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 

Abstract—Big data classification problems have drawn 

great attention from diverse fields and many classifiers 

have been developed. Among those classifiers, the extended 

belief rule-based system (EBRBS) has shown its potential in 

both big data and multi-class situations while time 

complexity and computing efficiency are two challenging 

issues to be handled in EBRBS. As such, three 

improvements of EBRBS are proposed firstly in the present 

paper to decrease the time complexity and computing 

efficiency of EBRBS for multi-class classification under the 

assumption of large amount of data, including the strategy 

to skip rule weight calculation, a simplified evidential 

reasoning algorithm, and the domain division-based rule 

reduction method. This turns out to be a micro version of 

the EBRBS, classed Micro-EBRBS. Moreover, one of 

commonly used cluster computing, named Apache Spark, is 

then applied to implement the parallel rule generation and 

inference schemes of the Micro-EBRBS for big data multi- 

class classification problems. The comparative analyses of 

experimental studies demonstrate that the Micro-EBRBS 

not only can obtain a desired accuracy, but also has the 

comparatively better time complexity and computing 

efficiency than some popular classifiers, especially for 

multi-class classification problems. 

 
Index Terms—Apache Spark, Big data, Extended belief rule- 

based system (EBRBS), Multi-class,  
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I. INTRODUCTION 

LASSIFICATION problems are the common and 

fundamental ones involved in various real-world 

applications, such as intrusion detection [1], pattern recognition 

[19], image processing [2], and DNA sequence classification 

[5]. Classification becomes much more complex under big data 

and multi-class situations. The former always implies a high 

requirement of the computing efficiency of classifiers, while 

the need of a cluster computing for implementing the classifiers 

is getting popular. The latter implies many overlaps among the 

data of different classes, which requires the classifiers to have a 

powerful ability to differentiate the class boundaries.  

Among many methodologies for multi-class classification 

problems, such as support vector machine (SVM) [34], 

ensemble learning [21], and others, rule-based systems (RBSs) 

are one kind of useful tools and have been a popular framework 

for designing classifiers in past decades. Basically, these RBSs 

can be divided into two categories depending on the 

construction methods of rule bases: RBSs based on the 

optimization model and iterative algorithm to determine the 

optimal values of parameters involved [33], [36], [39], or RBSs 

where rules are generated from sample data without the optimal 

model [8], [22], [28]. While handling big data multi-class 

classification problems, it is obvious that the RBSs without the 

optimal model are a better choice because of its high computing 

efficiency [26]. 

Some popular RBSs without the optimal model include 

fuzzy rule-based classification system (FRBCS) based on Chi 

et al. algorithm (Chi-FRBCS) [8] and the extended belief 

rule-based system (EBRBS) proposed by Liu et al. [22], both of 

them are originated from the work by Wang and Mendel [31]. It 

is worth noting that Chi-FRBCS has been applied to deal with 

big data classification problems recently (see details in Section 

II-B). Although there are some existing works about EBRBS 

[6], [11], [38], [39], it has not been developed yet as an efficient 

classifier to deal with big data classification problems. Hence, 

the goal of this study is to propose a novel big data EBRBS 

classifier and show its performance, in terms of accuracy and 

efficiency, in big data multi-class classification problems. 

EBRBS has shown its potential to address multi-class 

classification problems because of its rules with belief structure 

and the evidential reasoning (ER) algorithm used in the 

inference scheme to collectively handle multi-class information 

for classification [20], [23], [24], [25], however, two challenges 

must be addressed to handle the big data situation:  
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(1) The time complexity of the EBRBS must be reduced to 

ensure the high computing efficiency under big data problems. 

The proposed solution in the present paper is to optimize the 

procedures of the EBRBS so that its time complexity can be 

reduced, which are mainly focused on three key procedures of 

the EBRBS: rule weight calculation, the ER algorithm, and the 

size of rule base. The corresponding improvements are 

proposed respectively, which forms a micro version of the 

EBRBS with much higher computing efficiency enables to deal 

with big data multi-class classification problems, called the 

Micro-EBRBS. 

(2) The cluster computing must be applied to implement the 

parallel computing to improve the computing efficiency. 

Chi-FRBCS classifiers usually involve the cluster computing 

to deal with big data classification problems [10], [26], [29]. 

Likewise, it is necessary to propose a solution of implementing 

the EBRBS classifier by using the cluster computing to handle 

the big data problem. Apache Spark [4] is an open-source 

framework that supports the processing of large datasets in a 

distributed computing environment and provides primitives for 

in-memory cluster computing and APIs in Scala, Java, and 

Python. As such, Apache Spark-based implementation of the 

parallel rule generation and inference scheme is proposed to 

improve the computing efficiency of Micro-EBRBS in big data 

situation. 

To verify the effectiveness and computing efficiency of the 

Micro-EBRBS, three experiments based on 14 classification 

datasets, in which 4 of these datasets have relatively large 

number of data, are carried out to test the performance of the 

Micro-EBRBS. Two main aspects, namely accuracy and 

computing time, are used to compare the Micro-EBRBS with 

the EBRBS, the conventional FRBCS and machine-learning 

classifiers, and the big data FRBCS classifiers. 

The remainder of this paper is organized as follows: Section 

II briefly reviews the background and challenges of the EBRBS 

for classification. Section III introduces the Micro-EBRBS for 

big data multi-classification problems. Section IV discusses 

experiments to demonstrate the performance of the Micro- 

EBRBS, and the paper is concluded in Section V. 

II. BACKGROUND AND CHALLENGES 

In this section, the EBRBS for classification problems is 

reviewed firstly to provide the basic knowledge of this study. 

Secondly, the related works of the Chi-FRBCS for big data 

problems are reviewed for the sake of comparison with the 

proposed Micro-EBRBS. Finally, the time complexity of the 

EBRBS is discussed to clarify the challenges to face for the 

novel classifier under big data and multi-class situation.  

A. EBRBS for classification problems 

An EBRBS consists of two components: the extended belief 

rule base (EBRB) and the inference scheme. The former can be 

regarded as a knowledge base to store a set of rules with 

uncertainty. The latter provides an inference engine to infer 

new results based on the interaction of test input and the EBRB.  

Basically, an EBRB for classification problems includes M 

antecedent attributes and one consequent attribute, in which 

each antecedent attribute Ui (i=1,…, M) has an attribute weight 

i (0<i≤1) and Ji reference values Ai,j (j=1,…, Ji) which are 

used as the discrete and representative evaluation grades for 

describing the ith antecedent attribute; and the consequent 

attribute D has N classes Dn (n=1,…, N). Thus, the kth (k=1,…, 

L) extended belief rule (EBR) Rk in the EBRB can be written as: 

},...,{},,...,1);,{(

},,...,1);,{(

},...,1);,{(:

1,

,,

1,1,11

Mkknn

M

k

jMjM

M

k

jjk

andwithNnD

isDTHENJjA

isUJjAisUIFR











 

        

 (1)

 

where 
k

ji ,
 ( 10 ,  k

ji ) and kn,
 ( 10 ,  kn ) are the belief 

degree to the reference value Ai,j and the class Dn in the kth  rule 

with 1
1 ,

 

iJ

j

k

ji
  and 1

1 ,
 

N

n kn
 ; {(Ai,j, 

k

ji ,
 ); j=1,…, Ji} 

and {(Dn, βn, k); n=1,…, N} are the belief structure embedding 

in the kth rule; k (0<k≤1) is the weight of the kth rule. 

Remark 1: By assuming that: (1) Ai,j (i=1,.., M; j=1,…, Ji) is 

a linguistic label modeled by a triangular membership function; 

(2) 
k

ji ,
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and sn,
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 =1 (i=1,…, M), the kth 

EBR becomes a fuzzy rule in the Chi-FRBCS [29]: 
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Fig. 1.  Methodological framework of EBRBS for classification 

 

  
Fig. 2. Rule generation scheme of EBRBS 
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It is clear from the comparison of Eqs. (1) and (2) that the 

fuzzy rule is a special case of the EBR. Moreover, the EBR is 

more flexible to express multi-class information under 

uncertainty and incompleteness, e.g., {(D1, 0.6), (D2, 0.4)} 

means 60% sure that the class is D1, 40% sure that it is D2. 

 

iJ

j

k

ji1 ,
 =0.9 means 100% - 90% = 10% ignorance in the ith 

antecedent attribute of the kth EBR. 

Based on the above EBRB, the ER algorithm based inference 

scheme is applied to integrate EBRs to produce estimated 

classes, i.e., the integrated result is belief distribution {(D1, 

0.4008), (D2, 0.4275), (D3, 0.1718)} and finally produces the 

class D2 as the output. A simple methodological framework of 

the EBRBS for classification is shown in Fig. 1 and the detailed 

step procedure can be referred to [22]. Additionally, the rule 

generation scheme is an indispensable part of the EBRBS and 

illustrated in Fig. 2. 

 As shown in Fig. 2, there are two kinds of parameters 

involved in the rule generation scheme of the EBRB. The first 

one is named as the basic parameters, including attribute 

weights, reference values and utility values of antecedent 

attributes, and classes of the consequent attribute. All these 

basic parameters are always determined by using expert 

knowledge. The second one is the generated parameters, 

including rule weights and belief distributions of antecedent 

and consequent attributes. All these generated parameters have 

to be initialized according to the sample input-output data and 

the basic parameters, including two steps: 1) generation of 

belief distributions for antecedent and consequent attributes 

using transformation techniques; and 2) calculation of rule 

weights using consistency measures. The detailed description 

of those steps can be found in Appendix B. 

B. Chi-FRBCS in big data classification problems 

FRBCSs are popular methods for classification problems 

with many versions developed so far, e.g., Chi-FRBCS [8], 

structural learning algorithm on vague environment (SLAVE) 

[15], fuzzy hybrid genetic-based machine learning algorithm 

(FH-GBML) [18], fuzzy unordered rule induction algorithm 

(FURIA) [16], and fuzzy association rule-based classification 

method for high-dimensional problems (FARC-HD) [3]. 

However, considering the limitations of standard fuzzy rule 

base learning approaches for large number of samples, the Chi- 

FRBCS was recognized by many researchers as the suitable 

FRBCS to handle big data classification problems [26], [29]. 

