
 1

New	Fast	and	Area-Efficient	Pipeline	3-D	DCT	Architectures	
	

Saad	Al-Azawia,	Omar	Niboucheb,	Said	Boussaktac,	Gaye	Lightbodyd	
a	College	of	Engineering,	Diyala	University,	Diyala,	Iraq;	b,d	Faculty	of	Computing	and	Engineering,	Ulster	University,	

UK;	c	School	of	Engineering,	Newcastle	University,	UK	
asaad.alazawi@engineering.uodiyala.edu.iq,	bo.nibouche@ulster.ac.uk,	csaid.boussakta@newcastle.ac.uk,	

dg.lightbody@ulster.ac.uk	
	

Abstract	
The	efficient	 implementation	of	 3-D	 transforms	 is	 a	 challenging	 task	due	 to	 the	 computation	 complexity,	memory	 and	 area	
requirements	of	such	transforms.	One	important	3-D	transform	is	the	3-D	Discrete	Cosine	Transform	(3-D	DCT)	used	in	many	
image	and	video	processing	systems.	In	this	paper,	two	new	pipeline	architectures	for	the	3-D	DCT	computation	using	the	3-D	
DCT	Vector-Radix	algorithm	(3-D	DCT	VR)	are	presented.	These	architectures	are	scalable	and	parameterisable	with	regards	to	
different	wordlengths	and	pipelining	levels.	Their	arithmetic	component	requirements	are	reduced	to	the	order	of	!(#$%&')	in	
contrast	with	!(')	for	3-D	DCT	architectures	in	the	literature,	while	at	the	same	time	they	can	keep	similar	or	better	area-time	
complexity.	
	
Key	words:	3-D	Discrete	Cosine	Transform	(DCT),	Row-Column	(RC),	Row-Column-Frame	(RCF),	Vector-Radix,	FPGA	

	
1.	Introduction	

Transforms	 such	 as	 the	 Fourier	 Transform	 (FT)	 [1-5],	
Wavelet	Transform	(WT)	[6-9],	and	Cosine	Transform	(CT)	[10-
14]	play	a	critical	part	in	various	Digital	Signal	Processing	(DSP)	
applications,	including	audio,	image	and	video	systems.	Much	
of	 the	 usefulness	 of	 these	 transforms	 arises	 from	 their	
frequency	and	time-frequency	representations	and	properties	
including	 the	 decorrelation	 property,	 energy	 compactness,	
and	 the	availability	of	 fast	algorithms	 for	 their	 computation.	
Nevertheless,	even	the	fast	algorithms	that	implement	these	
transforms	are	still	very	computationally	intensive.	Thus,	these	
transforms	can	become	a	bottleneck	in	terms	of	the	system’s	
speed,	and	contribute	greatly	to	their	area	usage	and	power	
consumption	[1-3,	6-8,	10-19].	For	its	role	in	many	image	and	
video	 applications,	 including	 the	 JPEG,	 MPEGx	 and	 H.26x	
compression	standards,	the	DCT	has	received	a	great	deal	of	
research	 interest	 [20-24];	 the	 1-D	 and	2-D	DCT	 are	now	 the	
established	 transforms	 for	many	applications	and	 standards.	
Further,	there	are	many	new	and	emerging	applications	for	the	
3-D	 DCT,	 including	 visual	 tracking,	 video	 coding	 and	
watermarking	[25-29].		

Numerous	 1-D	 and	 2-D	 DCT	 architectures	 have	 been	
suggested	in	the	literature	[30-39].	Exploiting	the	separability	
principle	of	the	transform,	2-D	DCT	cores	based	on	the	1-D	DCT	
Row-Column	(RC)	approach	are	suggested	in	[33-36];	yet	very	
few	architectures	 that	 implement	 the	3-D	DCT	can	be	 found	
[38-45].	Traditionally,	the	3-D	DCT	has	been	implemented	by	
cascading	 stages	 of	 the	 1-D	DCT	 as	 in	 the	well-known	 Row-
Column-Frame	 (RCF)	 approach.	 Noteworthy	 differences	
between	 architectures	 in	 the	 literature	 are	 their	 level	 of	
parallelisation	 in	 terms	 of	 the	 number	 of	 stages	 and	 the	
number	 of	 1-DCT	 cores	 per	 stage,	 which	 leads	 to	 different	
trade-offs	 between	 circuit	 complexity	 and	 throughput.	 One	
common	 architecture	 employs	 three	 stages	 of	 one	 1-D	 DCT	
core	 and	 N3+N2–word	 transpose	 memory	 [40-42].	
Parallelisation	can	be	applied	 to	 the	 first	 two	1-D	DCT	cores	

