
UN
CO

RR
EC

TE
D

PR
OO

F

Journal of Hazardous Materials xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

Journal of Hazardous Materials
journal homepage: www.elsevier.com

Inactivation of E. coli and E. faecalis by solar photo-Fenton with EDDS complex at
neutral pH in municipal wastewater effluents
Irene García-Fernándeza, Sara Miralles-Cuevas b, Isabel Ollera, c, Sixto Malato a, c, Pilar Fernández-Ibáñezd,
María Inmaculada Polo-Lópeza, c, ⁎

a Plataforma Solar de Almería-CIEMAT, P.O. Box 22, 04200 Tabernas, Almería, Spain
b Laboratorio de Investigaciones Medioambientales de Zonas Áridas (LIMZA), EUDIM, Universidad de Tarapacá. Av. General Velásquez 1775, Arica, Chile
c CIESOL, Joint Centre University of Almería-CIEMAT, Almería, Spain
d Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Newtownabbey, Northern Ireland BT37 0QB, United Kingdom

A R T I C L E I N F O

Keywords:
Escherichia coli
Enterococcus faecalis
Fe3+EDDS
Photo-Fenton
Wastewater disinfection

A B S T R A C T

Photo-Fenton is a solar disinfection technology widely demonstrated to be effective to inactivate microorgan-
isms in water by the combined effect of photoactivated iron species and the direct action of solar photons.
Nevertheless, the precipitation of iron as ferric hydroxide at basic pH is the main disadvantage of this process.
Thus, challenge in photo-Fenton is looking for alternatives to iron salts. Polycarboxylic acids, such as Ethylendi-
amine-N‘,N‘-disuccinic acid (EDDS), can form strong complex with Fe3+ and enhance the dissolution of iron in
natural water through photochemical process. The aim of this study was to evaluate the disinfection effectiveness
of solar photo-Fenton with and without EDDS in water. Several reagent concentrations were assessed, best bacte-
rial (Escherichia coli and Enterococcus faecalis) inactivation was obtained with 0.1:0.2:0.3mM (Fe3+:EDDS:H2O2)
within isotonic water. The benefit of using EDDS complexes to increase the efficiency of kept dissolved iron in
water at basic pH was proved. Solar disinfection and H2O2/solar with and without EDDS, and Fe-EDDS com-
plexes were also investigated. Bacterial inactivation results in municipal wastewater effluents (MWWE) demon-
strated that the competitive role of organic matter and inorganic compounds strongly affect the efficacy of
Fe:EDDS at all concentrations tested, obtaining the faster inactivation kinetics with H2O2/solar (0.3mM).

1. Introduction

Water purification is one of the greatest challenges of the 21st cen-
tury due to water scarcity, reduction of ground water source by chem-
ical and biological pollution and the increased water human’s demand.
To address it, the reuse of wastewater appears as a possible solution
for activities like irrigation, industrial applications, domestic and en-
vironmental uses. Currently, reuse of treated wastewater is increasing
in countries like Australia, Spain, Italy, USA (California and Florida),
etc., following their own guidelines and regulations [1–3]. Water reuse
offers a climate independent water source, locally-managed, and gen-
erally beneficial to the environment. This water strategy balances in-
creasing population growth, dry climates and the high irrigation/agri-
cultural demands. Additionally, water reuse may reduce the nutrient

loads from wastewater discharges into waterways, therefore reducing
and preventing pollution [3].

Nevertheless, the presence of pollutants (chemical and biological)
in wastewater effluents make the treatment of secondary effluents nec-
essary before being reused. In line with this, Advanced Oxidation
Processes (AOPs) have become innovative and successful wastewater
treatments for both, decontamination and disinfection, with the advan-
tage that they can be driven by either artificial or solar UV energy
[4]. The efficiency of these treatments lies on the generation of hy-
droxyl radicals (HO ). Amongst solar driven-AOPs, photo-Fenton has
shown high efficiency in removing chemical pollutants and waterborne
pathogens from water resources. It consists on a number of catalytic re-
actions involving iron salt, hydrogen peroxide (H2O2) and electromag-
netic radiation (λ>580nm) generating HO mainly by the following
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reactions [5]:

(1)

(2)

Regarding photo-Fenton’s efficiency, pH is one of the most critical
parameters since the formation of photoactive iron complexes is highly
dependant on water pH. Optimal pH is equal to 2.8; at this pH no
iron precipitation occurs, and dominant iron species present in water
(Fe(OH)) 2+ are the lightest active hydroxycomplex species [6]. Water
treatment at pH 2.8 requires acidification and neutralization as pre- and
post-treatment, respectively with the corresponding reagents consump-
tion. Moreover, acid pH values are toxic for microorganisms and envi-
ronment, therefore the current challenge of this solar technique is to ac-
complish a good disinfection performance of photo-Fenton at near neu-
tral pH [6,7].