In the last few years, several big data classifiers based on the 

Chi-FRBCS have been proposed and made use of the Apache 

Hadoop to deploy the distributed system. For example, Lopez 

et al. [26] proposed the first FRBCS capable of addressing big 

data and imbalance datasets, called Chi-FRBCS-BigDataCS, 

which utilized the Apache Hadoop to distribute the 

computational operations of Chi-FRBCS and also included 

cost-sensitive learning techniques to address imbalanced big 

data. After that, Rio et al. [29] developed a more general big 

data classifier based on the Chi-FRBCS and Apache Hadoop, 

called Chi-FRBCS-BigData, which includes two versions: 

Chi-FRBCS-BigData-Max and Chi-FRBCS-BigData-Ave. Both 

show the ability to deal with big data problems providing 

competitive results and reasonable computing efficiencies. 

Fernandez et al. [12] studied the relationship between the 

granularity and data scattering for Chi-FRBCS in big data 

classification problems and made use of Chi-FRBCS-BigData 

to accomplish their analysis. Later on, Fernandez et al. [13] 

carried out many experimental studies regarding the use of Chi- 

FRBCS-BigData to analyze the differences in performance 

with respect to the lack of data for the learning stage, how rules 

are distributed among Maps, and their influences on the 

classification stage. Elkano et al. [10] proposed a global version 

of Chi-FRBCS-BigDataCS in order to address the problem of 

previous big data classifiers that it would become less accurate 

when more computing nodes are added into the cluster.  

The above literatures review shows many potential 

applications of Chi-FRBCS in big data classification problems. 

However, they were mainly focused on two-class classification 

problems. Although the decomposition strategies [27], such as 

One-Versus-One (OVO) and One-Versus-All (OVA) schemes, 

can be used to decompose a multi-class problem into multiple 

two-class problems, it is unavoidable to cause the increase of 

the time complexity. Considering that the EBRBS has an 

effective rule representation scheme better than the one in Chi- 

FRBCS owning to embedding the belief structure into both 

 
Fig. 3. Pseudocode and time complexity of the rule generation scheme 

 
 

 
Fig. 4. Pseudocode and time complexity of the inference scheme 
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antecedent and consequent attributes, the present work aims to 

propose a novel classifier based on the EBRBS for big data 

problems in comparison with Chi-FRBCS in terms of accuracy 

and efficiency. 

C. Challenges of EBRBS for big data problems 

Due to the importance of computing efficiency in big data 

problems, in the context of the EBRBS, the time complexity of 

the rule generation and inference scheme are analyzed in this 

subsection. For the discussion purposes, Figs. 3 and 4 provide 

the pseudocode and the time complexity of those two schemes 

involved in the EBRBS, respectively.  

From Fig. 3, the time complexity of generating belief 

distributions shown in the 1st line to the 8th line is O(T(i=1,…, 

MJi +N) and the time complexity of calculating rule weights 

shown in the 9th line to the 14th line is O(T2(i=1,…, MJi +N), 

where T is the number of sample data, M is the number of 

antecedent attributes, Ji is the number of reference values in the 

ith antecedent attribute, and N is the number of classes. Clearly, 

for the rule generation scheme of the EBRBS, the calculation of 

rule weights requires the most computing time and sometimes it 

would be unacceptable while there are large amounts of sample 

data. For example, the dataset Poker has 1,025,010 samples 

(i.e., T=1,025,010), 10 attributes (i.e., M=10), and 10 classes 

(i.e., N=10). If the number of reference values is assumed to be 

3 for each attribute (i.e., Ji=3; i=1,…, M) and the computing 

time of each operation is 10-6 second, then the total computing 

time of generating rule weights is 11,673.8 hours. 

From Fig. 4, the time complexity of the inference scheme is 

O(SL(i=1,…, MJi +N), where S is the number of test data, L is 

the number of EBRs in the EBRB. Considering that one EBR is 

directly transformed from one sample data [22], so T=L. 

Therefore the time complexity of the inference scheme can be 

expressed as O(ST(i=1,…, MJi +N). Obviously, the computing 

time would also be unacceptable while there is large amount of 

sample data involved in the rule generation scheme, i.e., while 

the 10-fold cross validation is utilized to test the dataset Poker, 

the number of sample data and test data is therefore 922,509 

and 102,501, respectively. Finally, the computing time of the 

inference scheme is 1,050.6 hours. 

The above discussions clearly show that although the 

EBRBS is the RBS without the optimal model, the time- 

consuming process found in the calculation of rule weights and 

the inference scheme would be serious challenges while the 

EBRBS is applied to address the classification problem with a 

large amount of data. Therefore, the present work aims to 

address these challenges. 

III. A NOVEL EBRBS FOR BIG DATA MULTI-CLASS 

CLASSIFICATION PROBLEMS 

According to the challenges pointed out in Section II-C, the 

possible approaches are investigated to reduce the time 

complexity of the rule generation and the inference schemes, 

followed by a new rule reduction method to downsize the 

EBRB. Based on these achievements, a novel EBRBS and its 

Apache Spark-based implementation are developed to deal 

with big data multi-class classification problems. 

A. Analysis of rule weight calculation and the ER algorithm 

involved in EBRBS 

In order to reduce the time complexity of the EBRBS, the 

properties of the rule weight calculation and the ER algorithm 

are investigated as follows. 

Theorem 1. The rule weight of each EBR will approximate 

to 1 while using large number of sample data to generate EBRs. 

Proof. Suppose there are L EBRs. Based on the calculation 

of rule weights in Eq. (B6) in Appendix B, we can get the first 

order partial derivative of the rule weight k (k=1,…, L) with 

respect to the inconsistency degree Incons(Rk) as follows: 
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Fig. 5. Relationship between the rule weights and their inconsistency degrees 
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other words, when Incons(Rk) is equal to 1, Rk has a minimum 

rule weight. This makes sense that if this rule causes the 

contradiction, then it will be useless. 

Apparently, when the number of rules is increasing, the 

inconsistency degree of each rule is also increasing. It follows 

that when L is approaching to ∞, the inconsistency degree of 

each rule is approaching to 1. Without loss of generality, we 

consider the rule weight of Rk as follows: 

1
1

lim1
)(

)(
1lim
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Now that L is equal to the number of sample data, this 

concludes the proof. 

Example 1. Suppose there are L EBRs and two different 

EBRs, namely the kth rule and the ith rule (k, i{1,…, L}; i  k) 

with their inconsistency degree Incons(Rk) and Incons(Ri), 

respectively. The relationship between rule weights and 

inconsistency degrees can be shown in Fig. 5: while Incons(i) is 

fixed, k increases with the decrease of Incons(k). Moreover, 

while Incons(k)=1, the kth rule has a minimum rule weight. 

Secondly, assume that Incons(Rk)=1 (k{1,…, L}) and the 

inconsistency degree of other rules are set by using random 

values. Then the relationship between k and L (from 1 to 1000) 

is shown in Fig. 6, in which each line (twenty lines in total) 

denotes an independent experiment of using random values to 

determine i (i=1,…, L; i  k). From Fig. 6, Incons(k)=1 leads 

to the minimum rule weight for the kth rule. However, with the 

increase of L, it turned out that k approximates to 1. 

Remark 2: From Theorem 1, it is unnecessary to calculate 

each rule weight because its value will approximate to 1 while a 

large number of data are used to generate EBRs. As a result, the 

time complexity of the rule generation scheme is reduced from 

O(T2(i=1,…, MJi +N) to O(T(i=1,…, MJi +N). 

Theorem 2. For classification problems, the following ER 

algorithm for classification (denoted as ER-C) is the same as 

the analytical ER algorithm shown in Eq. (A1) in Appendix A. 
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Proof. Suppose a classification problem has N classes and 

the nth (n=1,…, N) class is denoted as Dn. Assume the 

estimated class of the EBRBS is the nth class for the test input 

data x. Hence, according to Eq. (A3) in Appendix A, we have 
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Based on the analytical ER algorithm in Eq. (A1), we assume 
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It follows that the ER-C algorithm is the same as the 

analytical ER algorithm in EBRBS for classification. 

Example 2. Suppose there are two EBRs and their belief 

distributions of the consequent attribute are shown as follows: 
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wk and wl, respectively, and wk+wl=1. 

According to the analytical ER algorithm in Eq. (A1) and the 

ER-C algorithm in Eq. (5), the difference of the integrated 

belief degrees for the D1 and D2 can be expressed as follows: 

21
 ERd

                                       
 (12) 

CERCERCERd  
21


                                 

 (13) 

To illustrate the possible values of dER and dER-C, we consider 

nine illustrative cases under the assumptions that β1,l>β1,k, β1,l= 

β1,k, and β1,l<β1,k while the value of wk lies between 0 and 1. 

Without loss of generality, the value of both β1,land β1,k is 

assumed as 0.3, 0.5, and 0.7, respectively. Hence, the curves of 

dER and dER-C are shown in Fig. 7. Fig. 7 shows that dER and dER-C 

have same negative and positive symbols for nine combinations 

based on different belief degrees and activation weights. 

Hence, the ER-C algorithm can produce the same estimated 

class as the ER algorithm. 

Remark 3. From Theorem 2, the ER-C algorithm can be used 

to replace the ER algorithm in the inference scheme of the 

EBRBS while facing classification problems. Additionally, the 

existing studies of using the ER algorithm as inference engine 

for classification problems, such as [6] and [7], can also use the 

ER-C algorithm to replace the inference engine. 

Remark 4. The advantages of the ER-C algorithm over the 

ER algorithm can be summarized as follows: 

(1) The ER-C algorithm has a much clean and simple 

formula than the ER algorithm because it derives from the core 

part of the ER algorithm. 

(2) The ER-C algorithm is more efficient than the ER 

algorithm according to their time complexity, in which the ER- 

C algorithm is O(LN) and the ER algorithm is O(LN2). 

(3) In term of independence, the calculation of the integrated 

belief degree for all classes is independent of each other in the 

ER-C algorithm so that it is possible to have more solutions of 

parallelization for the EBRBS. 

B. Domain division-based rule reduction method for EBRBS 

In order to further reduce the time complexity of the EBRBS, 

in this subsection, a domain division-based rule reduction 

method is proposed for the rule generation scheme. Firstly, the 

main idea, which follows the similar way to the fuzzy partition 

[17] and the Wang-Mendel model [31], of the proposed rule 

reduction method are given based on the following definitions. 