which	in	fact	implements	a	2-D	DCT	transform,	leading	to	the	
utilisation	 of	 2N+1	 1-D	 DCT	 processors	 and	 N3+N-word	
memory	[41,	42].	Another	class	of	the	3-D	DCT	architectures	
multiplexes	 the	 1-D	 DCT	 transforms	 involved	 in	 its	
computation	onto	a	single	1-D	DCT	architecture.	Such	a	class	
of	 architecture	 requires	 N3-word	 memory	 [41,	 42].	 The	
reduction	achieved	in	hardware	utilisation	comes	at	the	cost	
of	a	lower	throughput.	Using	three	1-DCT	cores	to	implement	
the	 3-D	DCT	 achieves	 a	 throughput	 three	 times	 higher	 than	
when	employing	a	single	1-D	DCT	processor.	The	throughput	is	
N-fold	augmented	via	parallelisation	of	the	1-D	DCT	processors	
[42].	The	1-D	DCT	cores	employed	in	the	3-D	DCT	architecture	
can	use	the	transform’s	fast	algorithm,	distributed	arithmetic	
or	ROM	based	designs	[38].	Such	architectures	exhibit	irregular	
structures,	 lack	of	modularity,	and	complex	control.	Another	
class	of	 the	3-D	DCT	architecture	relies	solely	on	the	systolic	
approach	with	its	well	established	design	methodology	[43].	In	
[44,	 46],	 high	 speed	 and	 low	 complexity	 pipeline	 n-D	 DCT	
architectures	 are	 proposed	 using	 the	 regular	 1-D	 DCT	 and	
tensor	 product	 operations.	 The	 proposed	 architectures	 are	
based	on	the	1-D	and	2-D	DCT	architectures	in	[47].	

In	 this	paper,	 two	new	pipeline	and	scalable	architectures	
that	 implement	 the	 3-D	 Discrete	 Cosine	 Transform	 Vector-
Radix	 (3-D	 DCT	 VR)	 are	 introduced.	 The	 presented	
architectures	are	parameterisable	in	terms	of	wordlength	and	
pipeline	 stages.	 Further,	 no	 block	 memory	 is	 used	 for	 data	
transposition.	 These	 architectures	 have	 been	 implemented	
and	tested;	for	instance,	an	FPGA-based	implementation	of	a	
512×512×8-word	data	using	a	transform	length	of	8×8×8-word	
cube	 size	 and	 a	 14-bit	 wordlength	 has	 achieved	 a	 working	
frequency	of	330	MHz	and	a	processing	time	of	6.4	ms.	Thus,	
80000	frames	can	be	processed	in	every	second.	

The	 remainder	 of	 this	 paper	 is	 organised	 as	 follows.	 In	
section	2,	the	background	of	the	DCT	transform	and	3-D	DCT	
VR	algorithm	are	provided.	Sections	3,	4	and	5	present	the	two	
new	 architectures	 for	 3-D	 DCT	 computation.	 The	 results	

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287023313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

obtained	are	discussed	in	section	6	and	conclusions	are	given	
in	section	7.	

	
2.	Background	and	the	3-D	DCT	VR	Algorithm	

The	 3-D	 DCT	 coefficients	 of	 a	 N×N×N	 data	 cube	 are	
computed	as	follows:	
	
) *+, *&, *-

=
801+01&01-

'-
	 3 4+, 4&, 4-

56+

789:

56+

7;9:

56+

7<9:

		cos
@

2'
24+

+ 1 *+ cos
@

2'
24& + 1 *& cos

@

2'
24- + 1 *- 	

																																																																																																										(1)	
where	ki	and	ni		=0,	1,	2,	….	N-1,		i=1,2,3	and			

01D =

+

&
,					E$F	*D = 0		

1,							$HℎJFKLMJ			

						

