑𝑡 is the 

average slope of the discharge cycle. The quasi-symmetric charging-discharging cycles in Fig. 8a 

delineate a stable electrode performance [82] whereas the curvature in the plot during discharge 

illustrates the presence of pseudocapacitance [72, 83] which has already been discussed in the 

earlier section. 

The charging/discharging plot (at a sp. current density of 6 Ag-1) for RM-0 and RM-10 

nanoparticles are represented in supplementary Fig. S5. The charge-discharge period in case of 

RM-10 is higher than RM-0 which also indicates a higher charge storage capability [72]. The sp. 

capacitance was further calculated using equation (4). The specific capacitance for the RM-10 

sample is ~ 180 Fg-1, compared with ~24 Fg-1 for RM-0.  The non-uniform morphology and poor 

current density of RM-0 are responsible for the poor capacitance in this sample. The ball milled 

sample (RM-10) demonstrated a much-improved electron transfer kinetics in the CV scan possibly 



due to two factors first, uniform morphology with smaller particle size, secondly, due to enhanced 

ion diffusion into the inner surfaces of the electrode. 

The gravimetric capacitance was calculated from the charging-discharging graphs for different sp. 

current densities and represented in Fig. 8a. The sp. capacitance as a function of sp. current density 

was plotted in Fig. 8b. The maximum capacitance of ~ 280 Fg-1 was achieved at a current density 

of 1 Ag-1, whereas at an extremely high sp. current density of 20 Ag-1, a moderate capacitance of 

80 Fg-1 was obtained. The retention of a steady capacitance even in such ultra-high sp. current 

density emphasises the stability of the RM-10 modified GCE and reinforces its suitability as a 

supercapacitor electrode material [84, 85].  

Long-term cyclic stability is one of the key parameters to determine the performance of any 

supercapacitor material [86]. Hence, to probe the long-term cyclic stability, the 

charging/discharging measurement was carried out for 5000 cycles using a relatively high sp. 

current density of 6 Ag-1. The sp. capacitance as a function of cycle number is plotted in Fig. 8c. 

The system shows a remarkable capacitance retention and even after 5000 cycles, ~97% 

capacitance was still retained (inset of Fig. 8c). Particle agglomeration, material degradation and 

leaching during charging/discharging are the prime causes of losses in capacitance [87]. Here, the 

RM nanoparticles obtained by the ball-milling process (RM-10) are stable, and the morphological 

uniformity and the presence of other metal oxides (especially goethite) apart from iron oxide may 

slow down the agglomeration process [88, 89]. In addition to this, there was hardly any material 

leaching in the electrolyte solution during charging/discharging which could also hinder the charge 

loss [90].  



Charging/discharging coulombic efficiency (η𝑐𝑑) is another important parameter and which could 

also provide significant information about long-term stability and charge-storage mechanism. η𝑐𝑑  

is calculated using the following relation [85, 91]: 

η𝑐𝑑 =
𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑡𝑖𝑚𝑒

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑡𝑖𝑚𝑒
𝑥100%   (5) 

The charging/discharging coulombic efficiency is calculated and η𝑐𝑑 was found to be ~ 150%. 

Coulombic efficiencies with similar results (greater than 100%) have been reported in the literature 

[91];  physically it means that the system can be charged rapidly and discharged at a relatively 

slow rate, which suggests RM-10 may be utilised as a promising hybrid battery-type 

supercapacitor [91]. The variation in η𝑐𝑑  during cyclic test was also monitored and a 98% retention 

in η𝑐𝑑 value was achieved after 5000 cycles, which indicates an excellent reversibility of RM-10 

modified GCE during charge/discharge process [90]. 

Ragone plots [92] are often used to express power densities and energy densities of a 

supercapacitor and represented in Fig. 9 for the RM-10 sample. The sp. energy density 𝐸𝑠 (Wh kg-

1) was calculated as [72]: 

𝐸𝑠 = 0.5𝐶𝑠𝑉
2(6) 

Where, 𝐶𝑠 is the sp. capacitance obtained from CD and 𝑉 is the effective potential window. The 

sp. power density 𝑃𝑠 (W kg-1) was calculated using the following equation: 

𝑃𝑠 =
𝐸𝑠

𝑡𝑑
⁄ (7) 

Where, 𝐸𝑠 is the sp. energy density and 𝑡𝑑is the discharge time.   