Definition 1 (Division point). The division point is the 

intersection between transform functions used to calculate the 

belief degree to which the input data belongs to the reference 

value of antecedent attributes. For convenience, P(Ai,j, Ai,j+1) 

(i=1,…, M; j=1,…, Ji -1) is defined to express the division point 

between the Ai,j and Ai,j+1 in the ith antecedent attribute. 

Definition 2 (Division domain). The division domain is the 

local input space constructed by the two adjacent division 

points of each antecedent attribute. For convenience, 

),...,(
,,1 1 MjMj

AAD (ji=1,…, Ji; i=1,…, M) is defined to express 

the division domain constructed by the division point regarding 

the reference values 
MjMj

AA
,,1

,...,
1

. 

Example 3. Suppose that an EBRB includes one antecedent 

attribute U1 with three reference values A1,i and their utility 

values u(A1,i) (i=1, 2, 3). Without loss of generality, the order of 

those utility values is u(A1,1)<u(A1,2)<u(A1,3). x1  is assumed to 

be the input variable of the attribute U1 and the utility function 

used to generate belief degrees of the reference value A1,i (i=1, 

2, 3), is assumed to be piecewise linear [35], namely )(
1,1

x
i

 , 

shown in Fig. 8. From Fig. 8, there are two division points, 

namely P(A1,1, A1,2) and P(A1,2, A1,3), and three division 

domains, namely D(A1,1), D(A1,2), and D(A1,3). 

Remark 5. Based on Definitions 1 and 2 together with 

Example 3, when an input data falls into a division domain, the 

relatively maximal belief degree can be generated from the 

input data for all reference values belonging to the division 

domain. In other words, each division domain can be regarded 

as the clustering center of the input data which most likely 

belong to the reference value of division domain in the form of 

belief distribution. 

Definition 3 (Rule clustering strategy). The rule clustering 

strategy is the map relationship between EBRs and division 

domains based on the relatively maximal belief degree in each 

antecedent attribute so that it can be defined as 

),...,(
,,1 1 MjMjk

AADR 
                                  

(14)
 

where }{maxarg ,,...,1

k

jiJji i
j  (k=1,…, L; i=1,…, M);

k

ji ,
  

denotes the belief degree of the reference value Ai,j in the kth 

EBR (j=1,…, Ji;i=1,…, M), M is the number of antecedent 

attributes, L is the number of EBRs, and Ji is the number of 

reference values used for the ith antecedent attribute. 

Definition 4 (Rule reduction strategy). The rule reduction 

strategy is the combination strategy for the EBRs which are 

assigned to the same division domain so that it can be defined 

as 

0;, 1 ,

,

1 ,

,


 

l

L

k kn

ln

l

L

k

k

jil

ji
Lwhile

LL

ll







         
(15)

 

where Ll is the number of the rules gathered at the lth (l=1,…, 

 

M

i i
J

1
) division domain and kn,

  (n=1,…, N; k=1,…, L) 

denote the belief degrees of the reference value Ai,j and Dn in the 

kth rule, respectively. 

Remark 6. As shown in Eq. (15), different denominators are 

 
Fig. 8. Example of division point and division domain 
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used to calculate the belief degree of antecedent and consequent 

attributes. The main reason is that: (1) the belief degree of 

antecedent attribute reflects the space relationship between 

different division domains in a sense, so the belief degree is 

calculated by using Ll; (2) the belief degree of consequent 

attribute reflects how many rules have the same class, thus the 

belief degree is calculated by using L. 

Example 4. Suppose that an EBRB includes two antecedent 

attributes U1 and U2 with three reference values Ai,j and their 

utility values u(Ai,j) (i=1, 2; j=1, 2, 3). Without loss of 

generality, the order of those utility values is u(Ai,1)<u(Ai,2) 

<u(Ai,3) in the ith antecedent attribute. In addition, the EBRB 

has three EBRs R1, R2, and R3, respectively, as shown in Fig. 9. 

From Fig. 9, four division points and nine division domains 

can be constructed based on Definitions 1 and 2. After that, 

according to Definition 3, all three EBRs are assigned to the 

division domain D(A1,2, A2,2). Afterwards, based on Definition 

4, the EBRs gathered in D(A1,2, A2,2) are all combined as a new 

rule, denoted as 1R , which is obtained via Eq. (15), e.g., 
1

1,1  

=(0.1+0+0.2)/3=0.1, 
1

2,1
 =(0.9+0.7+0.8)/3 =0.8, and 

1

3,1
 =(0 

+0.3+0)/3=0.1 in the antecedent attribute U1, and 1,1  
= (1+1+ 

0)/3=0.6667 and 1,2
 =(0+0+1)/3=0.3333 in the attribute D. 

Remark 7. Based on Definitions 3 and 4 together with 

Example 4, when one more EBR is assigned to the same 

division domain, a new EBR would be generated, in which the 

information of the new EBR is considered complete because it 

is generated by using the belief distribution of the antecedent 

and consequent attribute of all original rules. 

Based on the above Definitions 1 to 4 and Examples 3 to 4, 

the steps of the domain division-based rule reduction method 

are described as follows: 

Step 1: To generate division points for each antecedent 

attribute by using the transform functions. Suppose that there 

are M antecedent attributes with Ji reference values for the ith 

(i=1,…, M) antecedent attribute. Based on Definition 1, Ji -1 

division points, namely {P(Ai,j, Ai,j+1); j=1,…, Ji-1}, are 

generated for the ith antecedent attribute. 

Step 2: To generate division domains for the EBRBS by 

using the division points. Based on Definition 2,  

M

i i
J

1
 

division domains, namely { ),...,(
,,1 1 MjMj

AAD ; ji=1,…, Ji; i= 

1,…, M}, are generated for the EBRBS, in which the division 

domain is the clustering center according to Remark 5. 

Step 3: To assign all EBRs to the division domains based on 

the rule clustering strategy. Suppose that there are T EBRs 

transformed from T sample data. Based on Definition 3, these T 

EBRs are all assigned to the  

M

i i
J

1
 division domains. 

Step 4: To generate new EBRs from the EBRs gathered in 

each division domain based on the rule reduction strategy. 

Suppose that there are L  division domains which include at 

least one EBR, based on Definition 4, all EBRs in each division 

domain are used to generate L  new EBR, respectively. 

Remark 8. After utilizing the domain division-based rule 

reduction method to downsize the EBRB, L  new EBRs shown 

in Step 4 can construct a reduced EBRB, in which the number 

of rules regarding the reduced EBRB should be no more than 

both the number of sample data T and the number of division 

domains  

M

i i
J

1
. 

C. Micro-EBRBS: EBRBS with rule reduction and ER-C 

algorithm but without rule weight calculation 

Based on the above analysis and new improvements, a novel 

EBRBS, called Micro-EBRBS which has a simplified rule 

generation and inference schemes and a downsized EBRB 

comparing to EBRBS, is developed and its methodological 

framework is shown in Fig. 10. 

It is clear from Fig. 10 that, comparing to the EBRBS shown 

in Figs. 1 and 2, the Micro-EBRBS includes the process of rule 

reduction but exclude the process of rule weight calculation. 

Additionally, the ER-C algorithm is used to replace the ER 

algorithm in the process of activated rule integration. More 

specifically, the rule generation and the inference scheme of the 

Micro-EBRBS are described as follows. 

For the rule generation scheme of the Micro-EBRBS, it 

consists of the following two steps: 

Step 1: Generation of belief distributions using the 

transformation technique. 

 
Fig. 9. Examples of rule clustering strategy and rule reduction strategy 
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After determining the basic parameters based on expert 

knowledge, including attribute weights, utility values of the 

reference values used for antecedent and consequent attributes, 

the belief distributions of the antecedent and consequent 

attributes can be generated. 

Suppose that {u(Ai,j); j=1,…, Ji} is a set of given utility 

values used for the ith (i=1,…, M) antecedent attribute, and xk,i 

is the kth (k=1,…, L) sample input data of the ith antecedent 

attribute. Thus, the belief distribution of the ith antecedent 

attribute generated using the utility-based equivalence 

transformation technique [35] is: 

},...,1);,{()(
,,, i

k

jijiik
JjAxS  

                
(16) 

where 

)()(if,1

)()(

)(

1,,,,1,

,1,

,1,

,














jiikji

k

ji

k

ji

jiji

ikjik

ji

AuxAu

AuAu

xAu





          
 
(17) 

1,,...,1,0
,

 jjtandJtfor
i

k

ti


               
(18) 

where 
k

ji ,
  is the belief degree of Ai,j in the kth EBR obtained 

from the sample input data xk,i. 

Next, when the kth sample output data is yk and the given 

utility values attached to the consequent attribute D are {u(Dn); 

n=1,…, N}, the belief distribution of consequent attribute is: 

},...,1);,{()( NnDyS k

nnk
 

                    
(19) 

Finally, all belief distributions shown in Eqs (16) and (19) 

together with attribute weights determined by experts are used 

to construct an EBRB.

 Step 2: Rule reduction based on domain divisions.

 For the EBRB generated by Step 1, the domain division- 

based rule reduction method shown in Section III-B is then 

used to reduce the number of rules. Suppose there are M 

antecedent attributes with Ji reference values Ai,j (j=1,…, Ji) and 

one consequent attribute D with N classes Dn (n=1,…, N), the 

kth (k=1,…, L ) rule of the reduced EBRB can be written as 

},...,{1};,...,1);,{(

},,...,1);,{(

},...,1);,{(:

1,

,,

1,1,11

Mkknn

M

k

jMjM

M

k

jjk

andwithNnD

isDTHENJjA

isUJjAisUIFR











 

       

(20) 

where 
k

ji ,
  and kn,

  are the integrated belief degree of the Ai,j 

and the class Dn using the rule reduction strategy. 

Remark 9. As shown in the proposed rule reduction method, 

the most complex step is to generate 
k

ji ,
  (k=1,…, L ; i=1,…, 

M; j=1,…, Ji) and kn,
  (n=1,…, N) by using L rules of EBRB. 

Furthermore, Section II-C shows that the time complexity of 

generating belief distributions is O(L(i=1,…, MJi +N)). Hence, 

the time complexity for the rule generation scheme of the 

Micro-EBRBS is O(L L (i=1,…, MJi +N)). 