In this scenario, research has been focused on the use of iron com-
plexes. It is known that polycarboxylates, including citrate, malonate
and oxalate, can form strong complex with Fe3+ and enhance the disso-
lution of iron in natural water through photochemical process [8–10].
Besides polycarbxylates, aminopolycarboxylic acids (APCAs) may pre-
sent a similar behavior. Amongst the APCAs, EDTA (ethilendiaminete-
tracetic acid) has been widely used as Fe3+ complexing to neutral pH
conditions since EDTA forms a chelated soluble complex. However, it
is considered as a contaminant due to its low biodegradability and
its application has been limited. Ethylendiamine-N‘,N‘-disuccinic acid
(EDDS), has been reported as a good candidate to form Fe chelated sol-
uble complex and it is safe to environment and biodegradable [9,10].
EDDS is a structural isomer of EDTA, it exists in three stereo isomers
(S,S)-EDDS, (R,R)-EDDS and (R,S/S,R)-EDDS, being (S,S)-EDDS readily
biodegradable [11]. The EDDS complex keeps Fe3+ in solution, thus it
is active for the process. Irradiated solutions of Fe3+-EDDS generate HO

according to the following reactions [12]:

(3)

(4)

(5)

Furthermore, other Reactive Oxygen Species (ROS), such as O2
− and HO2 , are generated due to the iron and aminopolycarboxylic
acid complex reactions in the presence of oxygen [8,13]:

(6)

(7)

The benefits of using EDDS complex in photo-Fenton for water and
wastewater decontamination have been reported in literature [13–17].
It has been described that EDDS complex increases the efficiency of
photo-Fenton compared with traditional iron salts due to the fact that
complexation between iron and EDDS favors the solubility and reactiv-
ity of iron at neutral pH. The Fe:EDDS complex quantum yield of HO
(ФHO ) generation in the range of pH 3–8 was investigated by Li et al.
[9]. These authors reported that the ФHO increased when raising water
pH from 0.0025 (pH 3) to 0.069 (pH 9) for a concentration of 10−4 M
Fe-EDDS at λ=365nm [9].

Nevertheless, according to Giannakis et al. [6,7], up to date,
photo-Fenton application for wastewater disinfection has not been
deeply in

vestigated. First contribution by Klamerth et al. [18] reported data re-
garding removal of micro-pollutants and total coliforms present in real
wastewater effluents under natural sunlight using EDDS complex. Re-
cently, it has been reported in literature that the complex Fe(III)-EDDS
show a dual role on water disinfection, i.e., it benefits the generation of
radical species at neutral pH but also acts as a trap for these same radi-
cals, highlighting also that the concentration of Fe(III)-EDDS complex is
a key parameter for the inactivation of microorganisms in water [19].

The aim of this study was to evaluate the effect of EDDS-complex in
the efficiency of photo-Fenton treatment conducted by solar radiation in
comparison with the traditional photo-Fenton at near-neutral pH. The
effect of several concentrations of Fe:EDDS and H2O2 on the inactivation
efficiency of E. coli and E. faecalis as well as the effect of pH in isotonic
water have been evaluated. Boundary treatments of photo-Fenton such
as solar light, H2O2/solar irradiation, Fe3+/solar irradiation with and
without the presence of EDDS have been also investigated. In addition,
the efficiency of the use of EDDS complex in MWWE for water disinfec-
tion has been also investigated at several reagent´s concentration.

2. Materials and methods

2.1. Water source

Isotonic water (IW), i.e, demineralized water with 0.9% of NaCl was
used as water model without the interference of other chemical com-
pounds (organic and inorganic). IW main characteristics: pH ~ 6, con-
ductivity < 10µS/cm, Cl− = 0.7-0.8mg/L, NO3

− =0.5mg/L and dis-
solved organic carbon (DOC) < 0.5mg/L.

Secondary effluent from the Municipal Wastewater Treatment Plant
(MWWE) of “El Bobar” (Almería, Southeast of Spain) was also used.
Several batches were daily collected. Its main characteristics were: pH
~7.5, conductivity 1500 μS/cm, turbidity 8–16 NTU, DOC 15–30mg/L,
E. coli concentration ca. 2.5×103 CFU/mL and E. faecalis 1.0×102 CFU/
mL. DOC were measured by direct injection of filtered samples with
0.2µm Nylon filter into TOC-VCSN (Shimadzu), turbidity was measured
with a turbidimeter (Model 2100N, Hach, USA), and pH with WTW
probe (Germany, series multi 720).