Performance of the RM-10 electrodes are compared with other metal oxide-based supercapacitors 

in terms of energy density (Wh kg−1) and power density (kW kg −1) in a Ragone plot (Fig. 9).  The 

comparative plot shows that the RM-10 nanoparticles exhibit better performance as compared to 

iron oxide rich industrial mill scale waste (FeOx) [50], composite metal oxides (AC/FCO) 

electrode [93] and a two-electrode supercapacitor comprised of ruthenium oxide nanoparticles 

[94].   

The highest energy density was measured as 56 Wh kg-1 at a sp. current density of 1 Ag-1 and a 

maximum power density of 12 kW kg-1 at a higher current density of 20 Ag-1. Even at this higher 

current density, the sp. energy density was evaluated as ~16 Wh kg-1 indicating a better stability 

of the electrode even at high current density. 

3.4.3. Electrochemical impedance spectroscopy (EIS) study 

 In order to understand the ionic diffusion and charge transfer kinetics of the RM electrodes, 

electrochemical impedance spectroscopy (EIS) technique has been employed. EIS is a non-

destructive, fast and simple technique to excerpt the electrode kinetics of the test material [95]. 

Here the real part of impedance is plotted against the imaginary part (Nyquist plot). In this study, 

a perturbation voltage with an r.m.s. value of 10 mV was applied while the frequency was varied 

from 0.1–100 kHz. The Nyquist plots of RM-0 and RM-10 particles are represented in Fig. 10a.  

The plot can be categorised in two separate regions. A semicircular nature was observed in the 

high frequency region and it had a protracted tail in lower frequency regimes. The linear tail 

originates from the frequency-dependent ion transport and/or diffusion of ions at outer and inner 

surfaces of the electrode [96]. The magnitude of the series resistance is slightly decreased after the 

ball milling process (for clarity, the region is magnified in the inset of Fig. 10a). The diameter of 

the semicircle of the Nyquist plot determines the charge transport resistance of a system [97]. The 



decrease in the diameter of the RM-10 sample favours diffusion of the electrolyte in the electrode 

surface. 

The EIS data was further modelled and fitted using a model equivalent electrical circuit (Fig. 10b). 

The equivalent circuit consists of a series resistance, a charge transfer resistance and two constant 

phase elements (CPE) as described by Fu et al. [50] and  Bisquertet et al. [98]. The series resistance 

takes care of the cumulative effects of sum of contact resistance, material resistance and electrolyte 

resistance [77]. The CPE (Z) is defined as 𝑍 = 𝑌0(𝑗𝜔)
−𝛼, where  𝑌0= 1/C for  𝛼 = 1 and, 𝑌0= R 

for 𝛼 = 0; C and R represents the capacitance and resistance respectively. 𝛼 is the exponent of 

CPE. When 𝛼 = 0, this represents a purely resistive element whereas 𝛼 =1 means the component 

is purely capacitive in nature [99]. The first CPE represents the conventional double layer and 

redox capacitance along with the non-linearity and the second one represents the CPE at low-

frequency region which appears due to the roughness at the blocking interface [98], non-linearity 

and diffusion driven intercalation.  

The fitted curves for RM-0 and RM-10 samples showed residual χ2 values of ~0.001 and ~0.002 

respectively confirming an excellent fitting. The values obtained from the equivalent circuit fitting 

were also tabulated in Table 3. The charge transfer resistance for RM-0 was evaluated as ~17 Ω, 

which reduced to ~11 Ω in RM-10 sample. The series resistance was also reduced to ~3 Ω from 

~9 Ω in case of RM-10 sample.  The minimal equivalent series resistance and charge transfer 

resistance of RM-10 sample can be related to its smaller size and highly-ordered and uniform 

morphology which contributes to an advantageous intrinsic electronic conductivity [100]. The 

minimal charge transfer resistance also indicates a high diffusion of electrolytes.  The constant 

phase element in the equivalent circuit for RM samples also verifies the presence of both capacitive 



and diffusion governed charge storage (intercalation) process which again proves the complex 

charge storage mechanism and diffusion dominated pseudocapacitance.  

4. Conclusion  

The present work successfully validated the suitability of mechanically activated red mud as a 

potent source of energy storage material. Mechanical alloying by ball milling offers uniform 

morphology and higher charge transfer kinetics, from this industrial waste material. In-depth 

electrochemical performance assessment showed that the RM-10 modified GCE exhibited high sp. 

capacitance, high energy density and power density with a remarkable long-term cyclic stability. 

The storage mechanism was found to be diffusion-dominated in nature. The calculated coulombic 

efficiency also confirmed the battery-like pseudocapacitance of ball-milled RM-10 sample. 