For the inference scheme of the Micro-EBRBS, it consists of 

the following two steps: 

Step 1: Calculation of activation weights using the distance 

measure. 

While a test input data is provided for the Micro-EBRBS, the 

activation weights can be calculated for each EBR of the 

reduced EBRB. Suppose that x=(x1,…, xM) is a test input data, 

each input xi (i=1,…, M) will be firstly transformed into a belief 

distribution of the reference values of the ith antecedent 

attribute using Eqs. (17) and (18). 

},...,1);,{()(
,, ijijii

JjAxS  
              

(21) 

Next, the individual matching degree of the ith antecedent 

attribute in the kth rule, denoted as Sk(xi, Ui), is calculated by 

using the Euclidean distance: 













 

Ji

j

k

jiji

ii

k

ii

k UxdUxS

1

2

,,
)(,1min1

),(1),(


 
       

(22) 

where dk(xi, Ui) is the distance measurement. 

Finally, the activation weight of the kth EBR, denoted as wk, 

is calculated by 

 

    
iMi

i

iL

l

M

i ii

l

l

M

i ii

k

k

k
i

i

UxS

UxS
w














,,1
1 1

1

max
,

),(

),(


 

 

 


   

(23) 

where 
k

  is the weight of the kth rule; 
i

  is the weight of the 

ith antecedent attribute. 

Step 2: Integration of activated rules using the ER-C 

algorithm. 

After performing Step 1, all activated rules can be integrated 

using the ER-C algorithm shown in Eq. (5) and the integrated 

belief distribution of the test input data x can be represented as 

follows: 

},...,1);,{()( NnDf CER

nn
 x

                       
(24) 

Afterwards, the estimated class for the test input data x can 

be obtained as follows: 

}{maxarg,)(
,..,1

CER

iNin
nDf 


 x

               
(25) 

Remark 10. Considering that the inference scheme of the 

Micro-EBRBS is based on the reduced EBRB, which only has 

L  rules, the time complexity of the inference scheme 

 
Fig. 10. Illustration of Micro-EBRBS 
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regarding the Micro-EBRBS is O( L (i=1,…, MJi +N)) for 

classifying each test data. 

D. Apache Spark-based implementation of Micro-EBRBS for 

big data multi-class classification 

In order to further improve the computing efficiency of the 

Micro-EBRBS, the Apache Spark is used to achieve the parallel 

rule generation and inference schemes. As an in-memory big 

data platform, the Apache Spark has been proven that it 

supports a much wider range of functionality than the Apache 

Hadoop [9]. The fundamental data structure of the Apache 

Spark is the resilient distributed dataset (RDD), which 

represents a collection of distributed items that can be 

manipulated across many computing nodes concurrently. 

Hence, the RDD allows the data cache to be stored in memory 

and perform computations for the same data directly from 

memory. After the RDD is constructed, the program can 

perform the following two operations: 

(1) Transformations: this kind of operation is to create a new 

RDD from existing RDD and the concrete function includes 

map (which is to return a new RDD formed by passing each 

element of the source through a function), mapToPair (which is 

to return a new RDD of key-value pairs by using a function), 

reduceByKey (which is to return a new RDD of key-value pairs 

where the values for each key are aggregated using the given 

reduce function), and so on. The detailed description of those 

functions can be found in [4]. 

(2) Actions: this kind of operation is to return the final results 

of RDD computations and the concrete function includes 

reduce (which is to aggregate the elements of the RDD using a 

function), collect (which is to return all the elements of the 

RDD as an array at the driver program), and others. The 

detailed description of those functions can be found in [4]. 

Based on the functions of transformation and action, the 

pseudocodes are provided to illustrate the Apache Spark-based 

implementation of the parallel rule generation and inference 

schemes of Micro-EBRBS below respectively. 

IV. EXPERIMENTS 

The performance of the Micro-EBRBS is empirically 

assessed through three different experiments with 14 

classification datasets from the well-known UCI repository of 

machine learning databases [30]. The EBRBS, the conventional 

FRBCS and machine-learning classifiers, and the big data 

FRBCS classifiers are used to compare in terms of the accuracy 

and computing efficiency, respectively. 

A. Datasets and experiment conditions 

Fourteen classification datasets obtained from UCI are used 

to evaluate the performance of the Micro-EBRBS. The main 

 
Fig. 11. Illustration of the parallel rule generation scheme 

 

 
Fig. 12. Illustration of the parallel inference scheme 
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characteristics of these datasets are summarized in Table I. 

Notice that for the datasets Diabetes, Cancer, and Census, we 

have removed the data with missing attribute values. 

To develop the comparison in multiple aspects, k-fold cross- 

validation (K-CV) is considered in the experiments, where each 

dataset is divided into k blocks, with k-1 blocks as training data, 

namely sample input-output data, and the remaining block as 

testing data. Additionally, the nonparametric statistical analysis 

is used to assess if significant differences exist among different 

classifiers at a level of significance of =0.1. For conducting 

multiple statistical comparisons over multiple datasets, as 

suggested in [14], the Friedman and Holm tests are employed.  

For the first and the second experiments (Sections IV-B and 

IV-C), the datasets with relatively small number of data, 

including the 1st to the 10th datasets, are used to compare the 

performance of the Micro-EBRBS with the EBRBS and the 

conventional FRBCS and machine-learning classifiers. All 

these classifiers are implemented using Java programming 

(JDK 1.8.0) and the open source software (Weka and KEEL) on 

Intel (R) Core (TM) i5-4300U CPU at 1.90GHz and 4GB RAM 

with Windows 7. For each dataset, the average results of the 10 

runs of each classifier are used to compare their performances. 

For the third experiment (Section IV-D), the datasets with 

relatively large number of data, including the 11th to the 14th 

datasets, are used to compare the performance of the Micro- 

EBRBS with the big data FRBCS classifiers, and all these 

classifiers are executed in the 17 nodes cluster connected via 

8GT/s Ethernet LAN network, where the master node is 

composed of 1 Intel Xeon E5-2640 4 cores at 2.5GHz and 

16GB RAM and the slave nodes are composed of 2 Intel Xeon 

E5-2670v2 10 cores at 2.5GHz and 64GB RAM. The entire 

cluster runs under Red Hat 7.3 and Apache Spark 2.1.0. 

B. Comparative analysis between Micro-EBRBS and EBRBS 

The first experiment aims to compare the accuracy and 

computing efficiency of the Micro-EBRBS with the EBRBS, 

respectively, and the comparisons are based on the 2/4/6/8/10- 

CV to investigate the influences on the accuracy and computing 

efficiency of these EBRBSs by using different numbers of 

training and testing data. 

For the basic parameters of the Micro-EBRBS and EBRBS, 

suppose that all attribute weights are 1, namely 

Mi
i

,...,1;1 
                                   

  (26)
 

where M is the number of antecedent attributes. The number of 

reference values is three for each antecedent attribute, and the 

utility value of these reference values is defined as follows: 

Miub
ublb

lbjAu
i

ii

iji
,...,1;,

2
,}3,2,1);({

,








 



   

(27) 

where u(Ai,j) denotes the utility value of the reference value Ai,j, 

lbi and ubi denote the lower and upper bounds of the ith 

antecedent attribute, respectively. 

Pseudocode of parallel rule generation scheme of Micro-EBRBS 

Input: SampleDataSet denotes the set of sample input-output data, each sample input-output data of SampleDataSet is denoted as sampleData, rule 
denotes the EBR shown in Eq. (20), tuple1, tuple2, and tuple3 denote the 2-tuple composing of rule and its division domain. 

Output: A set of extended belief rules EBRBSet 

01 
02 

03 

04 
05 

06 

07 
08 

09 

10 
11 

EBRBSet = new JavaSparkContext().Parallelize (SampleDataSet).mapToPair(sampleData -> { 
    Generate rule from sampleData by using Steps 1 to 2 shown in the rule generation scheme of the Micro- EBRBS; 

    Generate divisionDomain for rule by using Steps 1 to 3 shown in the domain division-based rule reduction method; 

Return new Tuple2<>(divisionDomain, rule) 
}).reduceByKey((tuple1, tuple2) -> { 

    Generate tuple3 by using Step 4 shown in the domain division-based rule reduction method; 

    Return tuple3; 
}).map(tuple3 -> { 

    Obtain rule from tuple3; 

    Return rule; 
}).collect(); 

 

Pseudocode of parallel inference scheme of Micro-EBRBS 

Input: TestDataSet denotes the set of test input data, each test input data of TestDataSet is denoted as testData, class1 denotes the estimated class of the 

Micro-EBRBS, and class2 denotes the actual class of test input data, a and b denote the integer variable. 

Output: The total number of test input data correctly classified by the Micro-EBRBS totalCorrect. 
01 

02 

03 
04 

05 

06 

totalCorrect = new JavaSparkContext().parallelize(TestDataSet) 

.map(testData -> { 

Generate class1 for testData by using Steps 1 to 2 shown in the inference scheme of the Micro-EBRBS; 
Obtain class2 from testData; 

Return class1==class2?1:0; 

}) .reduce((a, b) -> a+b); 

 

 TABLE I 
STATISTICS ON FOURTEEN CLASSIFICATION DATASETS 

No. Dataset No. of data No. of attributes No. of classes 

1 Diabetes 393 8 2 
2 Cancer 569 30 2 

3 Transfusion 748 4 2 

4 Banknote 1,372 4 2 
5 Magic 19,020 10 2 

6 Wine 178 13 3 

7 Waveform 5,000 21 3 
8 Glass 214 9 6 

9 Red wine 1,599 11 6 

10 Satimage 6,435 36 6 

11 Census 95,130 40 2 

12 Gas sensors 928,991 10 3 

13 Covtype 581,012 54 7 
14 Poker 1,025,010 10 10 
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Figs. 13 and 14 show the computing time and the accuracy 

regarding the Micro-EBRBS in comparison with the EBRBS 

over two and multi-class datasets, respectively, in which the 

computing time includes the time of rule generation scheme, 

inference scheme and total time. 