2.2. Bacterial strains enumeration and quantification

Escherichia coli K-12 (Gram-negative bacteria) (ATCC 23631) and En-
terococcus faecalis (Gram-positive bacteria) (CECT 5143) were used as
bacterial models and spiked in IW experiments. Enumeration-quantifi-
cation method used to attain an initial bacterial concentration of ~106

CFU/mL has been described previously [19,20]. The samples taken dur-
ing IW experiment were enumerated using the standard plated count-
ing method through a serial 10 fold dilutions in Phosphate Buffer Solu-
tion (PBS) and volumes of 20µL were plated in triplicate on Luria agar
supplemented with Sodium duodecil sulphate or Slanetz Bartley agar
(Scharlau®, Spain) for E. coli or E. faecalis, respectively. Colonies were
counted after incubation of 24–48h at 37°C. Detection Limit (DL) was
4 CFU/mL. In MWWE, a selective and differential agar for naturally oc-
curring bacterial enumeration was used: Chromocult® Coliform Agar
(Merck KGaA, Germany) and Slanetz Bartley agar for E. coli and E. fae-
calis, respectively. Plate counting technique spreading 50-250-500μL of
sample was used, reaching a DL of 2 CFU/mL. After 24h (at 44°C) and
48h (at 37°C), colonies of E. coli and E. faecalis were counted.
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2.3. Reagents

Hydrogen peroxide (H2O2, 35% w/v, Riedel-de Häen, Germany) at
concentrations of 0.15 and 0.30mM were used according to previ-
ous work [20]. H2O2 concentration was followed by spectrophotometry
(PG instruments Ltd T-60-U) according to DIN (38409 H15), based on
the formation of a yellow complex from the reaction of titanium (IV)
oxysulfate with H2O2 at 410nm. Ferric sulfate (Fe2(SO4)3·H2O) (Pan-
reac, Spain) was used as iron source. Iron concentration was deter-
mined by spectrophotometry at 510nm according to ISO 6332. Eth-
ylendiamine-N‘,N‘-disuccinic acid (EDDS: C10H16N2O8, Aldrich, USA)
was used to complex iron. The concentrations tested were 0.05, 0.2
and 0.3mM according to previous work [16,17,19]. The DOC contri-
butions to the water by EDDS were 6, 24 and 36mg/L, respectively.
NaOH (J.T.Baker, Holland) was used for pH adjustment. Bovine catalase
(Sigma) (0.1g/L) was added to the samples (20µL of catalase for 1mL
of sample) to remove residual H2O2 [19].

2.4. Solar experiments

Solar experiments were done with 250-mL DURAN-glass (Schott,
Germany) vessel reactors magnetically stirred at 100rpm [20]. UV-A
transmission (borosilicate glass) was 90% (cut-off at 280nm). Total ir-
radiate volume was 0.2L and illuminated surface 0.0095 m2. All experi-
ments were carried out at Plataforma Solar de Almería (Almería, Spain)
in triplicate under completely sunny conditions. The Fe:EDDS solution
was daily prepared before each solar disinfection experiment according
to previous works [16–19]. It consists on dissolving Fe2(SO4)3·H2O in
water at pH3, adding a determined volume of a EDDS solution and ho-
mogenizing the suspension for 15min in dark. Concentration of EDDS
solution and iron were added according to the reagent concentration re-
quired in each case. After that, the complex formed was directly diluted
in the reactor to achieve the required initial concentration. Reagents
and microbial suspensions were added in the dark to the solar reac-
tor. Temperature, pH, H2O2 and iron were measured periodically. When
H2O2 concentration was below 0.03mM, additional H2O2 dosing (sim-
ilar to the initial one) was added to avoid limitation by lack of H2O2.
pH was 6 or 8 for photo-Fenton and Fe:EDDS assays. In IW experiments,
E. coli and E. faecalis were spiked in the water and determined simulta-
neously. All initial samples were kept in the dark at room temperature
and re-plated at the end of the experiment as control sample to guaran-
tee strain good quality (no concentration decrease). In MWWE experi-
ments, naturally occurring E. coli and E. faecalis were also investigated
simultaneously. pH was natural (~7.5). Water samples were taken every
15min, adding catalase and analyzing as described above. Dark tests
using the same operational conditions as solar treatments were done
to discard toxicity effect over pathogens viability. Regrowth counts of
pathogens were determined for all the experiments by leaving the last
two samples at room temperature for 24 and 48h. Results were analyzed
through one-way ANOVA (P<0.05, Origin v7.03, OriginLab Corp., 30
Northampton, USA), reporting a 95% confidence level for the average
colony concentration error.

2.5. Solar radiation

UV radiation was measured with a global UV-A pyranometer which
provides data in terms of incident W/m2 and was plotted as QUV (accu-
mulated UV energy per unit of volume of treated water (kJ/L) received
in the photoreactor in a given time). This factor allows normalizing the

energy available for the photocatalytic reaction under natural sunlight
according to Eq. (8):

(8)

Where QUV,n, QUV,n-1 is the UV energy accumulated per unit volume
(kJ/L) at times n and n-1, respectively, UVG,n is the average incident ir-
radiation on the irradiated area, Δtn is the experimental time of sample,
Ar is the illuminated area of the bottle reactor (m2), and Vt is the total
volume of treated water (L).