Importantly, the present approach to producing a high-performance supercapacitor electrode 

material from industrial waste is green, inexpensive and sustainable. The method also deals with 

an alternative path towards waste management and sustainability. In future, the performance could 

further be improved by producing hybrid supercapacitors using mechanically treated waste red 

mud.  
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Figures 

 

Fig.1 (a) FESEM image, 1 (b) TEM image 1(c) XRD pattern and 1 (d) Raman spectroscopy 

measurement for RM-0. 

 

Fig.2 (a) XRD pattern and 2 (b) Raman spectroscopy measurement for RM-0. 

 



 

Fig. 3. Cyclic voltammogram of RM-0, RM-1, RM-3, RM-5, RM-10, and RM-15 modified GCE 

in the solution of 0.1 M KCl containing 5mM [Fe(CN)6]
3-/4-  with a scan rate 50 mV s-1.  

 

Fig. 4. TEM image of RM-10 nanoparticle. 

 

 



 

 

 

 

 

 

Fig. 5. Cyclic voltammogram response of RM-0 and RM-10 nanoparticle modified GCE in 6 M 

KOH solution with a scan rate of 10 mV s-1. Inset shows the cyclic voltammogram response of 

RM-0 modified GCE in similar test conditions. 

 

 

Fig. 6. (a) Cyclic voltammogram of RM-10 nanoparticle in 6 M KOH solution in different scan 

rate. (b) is the variation of sp. capacitance with scan rate for RM-10 nanoparticles in 6 M KOH 

aqueous solution. 



Fig. 7. (a) Dependence of slope “b” (derived from linear fitting of log 𝑖 vs. log 𝑣) as a function of 

cell potential and Trasatti’s method for RM-10 modified electrode for (b) inverse sp. capacitance 

as a function of square root of scan rate and (c) sp. capacitance as a function of inverse of scan 

rate.  

 

 

 



Fig. 8. (a) Galvanostatic charge/discharge curve for gravimetric capacitance of RM-10 

nanoparticles in 6 M KOH aqueous solution at different sp. current (1 Ag-1, 2 Ag-1, 6 Ag-1, 10 Ag-

1, 15 Ag-1, 20 Ag-1). (b) Variation of sp. capacitance with specific current for RM-10. (c)  The 

cycling performance of RM-10 nanoparticles in 6 M KOH solution at sp. current 6 Ag-1 (up to 

5000 cycle). Inset of Fig. 7 (c) exhibits the percentage of capacitance retention as a function of 

charge-discharge cycle (up to 5000 cycles). 

 

Fig. 9. Comapritive Ragone plot showing energy density and power density relationship of a few 

supercapcitor materials: Industrial Mill Scale Waste (waste FeOx) [50] , AC/FCO nanocomposites 

[93], ruthenium oxide nanoparticle (RuO2 np) in a two-electrode system [94], and RM-10 

nanoparticles (present work)*. 



   

Fig. 10. (a) Nyquist plot of experimental and fitted impedance data for RM-0 (blue diamond) and 

RM-10 nanoparticles (red dot), the violet line corresponds to fitted data. Inset of Fig. 10 (a) depicts 

the zoomed view of impedance data at high-frequency region. (b) Corresponds to the model 

equivalent electrical circuit. 

 

Table 1 WDXRF data of RM-0 samples. 

Constituents % (w/w) 

Iron oxide ~55 

Aluminum oxide ~15 

Silica ~7 

Sodium oxide ~5 

Titanium oxide ~4 

Calcium oxide ~3 

Others ~11 

 



Table 2.  Experimental results of cyclic voltammetry measurements for RM-0, RM-1, RM-3, RM-

5, RM-10, and RM-15 modified GCE. 

Sample Anodic peak 

potential (𝐸𝑎
0) 

(mV) 

Cathodic peak 

potential (𝐸𝑎
0) 

(mV) 

Separation 

potential (∆𝐸𝑑𝑖𝑓) 

(mV) 

Coulombic 

efficiency (η%) 

Half-cell 

potential (𝐸1/2
0 ) 

(mV) 

Un-milled 361 103 258 96 232 

RM-1 371 090 281 97 230 

RM-3 386 073 313 97 229 

RM-5 352 105 247 98 228 

RM-10 325 129 196 98 227 

RM-15 383 078 305 97 230 

 

 

Table 3. Different component of fitted parameters obtained from equivalent model electrical 

circuit fitting from Nyquist plot of impedance spectroscopy 

Sample RS (Ω) RCT (Ω) Q1 (µmho) Q2 (µmho) χ2 

RM-0 9.1 17.3 4.0;0.9 8.7;0.8  0.001 

RM-10 3.4 11.2 5.6;0.9 9.1;0.8 0.002 

 

 

 