For the two-class datasets, including Diabetes, Cancer, 

Transfusion, and Banknote, the computing time of rule 

generation scheme regarding the EBRBS is increasing with the 

increasing number of training data used to generate EBRs, e.g., 

50% data are regarded as the training data in 2-CV and 90% 

data as the training data in 10-CV. Additionally, there are slight 

differences between the Micro-EBRBS and the EBRBS in term 

of the computing time of the inference scheme and the 

accuracy. As a result, the total computing time of the EBRBS is 

much more than that of the Micro-EBRBS. 

For the multi-class datasets, including Wine, Waveform, 

Glass, Red wine, the similar conclusions are obtained in terms 

of the computing time and the accuracy. 

In order to show the detailed comparison of the Micro- 

EBRBS and the EBRBS, Tables II and III provide the results of 

rule generation time, inference time, total time, number of 

rules, number of activated rules, and the accuracy, in which the 

ratio is the result of the Micro-EBRBS divided by the result of 

the EBRBS. Hence, the Micro-EBRBS with a larger ratio in 

term of accuracy and a smaller ratio in term of computing time 

is better than the EBRBS. 

Table II shows that the computing time of the Micro-EBRBS 

is much less than that of the EBRBS for all two and multi-class 

datasets, where the minimum ratio of computing time is 

obtained from the dataset Banknote and its ratios are 0.002, 
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Fig. 13. Comparison of computing time and accuracy between Micro-EBRBS and EBRBS for two-class datasets 

 

TABLE II 

COMPARISON OF COMPUTING EFFICIENCY FOR MICRO-EBRBS AND EBRBS 

No. of 

classes Dataset 
Rule generation (ms) 

Ratio 
 Inference (ms) 

Ratio 
 Total (ms) 

Ratio 
Micro-EBRBS EBRBS  Micro-EBRBS EBRBS  Micro-EBRBS EBRBS 

Two-class Diabetes 6.1 429.0 0.014  3.2 15.6 0.205  9.3 444.6 0.021 
 Cancer 40.8 1,475.5 0.028  69.9 76.7 0.911  110.7 1,552.2 0.071 

 Transfusion 3.2 1,709.6 0.002  3.0 37.5 0.080  6.2 1,747.1 0.004 

 Banknote 12.4 6,645.2 0.002  3.2 148.3 0.022  15.6 6,793.5 0.002 
Multi-class Wine 4.6 81.1 0.058  3.2 4.7 0.681  7.8 85.8 0.091 

 Waveform 750.5 205,530.3 0.004  3,623.3 8,654.2 0.419  4,373.8 214,184.5 0.020 

 Glass 3.0 164.4 0.018  1.1 5.3 0.208  4.1 169.7 0.024 
 Red Wine 40.7 13,291.8 0.003  60.2 424.9 0.142  100.9 13,716.7 0.007 
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0.022, and 0.002 for the rule generation, inference, and total 

time, respectively, and the maximum one is obtained from the 

datasets Cancer and Wine and their ratio are 0.058 and 0.091 

for the rule generation time and total time of Wine and 0.911 

for the inference time of Cancer. 

Table III shows that the number of rules and activated rules 

involved in the Micro-EBRBS is less than the EBRBS, where 

the minimum ratio is obtained from the datasets Transfusion, 

i.e., 0.019 for the number of rules and 0.014 for the number of 

activated rules, and the maximum one is obtained from the 

datasets Cancer, 0.875 for the number of rules and 0.867 for the 

number of activated rules. Furthermore, it is clear from Table 

III that the accuracy of the Micro-EBRBS closely approximates 

that of the EBRBS and the range of the ratio can be expressed 

as [0.963, 1.000] for eight classification datasets. 

In order to further compare the accuracy of the Micro- 

EBRBS and EBRBS, Friedman and Holm tests are applied to 

provide the statistical analysis based on two and multi-class 

datasets, respectively. From Table IV, although the EBRBS can 

obtain the best accuracy at most of two and multi- class 

datasets, none of hypotheses is in favor of the significant 

difference between EBRBS and Micro-EBRBS. However, the 

computing efficiency of Micro-EBRBS is much better than 

EBRBS. 
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Fig. 14. Comparison of computing time and accuracy between Micro-EBRBS and EBRBS for multi-class datasets 
 

TABLE III 

COMPARISON OF ACCURACY AND NUMBER RULES AND ACTIVATED RULES FOR MICRO-EBRBS AND EBRBS 

No. of 

classes Dataset 
No. of rules 

Ratio 
 No. of activated rules 

Ratio 
 Accuracy (%) 

Ratio 
Micro-EBRBS EBRBS  Micro-EBRBS EBRBS  Micro-EBRBS EBRBS 

Two-class Diabetes 94.0 353.7 0.266  49.6 208.9 0.237  74.91 76.01 0.986 

 Cancer 448.2 512.1 0.875  222.7 256.9 0.867  96.49 96.45 1.000 
 Transfusion 12.8 673.2 0.019  7.4 533.1 0.014  76.52 76.62 0.999 

 Banknote 30.8 1,234.8 0.025  22.3 955.1 0.023  97.34 98.86 0.985 

Multi-class Wine 126.3 160.2 0.788  45.2 58.6 0.771  95.84 95.84 1.000 
 Waveform 2,031.7 4,500.0 0.452  1,492.9 3,523.1 0.424  84.00 85.22 0.986 

 Glass 41.9 192.6 0.218  11.8 95.4 0.124  63.32 65.56 0.967 

 Red Wine 230.8 1,439.1 0.160  139.6 964.1 0.145  58.36 60.61 0.963 

 

 TABLE IV 

FRIEDMAN AND HOLM TESTS TO COMPARE THE ACCURACY OF MICRO-EBRBS 

AND EBRB ( =0.1) 

Indicator EBRBS (two-class) EBRBS (Multi-class) 

p value 0.3173 0.1336 

Critical value 0.1000 0.1000 

Hypothesis Accepted Accepted 
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In summary, for the comparison of the Micro-EBRBS and 

EBRBS, the experiment results have shown that the former has 

much less computing time than the latter. Moreover, the Micro- 

EBRBS is comparable to the EBRBS in term of accuracy while 

much less number of rules and activated rules are used to 

address many classification datasets. 

C. Comparative analysis between Micro-EBRBS and 

conventional classifiers 

The second experiment aims to compare the accuracy of the 

Micro-EBRBS with the conventional classifiers, which include 

the FRBCS and the conventional machine-learning classifiers. 

Apart from the setting of the Micro-EBRBS introduced in Eqs. 

(26) and (27), the other classifiers are shown as follows: 

(1) Chi-FRBCS [29]: it was proposed by Chi et al., where the 

Penalized Certainty Factor (PCF) is used to calculate rule 

weights, the winner rule strategy is used as the fuzzy reasoning 

method, and the OVO is used to improve the performance of 

Chi-FRBCS in dealing with multi-class classification 

problems. Here, assume that the number of fuzzy labels is three 

for each attribute and these fuzzy labels modeled as triangular 

membership function. 

(2) Other FRBCS classifiers: structural learning algorithm on 

vague environment (SLAVE), fuzzy hybrid genetic-based 

machine learning algorithm (FH-GBML), fuzzy unordered rule 

induction algorithm (FURIA), and fuzzy association rule-based 

classification method for high-dimensional problems (FARC- 

HD), they are all obtained from KEEL software. The setting of 

these FRBCS classifiers follows the previous study in [3]. 

(3) Machine-learning classifiers: k nearest neighbor (KNN), 

Naïve Bayes (NB), Decision Tree (DT), Random Forest (RF), 

Artificial Neural Network (ANN), and Support Vector 

Machine (SVM), are all obtained from WEKA software. Apart 

from the default setting, 20% number of training data is set as 

neighbors for the KNN, 5% number of training data is set as the 

minimum number of data per leaf for the DT, the number of 

random trees is set as 5 for the RF, and the number of iterations 

is set as 10 for the ANN. 

Table V shows the accuracy of Micro-EBRBS in comparison 

with five FRBCS classifiers, including SLAVE, FH-GBML, 

FURIA, FARC-HD, and Chi-FRBCS, over two and multi-class 

datasets, respectively, where the result of the best accuracy is 

highlighted in bold-face and the number in brackets denotes the 

rank of each classifier. For the two-class datasets, the accuracy 

TABLE V 

COMPARISON OF ACCURACY FOR MICRO-EBRBS AND FIVE FRBCS CLASSIFIERS 

No. of classes Dataset SLAVE FH-GBML FURIA FARC-HD Chi-FRBCS Micro-EBRBS 

Two-class Diabetes 77.10% (1.5) 70.23% (6) 76.59% (3) 77.10% (1.5) 72.80% (5) 74.91% (4) 
 Cancer 92.33% (3) 92.26% (5) 90.68% (6) 95.25% (2) 92.32% (2) 96.49% (1) 

 Transfusion 76.60% (5) 79.01% (1) 78.74% (2) 77.27% (3) 76.80% (3) 76.52% (6) 

 Banknote 91.33% (6) 98.18% (3) 99.13% (2) 99.78% (1) 94.42% (5) 97.34% (4) 
 Magic 74.96% (6) 81.30% (3) 84.63% (1) 84.51% (2) 80.62% (2) 77.38% (5) 

 Average rank 4.3 3.6 2.8 1.9 4.4 4.0 

Multi-class Wine 89.47% (6) 92.61% (3) 91.88% (4) 94.35% (2) 90.17% (5) 95.84% (1) 

 Waveform 81.48% (4) 60.18% (6) 83.10% (3) 83.78% (2) 74.70% (5) 84.00% (1) 

 Glass 58.05% (4) 57.99% (5) 58.49% (3) 70.24% (1) 50.37% (6) 63.32% (2) 

 Red Wine 55.60% (6) 68.67% (1) 57.72% (4) 59.72% (2) 55.89% (5) 58.36% (3) 
 Satimage 81.69% (4) 74.72% (6) 89.15% (1) 87.32% (2) 74.79% (5) 85.41% (3) 

 Average rank 4.8 4.2 3.0 1.8 5.2 2.0 

 
TABLE VI 

FRIEDMAN AND HOLM TESTS TO COMPARE THE ACCURACY OF MICRO-EBRBS AND FIVE FRBCS CLASSIFIERS ( =0.1) 

Item Indicator SLAVE FH-GBML FURIA FARC-HD Chi-FRBCS 

Two-class p value 0.7999 0.7353 0.3105 0.0759 0.7353 
 Critical value 0.1000 0.0333 0.0250 0.0200 0.0333 