2.6. Kinetics

All experimental data from disinfection tests were fitted according to
the following kinetics models: 1) A log-linear according to the Chick´s
law (Eq. (9)). 2) An initial delay or very smooth decay at the beginning
(‘shoulder’), attributed to lose of cells viability after the accumulation of
oxidative damages during the process, followed by a log-linear decrease
(Eq. (10)) [21]. 3) A double log-linear kinetics (Eq. (11)), with a first
stage very fast (k1>k2) inactivation and a second phase of attenuated in-
activation (k2) [22]. 4) A log-linear region followed by a ‘tail’ (Eq. (12))
which represents the bacterial population remaining at the end of the
experiment [21]. Kinetic parameters obtained for the different equation
are comparable, as all results were obtained under the same operational
conditions (reactor, illumination, protocols, etc.).

(9)

(10)

(11)

(12)

Where N/N0 is the bacteria concentration reductions, ki is the dis-
infection kinetic rate and t is the time of treatment, Nres is the residual
population density, and SL= Shoulder length (min−1).

3. Results and discusion

Dark experiments were done in IW and MWWE under the same op-
erational conditions of solar experiments as 'control of microorganism’s
viability'. Results showed no toxicity for any pathogens investigated
since microbial viability remained constant for 5h of treatment time
(data not shown). Temperature was monitored in all experiments and it
never exceeded 35°C, therefore thermal inactivation can be discarded.
In addition, no regrowth of bacteria was observed when pathogen con-
centration reached DL.
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3.1. Isotonic water (IW)

3.1.1. Solar disinfection, solar/H2O2, solar/H2O2:EDDS and Fe3+:EDDS
Prior to evaluate the efficiency of solar photo-Fenton with EDDS

complex, a series of solar processes were performed in order to analyze
the individual effect of all the reagents involved in this process on each
bacterium, which is determinant for a further explanation of the inacti-
vation mechanisms. Inactivation of E. coli and E. faecalis under natural
sunlight in IW is shown in Fig. 1a, b, respectively. Experiments in pres-
ence of EDDS were carried out at 0.2mM (24mg/L of DOC). A similar
DOC concentration was added to solar disinfection experiments and so-
lar/H2O2 without EDDS using urea, peptone and meet extract as source
of organic matter in order to disregard any effect related with the addi-
tion of biodegradable organics.

Total inactivation (DL=4 CFU/mL) by solar disinfection was only
obtained in the case of E. coli (6 log reduction) with 14.5kJ/L of QUV.
The concentration of E. faecalis only decreased 4 log.

Inactivation kinetics results with H2O2/solar (0.3mM of H2O2) and
H2O2:EDDS/solar (0.3mM of H2O2 and 0.2mM of EDDS) showed a com-
plete bacterial removal in both cases. pH was ~ 6 and 8 for EDDS ab-
sence and presence, respectively. The higher bacterial inactivation rate
was obtained in H2O2/solar, where both E. coli and E. faecalis reached
DL with 3.1kJ/L of QUV. The addition of EDDS showed a significant re-
duction on both bacterial inactivation, with 4.8 and 10.3kJ/L of QUV,
respectively to reach DL. H2O2 concentration was reduced during the
treatments to 0.048mM and 0.081mM with and without EDDS, respec-
tively.

The inactivation efficiency of solar/Fe3+:EDDS complex at concen-
tration of 0.1:0.2mM were also investigated at pH 6 and pH 8. E.
coli reached DL at both pHs, requiring lower accumulated energy at
pH 6 (6.5kJ/L) compared to pH 8 (10.7kJ/L). E. faecalis inactivation
showed the same-trend, achieving a better result at pH 6 (6 log reduc-
tion with 13.4kJ/L of QUV) than at pH 8 where we only observed a re-
duction of 2 log with 16.2kJ/L of QUV. Iron measured during the solar

Fig. 1. E. coli (a) and E. faecalis (b) inactivation kinetics versus QUV under natural sunlight in IW by several solar processes: solar disinfection, solar/H2O2, solar/H2O2:EDDS and solar/
Fe3+:EDDS.
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treatments showed that at time 0min (T0), dissolved iron was 0.1mM.
At T90, dissolved Fe at pH 6 remained unchanged (0.1mM) while at pH
8, Fe in solution decreased 5-fold till 0.02mM.