	
Equation	(1)	represents	the	definition	of	the	3-D	DCT;	as	the	

3-D	 DCT	 is	 a	 separable	 transform,	 it	 can	 be	 computed	 by	
applying	 the	N-point	 1-D	DCT	 algorithm	 to	 the	 row,	 column	
and	 frame	 directions	 [25].	 As	 such,	 the	 computation	
complexity	of	the	3-D	DCT	RCF	algorithm	is	3'&-time	that	of	

the	 1-D	 DCT	 algorithm.	 Further,	 it	 requires	
-

&
'
-
#$%&'	

multiplication	 and	
N

&
'
-
#$%&' − 3'

-
+ 3'

&	 addition	

operations	 [25,	 48,	 49].	 However,	 it	 has	 been	 shown	 that	 a	
further	 reduction	 of	 the	 computation	 requirement	 can	 be	
achieved	by	using	the	3-D	DCT	VR	referred	to	as	3-D	DCT-II	VR	
[25,	48].	With	such	a	VR	algorithm,	a	saving	of	more	than	40%	
of	 the	 total	 number	of	multiplication	operations	 is	 achieved		
the	 number	 of	 multiplication	 operations	 is	 reduced	 to	
Q

R
'
-
#$%&'	operations	while	 the	number	of	additions	 is	kept	

the	same	when	compared	with	the	familiar	RCF	approach.	
The	3-D	DCT	VR	algorithm	includes	four	computation	steps;	

namely	 data	 reordering,	 a	 butterfly	 calculation	 unit	 that	
comprises	 #$%&'	 butterfly	 stages,	 bit-reverse	 ordering	 and	
post	 addition,	 as	 illustrated	 in	 Figure	 1.	 The	 algorithm	
partitions	the	input	into	cubes	of	N×N×N	points,	where	N	is	a	
power	of	two.	Each	data	cube	is	rearranged	according	to	the	
index	mapping	of	equation	(2)	as	follows:	

	

where	 4D = 0, 1, … ,
5

&
− 1	 ,	 i=1,	 2,3,	 and	 signal	 3	 is	 the	

reordered	version	of	the	original	input	3.	

The	 subsequent	 computation	 stage	 of	 the	 3-D	 DCT	 VR	
algorithm	is	the	butterfly	computation.	The	reordered	data	3	
is	inserted	in	(1)	to	produce:	
	

) *+, *&, *- =
801+01&01-

'-
	 3 4+, 4&, 4-

56+

789:

56+

7;9:

56+

7<9:

×	cos ∅+*+ cos ∅&*& cos ∅-*- 	
 (3)	

where	∅D =
V

&5
44D + 1 	and	i=1,2,3.

	
By	 considering	 even	 and	odd	 indices,	 the	3-D	DCT	 can	be	

computed	as	follows:	
	

) 2*+ + L, 2*& + X, 2*- + #

= 	 3DYZ 4+, 4&, 4-

[

789:

[

7;9:

[

7<9:

×\$M ∅+ 2*+ + L \$M ∅& 2*+

+ X 	\$M ∅- 2*+ + # 	
			(4)	

where	 ijl=[000,001,010,011,100,101,110,111],] = '
2
− 1	

and:	
	

3DYZ 4+, 4&, 4- = 3 4+, 4&, 4- + −1
Z
3 4+, 4&, 4- +

7

&
+

−1
Y
3 4+, 4& +

7

&
, 4- + −1

Y^Z
3 4+, 4& +

7

&
, 4- +

7

&
+

−1
D
3 4+ +

7

&
, 4&, 4- + −1

D^Z
3 4+ +

7

&
, 4&, 4- +

7

&
+

−1
D^Y
3 4+ +

7

&
, 4& +

7

&
, 4- + −1

D^Y^Z
3 4+ +

7

&
, 4& +

7

&
, 4- +

7

&
		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 			(5)	

	
If	*+,	*&	and	*-	are	even	then	(5)	can	be	rewritten	as:	

) 2*+, 2*&, 2*- =

	 3::: 4+, 4&, 4-

[

789:

[

7;9:

[

7<9:

		

× \$M 2∅D*D 	

-

D9+

	

(6)	

	

⎣

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎡
3c(4+, 4&, 4-)

3c(4+, 4&, ' − 4- − 1)

3c(4+, ' − 4& − 1, 4-)

3c(4+, ' − 4& − 1,' − 4- − 1)

3c(' − 4+ − 1, 4&, 4-)

3c(' − 4+ − 1, 4&, ' − 4- − 1)