 Hypothesis Accepted Accepted Accepted Accepted Accepted 

Multi-class p value 0.0180 0.0630 0.3980 0.8658 0.0068 
 Critical value 0.0250 0.0333 0.0500 0.1000 0.0200 

 Hypothesis Rejected Accepted Accepted Accepted Rejected 

 
TABLE VII 

COMPARISON OF COMPUTING TIME IN SECOND FOR MICRO-EBRBS AND FIVE FRBCS CLASSIFIERS 

No. of classes Dataset SLAVE FH-GBML FURIA FARC-HD Chi-FRBCS Micro-EBRBS 

Two-class Diabetes 569 s (5) 2s316 s (6) 4.3 s (3) 56 s (4) 0.0 s (1.5) 0.0 s (1.5) 

 Cancer 1200 s (5) 4s947 s (6) 6.8 s (3) 249 s (4) 0.1 s (1.5) 0.1 s (1.5) 

 Transfusion 212 s (5) 2s899 s (6) 4.2 s (3) 31 s (4) 0.0 s (1.5) 0.0 s (1.5) 

 Banknote 502 s (5) 6s256 s (6) 6.0 s (3) 69 s (4) 0.0 s (1.5) 0.0 s (1.5) 

 Magic 31,303 s (5) 387,010 s (6) 715 s (3) 8,655 s (4) 1.0 s (1) 1.1 s (2) 

 Average rank 5 6 3 4 1.4 1.6 
Multi-class Wine 268 s (5) 1,394 s (6) 2.4 s (3) 75 s (4) 0.0 s (1.5) 0.0 s (1.5) 

 Waveform 73,570 s (6) 45,255 s (5) 184 s (3) 2,490 s (4) 6.5 s (2) 4.0 s (1) 

 Glass 611 s (5) 1,184 s (6) 3.2 s (3) 100 s (4) 0.0 s (1.5) 0.0 s (1.5) 

 Red Wine 1,049 s (5) 9,434 s (6) 21 s (3) 590 s (4) 0.6 s (2) 0.1 s (1) 

 Satimage 29,655 s (5) 62,579 s (6) 346 s (3) 8,876 s (4) 87 s (2) 12 s (1) 

 Average rank 5.2 5.8 3 4 1.8 1.2 
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of FARC-HD is better than other FRBCS classifiers as well as 

Micro-EBRBS ranked at the 3rd place in term of average rank. 

For the multi-class datasets, the FARC-HD remains its 

advantages in dealing with classification problems over other 

classifiers. Despite the fact that the FARC-HD outperforms the 

Micro-EBRBS, it is still possible to see a considerable decrease 

in the average rank of Micro-EBRBS, namely from 4.0 to 2.0. 

This is so because the distributed belief degree is used in each 

EBR to express multiple classes and Micro-EBRBS therefore 

has excellent abilities to deal with multi-class problems. 

In addition to the accuracy and average rank for each dataset 

and each classifier shown in Table V, Table VI provides the 

statistical analysis of accuracy while the Micro-EBRBS is 

selected as the control method for the Friedman and Holm tests. 

As shown in Table VI, apart from the SLAVE and Chi-FRBCS 

in the case of multi-class datasets, all hypotheses regarding five 

FRBCS classifiers are accepted, which means that although 

some of FRBCS classifiers, such as the FARCH-HD, FURIA, 

and FH-GBML, are better than Micro-EBRBS, none of 

hypotheses is in favor of the significant differences between the 

FRBCS classifiers and the Micro-EBRBS. For the SLAVE and 

Chi-FRBCS in the case of multi-class datasets, the hypothesis 

is rejected, which means that the significant differences can be 

found to show a better accuracy of Micro-EBRBS comparing to 

the SLAVE and Chi-FRBCS. 

Table VII shows the computing time of Micro-EBRBS in 

comparison with the SLAVE, FH-GBML, FURIA, FARC-HD, 

and Chi-FRBCS, where the result of the best computing time is 

highlighted in bold-face and the number in brackets denotes the 

rank of each classifier. In both of two and multi-class datasets, 

the computing time of Micro-EBRBS is close to that of Chi- 

FRBCS, and is significantly faster than the other FRBCS 

classifiers. This is because some additional methodologies 

were used to improve the FRBCS classifiers, e.g. the genetic 

algorithm, which is an iterative optimization algorithm, and is 

one of the components of SLAVE and FARC-HD, leading to a 

time-consuming process while using those FRBCS classifiers.  

Hence, in the application of FRBCS classifiers for 

addressing big data classification problems, the related works 

introduced in Section II-B were all based on Chi-FRBCS 

owning to its high efficient process of dealing with data. 

In order to further compare with the Micro-EBRB and Chi- 

FRBCS, Figs. 15 and 16 show their time of rule generation 

scheme, inference scheme, and total as well as the accuracy 

over two and multi-class relatively large datasets, respectively.  

For the two-class datasets Banknote and Magic, the 

computing time of rule generation scheme regarding the Chi- 

FRBCS closely approximates to that regarding the Micro- 
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(a) Banknote                                   (b) Magic 

Fig. 15. Comparison of computing efficiency and accuracy between Chi-FRBCS and Micro-EBRBS for two-class datasets 
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Fig. 16. Comparison of computing efficiency and accuracy between Chi-FRBCS and Micro-EBRBS for multi-class datasets 
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EBRBS from 2-CV to 10-CV. Meanwhile, for the dataset 

Banknote, the Micro-EBRBS is slightly better than the Chi- 

FRBCS in terms of the computing time of inference scheme 

and the accuracy. But for the dataset Magic, the Chi-FRBCS is 

slightly better than the Micro-EBRBS regarding the computing 

time and accuracy. For the multi-class datasets Waveform and 

Satimage, apart from the computing time of rule generation 

scheme, the Micro-EBRBS is much better than the Chi-FRBCS 

in term of the computing time of the inference scheme and the 

accuracy. 

In order to show the detailed comparison of Micro-EBRBS 

and Chi-FRBCS, Tables VIII and IX provide the results and 

their ratio obtained from 10-CV, such as the rule generation 

time, inference time, total time, number of rules, number of 

activated rules, and accuracy. Table VIII shows that the Chi- 

FRBCS has less computing time than the Micro-EBRBS in 

terms of the rule generation scheme for both two and multi- 

class datasets and the inference scheme for two-class datasets. 

However, the Micro-EBRBS has less computing time of the 

inference scheme than the Chi-FRBCS in the multi-class 

datasets. As a result, the Chi-FRBCS has better total time and 

their ratio are 1.184 and 1.142 for the two-class datasets 

Banknote and Magic, and the Micro-EBRBS has better total 

time and their ratio are 0.626 and 0.141 for the multi-class 

datasets Waveform and Satimage. 

Table IX shows that the number of rules in the Chi-FRBCS is 

the same as the Micro-EBRBS, but the number of activated 

rules in the Chi-FRBCS is smaller than the Micro-EBRBS, 

where the maximum ratio is obtained from the multi-class 

dataset Waveform and its ratio is 3.307, and except for the 

dataset Magic, the accuracy of the Chi-FRBCS is worse than 

the Micro-EBRBS for all two and multi-class datasets, where 

the maximum ratio is obtained from the multi-class dataset 

Satimage and its ratio is 1.142. 

In order to compare the accuracy of the Micro-EBRBS with 

the conventional machine-learning classifiers, Table X shows 

the accuracy of seven classifiers for ten classification datasets. 

The number in brackets denotes the rank of each classifier and 

the best result is marked as bold in Table X. For the two-class 

datasets, the accuracy of the RF and ANN are better than the 

Micro-EBRBS ranked at the 3rd place, and are further better 

than the KNN, NB, DT, and SVM. For the multi-class dataset, 

TABLE VIII 

COMPARISON OF COMPUTING EFFICIENCY FOR MICRO-EBRBS AND CHI-FRBCS 

No. of  

classes 

Dataset Rule generation (ms) Ratio  Inference (ms) Ratio  Total (ms) Ratio 

Micro-EBRBS Chi-FRBCS  Micro-EBRBS Chi-FRBCS  Micro-EBRBS Chi-FRBCS 

Two-class Banknote 13.5 13.5 1.000  5.2 2.3 2.261  18.7 15.8 1.184 

 Magic 303.5 237.2 1.280  843.6 767.0 1.100  1,147.1 1,004.5 1.142 
Multi-class Waveform 496.7 414.8 1.197  3,542.1 6,034.2 0.587  4,038.8 6,449.0 0.626 

 Satimage 1,386.8 1,162.2 1.193  10,864.9 85,759.8 0.127  12,251.7 86,922.0 0.141 

 
TABLE IX 

COMPARISON OF ACCURACY AND NUMBER OF RULES AND ACTIVATED RULES FOR MICRO-EBRBS AND CHI-FRBC 

No. of 

classes 

Dataset No. of rules Ratio  No. of activated rules Ratio  Accuracy (%) Ratio 

Micro-EBRBS Chi-FRBCS  Micro-EBRBS Chi-FRBCS  Micro-EBRBS Chi-FRBCS 

Two-class Banknote 30.8 30.8 1.000  22.3 12.2 1.828  97.34 94.42 1.031 
 Magic 354.1 354.1 1.000  140.9 99.3 1.419  77.38 80.62 0.960 

Multi-class Waveform 2,032.7 2,031.9 1.000  1,494.2 451.9 3.307  83.97 74.66 1.125 

 Satimage 3,182.0 3,182.0 1.000  945.6 485.6 1.947  85.41 74.79 1.142 

 

TABLE X 

COMPARISON OF ACCURACY AND NUMBER OF RULES AND ACTIVATED RULES FOR MICRO-EBRBS AND CHI-FRBC 

No. of classes Dataset KNN NB DT RF ANN SVM Micro-EBRBS 

Two-class Diabetes 74.30% (6) 76.84% (4) 77.61% (3) 77.86% (2) 79.13% (1) 66.92% (7) 74.91% (5) 
 Cancer 94.02% (4) 93.15% (6) 93.32% (5) 95.61% (3) 96.31% (2) 62.74% (7) 96.49% (1) 