3.1.2. Solar photo-Fenton with EDDS complex (Fe3+:EDDS:H2O2)
Fig. 2 shows the efficiency of solar photo-Fenton with EDDS to inac-

tivate E. coli and E. faecalis with several reagent concentrations at pH 6
and pH 8. In general, bacterial inactivation kinetics did not show signif-
icant differences between all reagents concentrations tested, being the
best results at pH 6. Comparing both bacteria, best inactivation rate
was achieved with different reagent´s concentration (Fe3+:EDDS:H2O2),
i.e., 0.1:0.2:0.3 for E. coli and 0.05:0.05:0.15=0.1:0.2:0.3 for E. fae-
calis, respectively. Considering the simultaneous bacterial inactivation,
we can conclude that 0.1:0.2:0.3 is the best reagent concentration in

order to inactivate both pathogens: E. coli (Fig. 2a) achieved DL with
3.5kJ/L of QUV and E. faecalis (Fig. 2b) required 11.9kJ/L of QUV to ob-
tain total inactivation at pH 6.

Table 1 shows the iron and H2O2 concentration measured during the
solar treatments. Dissolved iron was kept longer in solution at pH 6 than
at pH 8 in all cases. The best inactivation ratio was found at 0.1:0.2:0.3
of Fe3+:EDDS:H2O2, where dissolved Fe was kept for 150min of treat-
ment.

3.2. Municipal wastewater effluent (MWWE)

3.2.1. Solar disinfection, solar H2O2 and H2O2:EDDS
Fig. 3 shows pathogens inactivation results by solar disinfection,

H2O2/solar with H2O2 0.15 and 0.3mM carried out in MWWE with and

Fig. 2. E. coli (a) and E. faecalis (b) inactivation kinetics versus QUV under natural sunlight in IW by photo-Fenton using Fe3+:EDDS:H2O2 at several reagent concentrations and pH.

5



UN
CO

RR
EC

TE
D

PR
OO

F

I. García-Fernández et al. Journal of Hazardous Materials xxx (2018) xxx-xxx

Table 1
Dissolved iron and H2O2 (mM) measured during the photo-disinfection experiments in IW and MWWE.

Fe:EDDS:H2O2 (mM) Figure pH Dissolved Fe (T 0) (mM) Time at which Fe is not detectable (min) Consumed H 2O2 (mM)

Isotonic water
0.05:0.05:0.15 2 6.0 0.053 90 0.256

8.0 0.043 60 0.275
0.1:0.2:0.3 2 6.0 0.100 150 0.425

8.0 0.100 120 0.398
0.1:0.3:0.3 2 6.0 0.084 120 0.478

8.0 0.091 100 0.435
0.2:0.2:0.3 2 6.0 0.181 150 0.601

8.0 0.155 60 0.405
Municipal Wastewater Effluent
0.05:0.05:0.15 4 7.3 0.044 30 0.290
0.05:0.15 * 7.5 0 0 0.150
0.1:0.2:0.3 4 7.6 0.066 30 1.070
0.1:0.3 * 7.3 0 0 0.590
0.2:0.2:0.3 4 7.3 0.17 100 0.880
0.2:0.3 * 7.5 0 0 0.280

* Corresponding Fe:H2O2 concentration, without EDDS.

Fig. 3. E. coli (a) and E. faecalis (b) inactivation kinetics versus QUV in MWWE under natural solar radiation by several solar processes: solar disinfection, solar/H2O2 and solar/H2O2:EDDS.
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without EDDS. In all cases, the addition of H2O2 benefits the treat-
ment compared to solar disinfection. The best inactivation results for
E. coli (Fig. 3a) were obtained with 0.3mM of H2O2, reaching DL with
10.4kJ/L of QUV. The addition of 0.2mM of EDDS enhanced the in-
activation kinetics for both H2O2 concentrations: 7.0kJ/L and 9.6kJ/
L of QUV were needed to achieve DL at 0.3:0.2mM and 0.15:0.2mM
of H2O2:EDDS, respectively. Complete removal of E. faecalis to DL was
obtained in all cases, obtaining the best results with 0.3:0.2mM of
H2O2:EDDS (19.3kJ/L of QUV) (Fig. 3b), followed by 20.3kJ/L of QUV for
0.3mM of H2O2. Solar/H2O2 at 0.15mM also reaches DL but with more
accumulated energy, 26.6kJ/L, and 23.2kJ/L when EDDS was used.