3c(' − 4+ − 1,' − 4& − 1, 4-)

3c(' − 4+ − 1,' − 4& − 1,' − 4- − 1)⎦

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎤

					 =

⎣

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎡
3(24+, 24&, 24-)

3(24+, 24&, 24- + 1)

3(24+, 24& + 1,24-)

3(24+, 24& + 1, 24- + 1)

3(24+ + 1, 4&, 4-)

3(24+ + 1, 4&, 24- + 1)

3(24+ + 1, 24& + 1, 4-)

3(24+ + 1, 24& + 1, 24- + 1)⎦

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎤

		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 				(2)

 3

For	the	remaining	combinations	of	odd/even	indices	*+,	*&	and	
*-,	 one	 can	 divide	 the	 computation	 of	 the	 transform	 as	
follows:	

The	 set	 of	 equations	 (6)-(13)	 represents	 a	 single	 butterfly	
computation	of	a	Decimation	In	Frequency	(DIF)	VR	algorithm	
as	shown	in	Figure	2.	It	computes	eight	points;	a	butterfly	can	
receive	 a	N×N×N	 data	 cube	 at	 its	 input	 and	 outputs	 8	 data	
cubes	 of	 N/2×N/2×N/2-word	 each;	 the	 process	 can	 be	

repeated	 until	
5
8

R
	data	 cubes	 of	 2×	 2×	 2-word	 each	 are	

computed.	 Thus,	 the	 flow	 graph	 of	 the	 whole	 butterfly	

computation	consists	of	#$%&'	stages	with	
5
8

R
	butterflies	per	

stage	[25].	The	output	from	the	last	butterfly	stage	is	fed	to	the	
post	addition	stages	then	it	is	bit-reversed.	The	post	addition	
operations,	 shown	by	 the	 terms	outside	braces	 in	 the	 set	of	
equations	 (6)-(13),	 are	 then	 carried	 out.	 Further	 to	 the	

)(2*+, 2*&, 2*- + 1) = gh h h [23c::+(4+, 4&, 4-) cos ∅-]

[

789:

[

7;9:

[

7<9:

×k\$M(2∅D*D)	

-

D9+

l 	−)(2*+, 2*&, 2*- − 1)	

(7)	

)(2*+, 2*& + 1, 2*-) = gh h h [23c:+:(4+, 4&, 4-) cos ∅&]

[

789:

[

7;9:

[

7<9:

×k\$M(2∅D*D)

-

D9+

l −)(2*+, 2*& − 1, 2*-)

(8)	

)(2*+ + 1, 2*&, 2*-) = gh h h [23c+::(4+, 4&, 4-) cos ∅+]

[

789:

[

7;9:

[

7<9:

×k\$M(2∅D*D)

-

D9+

l −)(2*+ − 1, 2*&, 2*-)	

(9)	
)(2*+, 2*& + 1, 2*- + 1)

= gh h h[43c:++(4+, 4&, 4-) cos ∅& cos ∅-]

[

789:

[

7;9:

[

7<9:

×k\$M(2∅D*D)

-

D9+

l −)(2*+, 2*& − 1, 2*- + 1)

−)(2*+, 2*& + 1, 2*- − 1) −)(2*+, 2*& − 1, 2*- − 1)	
			(10)	

)(2*+ + 1, 2*&, 2*- + 1)

= gh h h[43c+:+(4+, 4&, 4-) cos ∅+ cos ∅-]

[

789:

[

7;9:

[

7<9:

×k\$M(2∅D*D)

-

D9+

l −)(2*+ − 1, 2*&, 2*- + 1)

−)(2*+ + 1, 2*&, 2*- − 1) −)(2*+ − 1, 2*&, 2*- − 1)
				(11)	

)(2*+ + 1, 2*& + 1, 2*-)

= gh h h[43c++:(4+, 4&, 4-) cos ∅+ cos ∅&]

[

789:

[

7;9:

[

7<9:

×k\$M(2∅D*D)

-

D9+

l −)(2*+ − 1, 2*& + 1, 2*-)

−)(2*+ + 1, 2*& − 1, 2*-) −)(2*+ − 1, 2*& − 1, 2*-)	
				(12)	

)(2*+ + 1, 2*& + 1, 2*- + 1)

= gh h h[83c+++(4+, 4&, 4-) cos ∅+ cos ∅& cos ∅-]