 Transfusion 76.20% (4) 75.40% (5) 78.34% (1) 72.33% (7) 76.34% (3) 75.27% (6) 76.52% (2) 

 Banknote 92.93% (5) 84.26% (7) 90.31% (6) 99.20% (2) 98.25% (3) 100.00% (1) 97.34% (4) 
 Magic 74.79% (5) 72.69% (6) 81.17% (3) 86.14% (1) 83.73% (2) 65.88% (7) 77.38% (4) 

 Average rank 4.8 5.6 3.6 3.0 2.2 5.6 3.2 

Multi-class Wine 97.19% (1.5) 96.63% (3) 92.13% (6) 94.38% (5) 97.19% (1.5) 44.38% (7) 95.84% (4) 
 Waveform 82.88% (4) 81.02% (5) 73.26% (7) 80.20% (6) 85.78% (2) 86.10% (1) 84.00% (3) 

 Glass 61.21% (5) 47.66% (6) 67.76% (3) 71.50% (1) 39.72% (7) 69.16% (2) 63.32% (4) 

 Red Wine 57.22% (5) 54.97% (7) 58.16% (3) 64.35% (1) 57.04% (6) 57.85% (4) 58.36% (2) 
 Satimage 74.34% (6) 79.70% (4) 79.63% (5) 88.94% (1) 86.28% (2) 26.08% (7) 85.41% (3) 

 Average rank 4.3 5.0 4.8 2.8 3.7 4.2 3.2 

 

TABLE XI 
FRIEDMAN AND HOLM TESTS TO COMPARE THE ACCURACY OF MICRO-EBRBS AND SIX MACHINE-LEARNING CLASSIFIERS ( =0.1) 

Item Indicator KNN  NB DT RF ANN SVM 

Two-class p value 0.2416 0.0790 0.7697 0.8836 0.4642 0.0790 
 Critical value 0.0250 0.0167 0.0500 0.1000 0.0333 0.0167 

 Hypothesis Accepted Accepted Accepted Accepted Accepted Accepted 

Multi-class p value 0.4208 0.1877 0.2416 0.7697 0.7144 0.4642 
 Critical value 0.0250 0.0167 0.020 0.1000 0.0500 0.0333 

 Hypothesis Accepted Accepted Accepted Accepted Accepted Accepted 
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the Micro-EBRBS can reach the second best average rank 

better than the KNN, DT, NB, ANN, and SVM. From Table X, 

RF obtains the best average rank in both two and multi-class 

datasets. This is partly because RF is an ensemble learning 

method that operates by constructing a multitude of DTs. 

Hence, in one sense, the ensemble learning used in the RF can 

also use to improve the Micro-EBRB. 

Table XI shows the statistical analysis of accuracy while the 

Micro-EBRBS is selected as the control method for the 

Friedman and Holm tests. From Table XI, all hypotheses 

regarding the six machine-learning classifiers are accepted, 

namely the Micro-EBRBS and the machine-learning classifiers 

have a similar accuracy for two and multi-class datasets without 

significant differences. 

In summary, for the comparison of the Micro-EBRBS and 

the conventional classifiers, the experiment results have proven 

that the Micro-EBRBS has the similar accuracies with the 

conventional FRBCS and the conventional machine-learning 

classifiers but its computing time is much less than the 

conventional FRBCS classifiers except for the Chi-FRBCS.  

It is worth noting that the Micro-EBRBS has the higher 

accuracy but less computing time than the Chi-FRBCS for 

multi-class datasets. 

D. Comparative analysis between Micro-EBRBS and big data 

FRBCS classifiers 

The third experiment aims to compare the accuracy and the 

computing efficiency of the Micro-EBRBS with the big data 

FRBCS classifiers, where the core supporting theory of the big 

data FRBCS classifiers is shown in Section IV-C and they 

include the following two versions [29]: 

(1) Chi-FRBCS-BigData-Max (Chi-Max for short): In this 

big data classifier, the rule generation scheme searches for the 

fuzzy rules with the same fuzzy label. Among these fuzzy rules, 

only the fuzzy rule with the highest rule weight is maintained in 

the fuzzy rule base. 

(2) Chi-FRBCS-BigData-Ave (Chi-Ave for short): In this 

big data classifier, the rule generation scheme also searches for 

the fuzzy rules with the same fuzzy label. Afterwards, the 

average rule weight of the fuzzy rules that have the same class 

is computed. Finally, the fuzzy rules with the greatest average 

rule weight is kept in the fuzzy rule base. 

Fig. 17 shows the computing time and the accuracy of the 

Micro-EBRBS in comparison with the big data FRBCS 

classifiers, including Chi-Max and Chi-Ave, over two-class and 

multi-class datasets, respectively. 

From Fig. 17, the Micro-EBRBS has the significantly better 

computing efficiency for the seven-class dataset Covtype and 

the ten-class dataset Poker, similar one for the three-class 
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Fig. 17. Comparison of computing efficiency and accuracy for Chi-Max, Chi-Ave, and Micro-EBRBS 
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dataset Gas sensors and worse one for the two-class dataset 

Census comparing to big data FRBCS classifiers. For the ten, 

seven, and three-class datasets, the computing efficiency 

differences between these classifiers diminish gradually from 4 

cores to 128 cores. Additionally, from the datasets Census and 

Gas sensors, while 128 cores are used in the cluster computing, 

the computing time is more than the result obtained from 64 

cores mainly because of the increasing cluster costs. So, 

determination of the number of cores is important to improve 

the computing efficiency of the Micro-EBRBS.  

From the comparison of accuracy, the Micro-EBRBS 

reflects a better robustness than the big data FRBCS classifiers 

because the accuracy is consistent for all two and multi-class 

datasets when varying the number of cores used in the cluster 

computing, but the accuracy of the big data FRBCS classifiers 

are changeable. Therefore, comparing to the big data FRBCS 

classifiers, the Micro-EBRBS is able to provide exactly the 

same classifier while implementing by the Apache Spark. More 

specifically, Table XII shows the value and ratio of the Micro- 

EBRBS, Chi-Max, and Chi-Ave under 4 cores, where the best 

result is marked as bold.  

In term of the computing time, the big data FRBCS 

classifiers have a slight advantage while addressing the two- 

class dataset Census and all ratios of rule generation, inference, 

and total time are less than 1.056. However, the computing time 

of the Micro-EBRBS is much better than both Chi-Max and 

Chi-Ave while increasing number of classes, i.e. ten-class 

dataset Poker whose ratios are all smaller than 0.1 for the rule 

generation, inference, and total time. In term of the accuracy, 

the Micro-EBRBS is better than the big data FRBCS classifiers 

and the range of the ratio can be expressed as [1.039, 1.176] for 

four datasets. 

Additionally, in order to detect significant differences among 

the accuracy of the Micro-EBRBS, Chi-Max, and Chi-Ave, the 

Friedman and Holm tests are carried out. Table XIII shows that 

two hypotheses are rejected because there are significant 

differences among the obtained results with a level of 

significance of  =0.1. Hence, in the datasets Census, Gas 

sensors, Covtype, and Poker, the accuracy of the Micro- 

EBRBS is better than that of the Chi-Max and Chi-Ave. 

In summary, according to the comparison of the Micro- 

EBRBS and the big data FRBCS classifiers, it is evident that 

the Micro-EBRBS has the advantage of using less computing 

time and obtaining better accuracy and robustness for the big 

data multi-class datasets. 

E. Time complexity Comparison 

In this subsection, a comparison of the Micro-EBRBS, 

EBRBS, and Chi-FRBCS is provided to show which one has a 

better time complexity to deal with big data multi-class 

classification problems. 

Suppose that there are L rules in EBRB (or sample data), L  

rules in the reduced EBRB, S testing data, M antecedent 

attribute with Ji reference values, and N classes. The time 

complexity of different schemes in the EBRBS, Micro-EBRBS, 

and Chi-FRBCS is shown in Table XIV based on discussions in 

Section II-B, Section III-C, and [29]. Additionally, in order to 

clearly compare three classifiers, their time complexity can be 

simplified under the assumptions: (1) the number of sample 

data L is much bigger than the square of the number of classes 

N2; and (2) the total number of reference values for antecedent 

attributes  

M

i i
J

1
is much bigger than the number of classes N. 

Remark 11. It is clear from Table XIV that the time 

complexity of the Micro-EBRBS is better than the EBRBS in 

both the rule generation and the inference schemes due to the 

following three reasons: 

(1) The Micro-EBRBS has a simple process in the rule 

generation scheme because of excluding the calculation of rule 

weights comparing to the EBRBS. 

(2) The Micro-EBRBS has less number of rules in the 

reduced EBRB owning to using the proposed rule reduction 

method to downsize the EBRB comparing to the EBRBS. 

(3) The Micro-EBRBS can be implemented by using the 

Apache Spark to generate rules and classify test input data in 

parallel thanks to the better performance of independence in the 

rule generation and the inference schemes 

Remark 12. It is clear from Table XIV that the Chi-FRBCS 

is more efficient than the Micro-EBRBS in the rule generation 

TABLE XII 

COMPARISON OF COMPUTING TIME AND ACCURACY FOR CHI-MAX, CHI-AVE AND MICRO-EBRBS UNDER FOUR CORES 

Indicator Classifier Census   Gas sensors  Covtype   Poker 

Value Ratio  Value Ratio  Value Ratio  Value Ratio 

Rule generation (ms) Micro-EBRBS 19,817 -  22,269 -  50,062 -  36,099 - 

Chi-Max 20,007 0.991  24,349 0.915  68,246 0.734  388,942 0.093 
Chi-Ave 18,759 1.056  23,000 0.968  67,656 0.740  376,419 0.096 

Inference (ms) Micro-EBRBS 199,324 -  12,879 -  129,858 -  1,818,235 - 

Chi-Max 191,375 1.042  17,845 0.722  8,310,398 0.016  141,730,759 0.013 
Chi-Ave 190,816 1.045  17,223 0.748  8,307,228 0.016  139,971,396 0.013 

Total (ms) Micro-EBRBS 219,141 -  35,148 -  179,920 -  1,854,334 - 

Chi-Max 211,382 1.037  42,194 0.833  8,378,644 0.022  142,119,701 0.013 
Chi-Ave 209,575 1.046  40,223 0.874  8,374,884  0.022  140,347,815 0.013 

Accuracy (%) Micro-EBRBS 89.69 -  48.60 -  70.24 -  57.20 - 

Chi-Max 86.34 1.039  41.34 1.176  65.19 1.078  52.79 1.084 
Chi-Ave 86.14 1.041  41.68 1.166  67.08 1.047  53.53 1.069 

 
 TABLE XIII 

FRIEDMAN AND HOLM TESTS TO COMPARE THE ACCURACY OF 

MICRO-EBRBS, CHI-MAX, AND CHI-AVE ( =0.1) 

Indicator Chi-Max Chi-Ave 

p value 0.0133 0.0771 

Critical value 0.05 0.1 
Hypothesis Rejected Rejected 
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scheme. However, the Micro-EBRBS is more efficient than the 

Chi-FRBCS in the inference scheme, especially for the multi- 

class classification problems. Additionally, the computing 

efficiency of both the two big data classifiers can be further 

improved by using the Apache Spark. 