3.2.2. Solar photo-Fenton and solar Fe3+:EDDS:H2O2
Inactivation of E. coli and E. faecalis by photo-Fenton with and with-

out EDDS complex is shown in Fig. 4a and b, respectively. These ex-
periments were done at natural pH (~7.5), and several reagent con-
centrations were tested. Results showed that the use of EDDS did not
enhance the inactivation kinetics as traditional photo-Fenton does. To-
tal removal of E. coli was observed in all cases (Fig. 4a). The best con-
centration tested was 0.1:0.3mM of Fe:H2O2 where DL was reached
with 8.2kJ/L of QUV whereas the same concentration in the presence of
EDDS, required 10.2kJ/L. For E. faecalis inactivation (Fig. 4b), the best
inactivation was also found with 0.1:0.3mM of Fe:H2O2 where DL was
reached with 23kJ/L of QUV. The only case in which DL was reached
using EDDS was 0.1:0.2:0.3mM with 29kJ/L. Table 1 shows the dis-
solved iron measured during photo-Fenton treatments with and with

Fig. 4. E. coli (a), E. faecalis (b) inactivation kinetics versus QUV under natural sunlight by photo-Fenton with and without EDDS complex in MWWE.
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out complex. We can observe that concentration was 0 from the begin-
ning of the experiments in traditional solar photo-Fenton. In the pres-
ence of EDDS, dissolved iron was kept in dissolution for at least 30min
of solar treatment.

4. Discussion

The efficiency of photo-Fenton with EDDS at pH 6 and pH 8 was in-
vestigated, and results showed that inactivation efficiency was higher at
pH 6. Under solar radiation, Fe3+:EDDS is photolysed and Fe3+ is trans-
formed to Fe2+ (Eq. (3)). This reaction occurs faster at pH 8 than at
pH 6 according to higher ФHO . Once Fe2+ is formed, it can react with
i) EDDS again (Eq. (13)) or ii) H2O2 (Eq. (1)). After the decomplexa-
tion of Fe:EDDS, the photo-Fenton efficiency will depend on the species
of Fe3+/Fe2+ formed in the water. It is well known that the most re-
active species of iron in water are found at pH 3, whereas at pH 8 al-
most all iron is precipitated. So, in spite of the higher ФHO found at
pH 8, it seems that the quick loss of iron at this alkaline pH due to
Fe3+:EDDS destruction, determines that pathogen inactivation efficien-
cies by photo-Fenton with EDDS are worst at pH 8 than at pH 6. This ef-
fect is observed in Table 1, where Fe decreases significantly more at pH
8 than at pH 6. Most of the decomplexation of Fe-EDDS was produced
in less than 90min. Decomplexation may explain the E. faecalis inacti-
vation profile observed in case of 0.2:0.2:0.3mM at pH 8 in IW, where
after 15kJ/L of QUV and 60min. of treatment time, dissolved iron mea-
sured was negligible and the bacteria concentration remained stable. In
literature, influence of pH on removal of micropollutants by EDDS has
reported similar results, determining that pH ranged 5–6 is more bene-
ficial than alkaline water pHs (7–9) [10,13].

Different reagent concentrations were tested in IW in order to find
out the best combination of Fe, EDDS and H2O2 for water disinfec-
tion purpose. Best inactivation was found at concentration ratio of 1:2
of Fe:EDDS, which coincides with previous findings regarding microp-
ollutant removals and coliforms inactivation in MWWE [18,16]. The
increase of EDDS concentration in the reagents ratio investigated in
IW (0.3mM) permits keeping iron in solution even at pH 8. However,
this concentration did not show a better result than 0.2mM. This ef-
fect may be due to the fact that EDDS could act as competitor for HO
, since HO formed during photolysis of the complex could also re-

act with Fe3+:EDDS. This competition is favored in this case, where
EDDS concentration is 3-fold higher than iron. This behavior has been
described in regards with chemical pollutants degradation by several
authors [9,10,13,15,23]. Lowering the EDDS concentration to 0.05mM
(0.05:0.05:0.15mM Fe:EDDS:H2O2) also showed a lower inactivation ki-
netics than the optimal (0.1:0.2:0.3mM), demonstrating that the last ra-
tio is the optimum one for the work conditions used to test bacterial in-
activation.

Regarding to iron concentration, we must highlight that 0.1mM
was the best option, since when increasing to 0.2mM or lowering
to 0.05mM, the inactivation efficiency was reduced in both IW and
MWWE. This coincides with results reported regarding microcontami-
nants removal [9], but also, recently, Bianco et al., 2017 reported about
E. faecalis inactivation with FE(III)EDDS in water. In this work, they
concluded that 0.1mM of Fe:EDDS (ratio 1:1) determined best inac-
tivation kinetic compared to 0.5 and 1mM [19]. In fact, increasing
iron concentration could generate a higher iron precipitation, giving a
brown colour to the water and producing suspended particles that may

scatter the solar radiation inside the tube, which eventually protected
bacteria against solar photons [19,24]. In addition, it has been previ-
ously described that for a 6cm photo-reactor diameter, >0.1mM of iron
could impede radiation by reaching the centre of the photo-reactor, and
therefore reducing the efficiency of disinfection.