[

789:

[

7;9:

[

7<9:

×k\$M(2∅D*D)

-

D9+

l

−)(2*+ + 1, 2*& + 1, 2*- − 1) −)(2*+ + 1, 2*& − 1, 2*- + 1) −)(2*+ + 1, 2*& − 1, 2*- − 1)

−)(2*+ − 1, 2*& + 1, 2*- + 1) −)(2*+ − 1, 2*& + 1, 2*- − 1) −)(2*+ − 1, 2*& − 1, 2*- + 1)

−)(2*+ − 1, 2*& − 1, 2*- − 1)	
																																																																																																																																																																																																																	(13)	

Figure	1.	Block	diagram	of	the	3-D	DCT	VR	algorithm.

 4

reduction	in	arithmetic	complexity	and	processing	time,	the	3-
D	DCT	VR	algorithm	does	not	require	transpose	memory	and	
exhibits	a	regular	butterfly	structure	which	is	more	suitable	for	
hardware	 and	 software	 implementation	 than	 the	 RCF	
approach.	Further	details	about	the	3-D	DCT	VR	algorithm	can	
be	found	in	[25].	

	
3.	New	3-D	DCT	Vector	Radix	Architectures	

Two	 new	 architectures	 are	 presented;	 namely	 the	 Single	
Path	 Data	 Flow	 3-D	 DCT	 Architecture	 (SPDFA)	 and	 the	Dual	
Path	Data	Flow	3-D	DCT	Architecture	(DPDFA).	The	difference	
between	them	lies	in	the	number	of	words	fed	to	the	adjacent	
butterfly	 and	 how	 the	 arithmetic	 operations	 are	 scheduled	
within	each	butterfly	 stage;	 this	has	 led	 to	 the	derivation	of	
two	 structures	 with	 different	 hardware	 requirements.	 Both	
architectures	are	built	according	to	the	generic	block	diagram	
of	 Figure	 1.	 The	 butterfly	 calculation	 consists	 of	 #$%&'	
parameterised	and	scalable	stages	as	described	by	the	set	of	
equations	 (6)-(13)	 and	 illustrated	 in	 Figure	 2.	 The	 data	
reordering	 is	 common	 to	 both	 SPDFA	 and	DPDFA,	 however,	
the	internal	architecture	of	the	butterfly,	post-addition	stages	
and	 the	 3-D	 Bit	 Reverse	 Ordering	 (3-D	 BRO)	 stage	 are	
architecture-dependent.	 Of	 the	 two	 presented	 structures,	
SPDFA	 exhibits	 a	 single	 line	 of	 data	 between	 neighbouring	
butterfly	 stages.	 It	 is	 more	 efficient	 in	 memory	 usage	 as	
intermediate	 results	 are	 fed	 back	 to	 memory	 elements;	
however,	 using	 these	 feedback	 loops	 prevents	 any	 further	
pipelining.	 DPDFA	 is	 a	 dual-path	 data	 flow	 feed-forward	
architecture.	 There	 are	 two	 data	 lines	 between	 adjacent	
butterflies	 and	 further	 pipelining	 is	 a	 simple	 task;	 the	
architecture	however	requires	more	memory	than	SPDFA.	

The	 presented	 architectures	 both	 partition	 the	 input	
sequence	into	cubes	of	N×N×N-word	or	N-blocks	of	N×N-word.	
The	 input	data	 is	 reordered	according	 to	 (2).	The	 reordering	
process	is	performed	by	shuffling	words	along	the	row,	column	
and	 frame	 dimensions.	 It	 includes	 dividing	 data	 into	 odd-
indexed	and	even-indexed	words	and	retrograde	indexing.	As	

an	example,	for	N	indices	arranged	as	“0,	1,	2,	3,	4,	5,	6,	…	N-
1”,	the	reordered	sequence	will	be	“0,	2,	4,	6,	…,	N-2,	N-1,	N-3,	
N-5,	…..,	1“.	This	stage	is	implemented	using	a	dual	port	block	
RAM	 which	 permits	 writing	 and	 reading	 operations	 to	 be	
performed	on	different	locations	during	the	same	cycle.	Thus,	
for	 an	N×N×N-word	 cube,	 the	memory	 size	 required	 for	 the	

reordering	operation	is	
5

&
+ 1 '

&–word	with	a	latency	of		
5
8

&
	

cycles	 as	 only	writing	 operations	 are	 carried	 out	 during	 this	
period.	