V. CONCLUSIONS 

In this study, the analysis of the rule weight calculation and 

the ER algorithm were carried out to investigate the approach 

of reducing the time complexity of the EBRBS, a popular 

advanced rule-based system, followed by a ER-C algorithm and 

a domain division-based rule reduction method proposed for 

developing a micro version of EBRBS with high computing 

efficiency, called Micro-EBRBS. Furthermore, the Apache 

Spark was introduced to implement the Micro-EBRBS for 

better dealing with big data multi-class classification problems. 

14 classification datasets were used to validate the accuracy and 

computing efficiency of the Micro-EBRBS in comparison with 

the EBRBS, the conventional FRBCS and machine-learning 

classifiers, and the big data FRBCS classifiers. The detailed 

contributions are summarized as follows: 

(1) The non-necessity of the rule weight calculation and the 

ER algorithm involved in the EBRBS were investigated, in 

which the former demonstrates that it is unnecessary to 

calculate rule weights for each EBR under the assumption of 

large amount of data, the latter prove that the ER-C algorithm 

has the same functionality as the ER algorithm under the 

assumption of classification problems. 

(2) The division point and division domain were defined to 

divide the input space of the EBRBS into multiple local input 

spaces. Accordingly, the rule clustering strategy and rule 

reduction strategy were further defined to propose a domain 

division-based rule reduction method to downsize EBRB. 

(3) The Micro-EBRBS, which includes the rule reduction and 

the ER-C algorithm but excludes the rule weight calculation in 

comparison with the EBRBS, and its implementation based on 

the Apache Spark were developed to deal with big data multi- 

class classification problems, which were then validated 

through the detailed case studies. The results have shown 

advantages of the Micro-EBRBS over the existing methods in 

terms of computing efficiency and classification accuracy. 

For the future research, the application of Micro-EBRBS and 

further improvement to make it more effective to deal with the 

practical problem with uncertain and imbalance data. 

APPENDIX A. INFERENCE SCHEME OF EBRBS FOR 

CLASSIFICATION PROBLEMS 

The inference scheme of the EBRBS mainly includes two 

steps [22]: (1) calculation of activation weights for each EBR 

using distance measure and (2) integration of activated rules for 

estimating classes using the ER algorithm. 

One thing to note is that the procedure of the first step is the 

same as the Micro-EBRBS. Hence, the activation weight wk 

(k=1,…, L) can be obtained by using Eq. (23), which shows a 

positive correlation between the wk and rule weight k
 . After 

calculating activation weights, all activated rules should be 

integrated using the analytical ER algorithm [32], [37]: 
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The integrated belief distribution of the test input data x is: 

},...,1);,{()( NnDf
nn
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For classification problems, suppose Dn denotes the nth 

class, the estimated class of the EBRBS can be obtained by 

seeking the greatest belief degree. 

}{maxarg,)(
,..,1 iNin

nDf 

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(A3) 

APPENDIX B. BELIEF DISTRIBUTION GENERATION AND RULE 

WEIGHT CALCULATION OF EBRBS 

The belief distribution generation and the rule weight 

calculation are important processes in the rule generation 

scheme of the EBRBS and their details can be refer to [22]. 

One thing to note is that the detailed procedure of the belief 

distribution generation is the same as the Micro-EBRBS. 

Hence, for the kth (k=1,…, L) EBR, the belief distributions of 

the ith antecedent attribute 
k

iS ={(Ai,j, 
k

ji ,
 ); j= 1,…, Ji} 

(i=1,…, M) and the consequent attribute Sk={(Dn, kn,
 ); 

n=1,…, N} can be obtained by using Eqs. (16) and (19). 

Definition B.1 (Similarity of two belief distributions). 

Suppose two belief distribution P=(p1,…, pT) and Q=(q1,…, 

q3), then the similarity of P and Q can be calculated as follows: 

TABLE XIV 
TIME COMPLEXITY OF EBRBS, MICRO-EBRBS, AND CHI-FRBCS 
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where d(P, Q) denotes the distance between P and Q. 

Based on Definition B.1, for the kth (k=1,…, L) EBR, the 

similarity of rule antecedent (SRA) and the similarity of rule 

consequent (SRC) can be calculated as follows: 
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where l=1,…, L and l  k; Si
k denotes the belief distribution of 

the tth antecedent attribute in the kth EBR; Sk denotes the belief 

distribution of the consequent attribute in the kth EBR. 

Definition B.2 (Consistency of EBRs). Suppose the SRA 

and the SRC of the lth (l=1,…, L) and the kth (k=1,…, L; k  l) 

EBRs are SRA(Rl, Rk) and SRC(Rl, Rk), respectively, then the 

consistency of the rules Rl and Rk can be calculated as follows: 
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Based on Definition B.2, the inconsistency degree of the kth 

EBR can be calculated as follows: 
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Finally, the rule weight is calculated as follows: 
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APPENDIX C. RULE GENERATION AND INFERENCE SCHEMES OF 

CHI-FRBCS 

A. Time complexity of the rule generation scheme 

The rule generation scheme of the Chi-FRBCS, which 

consists of the PCF and OVO, is introduced as follows:
 As shown in the pseudocode of the rule generation scheme, 

the time complexity of calculating )(
t

x
ty  shown in the 5th 

line and updating the set FRB shown in the 8th to the 13th lines 

Pseudocode of rule generation scheme of the Chi-FRBCS 

Input: )(
t

x
ty  and )(

t
x

tyR  denote the membership degree and the fuzzy 

label set of the fuzzy rule which is transformed from the sample input data xt 
and the class yt, yt{D1,…, DN}; Classi,j(Rk) and wi,j(Rk) denote the class and 

the rule weight of the fuzzy rule Rk while considering the ith and the jth class 

as a two-class classification problem. 

Output: the set of fuzzy rules FRB 
01  Initialize FRB={}; 

02  For each sample input data xt in {x1,…,xL} 

03    Initialize 1)( 
t

x
ty  and {})( 

t
x

ty
R ; 

04    For each input data xt,i in xt={xt,1,…,xt,M} 

05      Calculate },...,1);(max{*)()(
,, iitAyy

Jjx
jiit

 
tt

xx ; 

06      Add )}({maxarg};{)()(
,,...,1, , itAJssiyy

xsARR
jiitt





tt

xx ; 

07    End for 

08    If k
R FRB and )(

t
x

tyk RR   then 

09      Update )()()(
t

x
ttt ykyky

RR   ; 

10    Else if )(
t

x
tyR FRB then 

11      Add )}({
t

xFRBFRB
ty

R ; 

12      Initialize )()(
t

x
tt yky

R   ; 

13    End if 

14  End for 
15  For each fuzzy rule Rk in FRB 

16    For each class Di and Dj (i < j) in {D1,…,DN} 

17      Initialize Classi,j(Rk)=Ds, s=arg maxn=i,j{ )(
kn

R }; 

18      Initialize ))()(()()()(, kjkikjkikji RRRRRw   ; 

19    End for 

20  End for 

 

 

Pseudocode of inference scheme of the Chi-FRBCS 

Input: Si,j(xt) denotes the score of test input data xt while considering the ith 
and the jth class as a two-class classification problem; )(

t
x  denotes the 

membership degree of the test input data xt; wi,j(Rk) denotes the rule weight of 
the fuzzy rule Rk while considering the ith and the jth class as a two-class 

classification problem. 

Output: The estimated class Class(xt) (t=1,…, S) 
01  For each test input data xt in {x1,…,xS} 

02    Initialize Si,j(xt)= 0 (i, j = 1,…,N) 

03      For each Di and Dj (i < j) in {D1,…,DN} 
04        For each fuzzy rule Rk in FRB  

05          Initialize 1)( 
t

x ; 

06            For each input data xt,m in xt={xt,1,…,xt,M} 

07              Calculate )(*)()(
,mtA

xk
m


tt

xx  ; 

08            End for 

09            If Classi,j(Rk)=Di and Si,j (xt)< )(*)(
, kji

Rw
t

x  then 

10              Calculate Si,j(xt)= )(*)(
, kjiy

Rw
t t

x ; 

11            Else if Classi,j(Rk)=Dj and S j,i (xt)< )(*)(
, kji

Rw
t

x  then 

12               Calculate Sj,i(xt)= )(*)(
, kji

Rw
t

x ; 

13            End if 

14         End for 

15    End for 

16    Calculate Class(xt)=Dn; n=arg maxi=1,…,N{ )(
1 , t

x 

N

j ji
S } 

17  End for 
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is )(
1 

M

i i
JO  and O( L ), respectively, for each sample data, 

where L  is the number of fuzzy rules. In addition, from the 

15th to the 20th lines, its time complexity is O(
2NL  ). As a 

result, the time complexity of the rule generation scheme 

involved in the Chi-FRBCS is shown as follows: 

))(( 2

1
NLLJLO

M

i i
  

                      

(C1)
 

B. Time complexity of the inference scheme 

The inference scheme of the Chi-FRBCS, which consists of 

the winning rule strategy and OVO, is introduced as follows: 

From the pseudocode of the rule generation scheme, the time 

complexity of calculating (xt) shown in the 7th line is O(M) 

for each test input data, fuzzy rule, and two-class classification 

problem. Hence, the time complexity of the inference scheme 

involved in the Chi-FRBCS is shown as follows: 

)( 2NMLSO 

                          

(C2)
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