In general, both the investigated bacteria were completely inacti-
vated (DL reached) by all solar processes in IW. Nevertheless, the in-
activation mechanisms may be attributed to the damage accumulation
produced by several pathways acting simultaneously; briefly described
as follow:

i) Solar disinfection: Photoinactivation of microorganisms under nat-
ural sunlight is well known. It is produced by the accumulation of
DNA mutation provoked by intracellular HO formed due to UVA
radiation and the action of other Reactive Oxygen Species (ROS)
such as 1O2, O2

− and H2O2 generated and accumulated during solar
exposure. In addition, it is also reported inactivation of enzymatic
defense like catalase and superoxide dismutase [25–27].

ii) Fe3+:EDDS: when the complex is under sunlight, it is cleaving to
generate EDDS and Fe2+ (Eq. (3)) [12]. In this manner, iron re-
mains dissolved longer than in the absence of a complexing agent.
Thus, iron decomplexes gradually, permitting the generation of HO
, responsible of microorganisms’ inactivation. After the first pho-

tochemical reaction in which EDDS was oxidized and Fe3+ was re-
duced to Fe2+, this Fe2+ could oxidize again into Fe3+ if EDDS
was present in the medium giving Fe3+:EDDS complex again (Eqs.
(3)–(5)). Therefore, HO radicals for disinfection are produced dur-
ing this process [9]. Moreover, additional mechanisms can happen
when iron is released from the complex, including external HO
generation by Eqs. (1) and (2) [4]; and internal damages produced
by the exciplexes generated in dissolved Fe3+ (little amount remain-
ing due to the high pH) on bacterial membrane and the diffusion
of Fe2+ into the cell, favoring the HO generation via intracellular
Fenton reaction, and its reaction with intracellular H2O2 [28].

iii) H2O2 and H2O2:EDDS: The bacterial inactivation by addition of
H2O2 has been widely described in literature [20,29,30]. It could be
due to the combined effect of solar disinfection with the increase
of intracellular H2O2 concentration by free diffusion of H2O2 into
the cell since it is a stable and uncharged molecule. Once into the
cells, H2O2 reacts with internal free iron or iron incorporated into
enzymes or storage in proteins naturally present in cells generat-
ing HO by Fenton-Haber-Weiss cycle reactions. Although EDDS can
generate HO radicals by Eq. (5), this way seems to not be signifi-
cant in this process as their presence doesn’t help the inactivation
process. EDDS may react with H2O2, scavenging it (Eq. (14)). This
reaction may slow down the diffusion of H2O2 into the cell, reduc-
ing, therefore, the bacterial inactivation kinetics as it was observed
in E. coli and E. faecalis (Fig. 3), compared with the bacterial inacti-
vation by solar/H2O2 without EDDS.

iv) Fe:H2O2 and Fe:EDDS:H2O2: The mechanisms of pathogens inactiva-
tion through traditional solar photo-Fenton are produced by the si-
multaneous action of the HO generated by Eqs. (1) and (2) attack-
ing pathogen membranes [31] and the damage generated by ROS
formed due to the action of solar UVA and the diffusion of iron and
H2O2 into the cell (internal photo-Fenton reactions) [32,33]. When
EDDS is used for iron complexation, the same Fenton-like reactions
explain the HO radicals formation, being analogous to those oc-
curred from free Fe3+ ion with H2O2 (Eqs. (13) and (14)) [14]:
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(13)

(14)

In general, E. faecalis has shown a higher resistance to be inactivated
than E. coli in all experimental conditions investigated herein and in
both water matrixes evaluated. This behavior has been widely observed
in literature [7], and it has been mainly attributed to the different ar-
chitectures of the cytoplasmic membranes. It is well known that the cell
wall of E. faecalis (Gram-positive) is thicker than E. coli (Gram-nega-
tive), which determines, as it has been reported in solar photocatalytic
processes, a higher resistance to be inactivated [7,24].

On the other hand, comparing inactivation results in MWWE and IW,
lower inactivation kinetics were obtained in MWWE in all treatments,
which may be attributed to a reduced catalytic activity by: i) inorganic
species like bicarbonates, [34]; ii) water turbidity (average > 11 NTU)
screening sunlight, iii) DOC naturally present in MWWE that competes
with microbial cells by HO [33] and iv) additional contribution to DOC
by EDDS, which may compete with microbial cells for generated HO
and its reaction with H2O2 consuming it (Eq. (14)).

Finally, comparing the inactivation kinetics of both bacteria in all
treatments investigated, we observed that the process solar/H2O2 with
0.3mM determined the higher inactivation rate in MWWE (Table 2). In-
activation kinetics with traditional photo-Fenton showed smaller treat-
ment efficiency since Fe dissolved was almost zero even before the solar
exposure (Table 1). Therefore, the observed inactivation cannot be con-
sidered for a photo-Fenton treatment. In this case, inactivation mecha-
nisms are mainly due to the action of H2O2. Even more, in some cases,
the inactivation kinetics observed in photo-Fenton were lower com-
pared to H2O2/solar treatment which could be due to i) light scattering
effect generated by the colour of the water acquired when iron is pre-
cipitated (at basic pH) and ii) the screen effect of the particles formed in
the water, especially in MWWE which could protect pathogens from so-
lar light action. In literature it is reported that the photolysis of Fe:EDDS
is higher in lake water than in IW due to the presence (and reaction)
of fulvic and humic acids [35]. Therefore, the photo-degradation of the
complex in MWWE could be done at higher rate generating more HO

by Eqs. (3)–(5). In addition, further investigations of the competitive
role of organic matter naturally present in MWWE must to be addressed
in order to determine its influence on efficiency of EDDS complex for
water disinfection.

5. Conclusions

Inactivation results reflect that the use of EDDS improve solar disin-
fection, even with resistant microorganisms as E. faecalis.

For all solar photo-Fenton concentrations, inactivation kinetics were
faster at pH 6 than at pH 8, mainly due to iron precipitation, obtaining

Table 2
Microorganism’s inactivation rates (k) versus treatment time (minutes) obtained during solar disinfection process in IW and MWWE.

E. coli E. faecalis

k1 (min−1) R1
2

SL
(min.) DL

Model
# k1 (min−1) R1

2
SL
(min.) DL

Model
#

TREATMENT ISOTONIC WATER
SODIS 0.054±0.013 0.951 60 Y 2 0.020±0.002 0.989 120 N 2
Complex pH6 0.098±0.008 0.989 15 Y 2 0.049±0.004 0.990 45 Y 2
Complex pH8 0.055±0.005 0.982 15 Y 2 0.010±0.001 0.968 – N 1
0.3 H2O2 0.096±0.021 0.976 Y 1 0.093±0.049 0.886 Y 1
0.3H2O2/0.2EDDS 0.117±0.016 0.982 15 Y 2 0.076±0.011 0.981 60 Y 2
0.05:0.05:0.15
pH6

0.081±0.013 0.965 – Y 1 0.031±0.005 0.974 – Y 1

0.05:0.05:0.15
pH8

0.059±0.005 0.983 – Y 1 0.028±0.010 0.898 – Y 1

0.1:0.2:0.3 pH6 0.137±0.032 0.949 – Y 1 0.036±0.003 0.988 15 Y 2
0.1:0.2:0.3 pH8 0.073±0.008 0.978 15 Y 2 0.041±0.010 0.947 90 Y 2
0.1:0.3:0.3 pH6 0.056±0.004 0.984 – Y 1 0.028±0.003 0.966 – Y 1
0.1:0.3:0.3 pH8 0.046±0.004 0.982 – Y 1 0.031±0.003 0.973 30 Y 2
0.2:0.2:0.3 pH6 0.130±0.025 0.964 – Y 1 0.025±0.001 0.996 – Y 1
0.2:0.2:0.3 pH8 0.128±0.023 0.971 – Y 1 0.025±0.003 0.975 – N 4

MWWE
SODIS 0.012±0.001 0.987 – Y 1 0.008±0.000 0.995 – N 1
0.3 H2O2 0.032±0.007 0.951 – Y 1 0.011±0.001 0.977 – Y 1
0.3 H2O2/0.2EDDS 0.031±0.005 0.970 – Y 1 0.010±0.001 0.976 – Y 1
0.15 H2O2 0.021±0.003 0.959 – Y 1 0.010±0.000 0.992 – Y 1
0.15
H2O2/0.2EDDS

0.026±0.006 0.937 – Y 1 0.008±0.000 0.994 – Y 1

0.05:0.05:0.15 0.018±0.002 0.976 75 Y 2 0.004±0.000 0.969 – Y 1
0.1:0.2:0.3 0.024±0.002 0.985 – Y 1 0.010±0.001 0.958 30 N 2
0.2:0.2:0.3 0.006±0.001 0.918 – Y 3 0.002±0.000 0.978 – N 1
0.05:0.15 0.016±0.004 0.953 – Y 1 0.008±0.001 0.982 – Y 1
0.1:0.3 0.026±0.003 0.977 – Y 1 0.006±0.001 0.909 – Y 1
0.2:0.3 0.016±0.002 0.980 – Y 1 0.006±0.001 0.986 – N 1

# Model: 1 (Log lin); 2 (Shoulder-Log); 3 (Log lin-Log lin); 4 (Log-Tail).
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best inactivation kinetic at concentration of 01:0.2:0.3mM of
Fe3+:EDDS:H2O2.

It has been proved that H2O2/solar is a good and efficient alternative
to disinfect water, especially in MWWE.

In MWWE, photo-Fenton disinfection’s efficiency was not enhanced
by the presence of EDDS even though iron keeps in solution longer. Ef-
fect of different organic and inorganic components of MWWE should be
investigated in detail in order to understand better the effect each of
them has and clarify which are detrimental and which beneficial for the
process.
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