	
4.	Single	Path	Data	Flow	3-D	DCT	Architecture	

SPDFA	 is	 composed	 of	 a	 3-D	 reordering	 stage,	 #$%&(')	
butterfly	computation	stages,	 three	post	addition	sub-stages	
and	a	3-D	Bit	Reverse	Order	(3-D	BRO)	stage.	

	
4.1	Butterfly	Stages	

The	reordered	data	from	the	3-D	reordering	stage	is	fed	to	
the	butterfly	stages	at	a	rate	of	one	word	per	clock	cycle.	As	
shown	in	Figure	3,	#$%&'	butterfly	stages	(m=1,	2,	3,..,	#$%&')	
are	used.	Each	butterfly	stage	can	be	further	divided	into three	
sub-stages	and	a	multiplier	as	shown	in	Figure	4.	A	sub-stage	
consists	 of	 two	 add/subtract	 elements	 for	 carrying	 out	
addition	and	subtraction	operations	between	the	two	halves	
of	each	 input	along	 the	 three	dimensions	of	data,	 a	 register	
and	 a	 switch.	 The	 multiplier	 is	 used	 to	 multiply	 the	 output	

Figure	2.	Single	butterfly	of	the	3-D	DCT	DIF	VR	algorithm

 5

words	 by	 appropriate	 Twiddle	 Factors	 (TFs)	 which	 are	 pre-
computed	and	stored	in	a	look	up	table	(LUT).		

For	 the	 sake	 of	 explaining,	 the	words	3 4+, 4&, 4- 	 at	 the	
input	 of	 the	 first	 butterfly	 stage	 can	 be	 indexed	 as	 3 4+ +

4&×' + 4-×'
& .	 The	 first	 sub-stage	 performs	 addition	 and	

subtraction	between	the	two	halves	of	the	input	data	cube;	the	

first	 half	 contains	 words	 indexed	 from	 0	to	
5
8

&
− 1	 and	 the	

second	part	the	words	with	indices	from	
5
8

&
	H$	'

-
− 1.	During	

the	first	
5
8

&
	clock	cycles,	the	first	part	of	the	data	is	stored	in	

Register	1	(of	length	
5
8

&
-word)	before	being	fed	to	adders	along	

with	 the	 input	data	 from	the	second	half	during	 the	next	
5
8

&
	

cycles.	During	this	period,	the	subtraction	operation	results	are	
stored	 in	Register	1	while	the	addition	results	are	 fed	to	the	
next	 sub	 stage.	Once	 this	 is	 completed,	 it	 is	 the	 turn	 of	 the	
subtraction	results	stored	 in	Register	1	 to	be	fed	to	the	next	
sub-stage.	The	selection	of	which	part	of	the	data	to	be	stored	
in	Register	1,	fed	to	the	adders	or	fed	to	the	next	sub-stage	is	
managed	by	the	control	signal	of	Switch	1,	which	changes	its	

value	every	
5
8

&
	cycles.	

What	 the	 first	 sub-stage	carries	out	on	cubes	of	data,	 the	
second	 sub-stage	 performs	 it	 on	 blocks	 of	N×N-word	 of	 the	
same	data	cube.	Omitting	changes	along	4-,	each	block	is	again	
divided	into	two	halves;	one	half	includes	indices	4+ + 4&×'	

from	0	H$	
5
;

&
− 1	while	the	second	half	includes	words	of	the	

same	block	with	indices	from	
5
;

&
	H$	'

&
− 1.	The	behaviour	of	

the	 second	 sub-stage	 is	 similar	 to	 the	 first	 one;	 except	 that	

Register	2	 is	of	 length	
5
;

&
-word	and	the	period	of	the	control	

signal	for	Switch	2	is	'&	cycles	with	a	duty	cycle	of	50%.		
The	 third	 sub-stage	 implements	 addition	 and	 subtraction	

between	 the	 two	halves	of	each	column	 in	each	block	using	

Register	3	(of	length	
5

&
-word).	Omitting	changes	of	4-	and	4&,	

the	data	in	each	column	is	divided	into	two	halves	with	indices	

ranging	from	0	H$	
5

&
− 1	and	from	

5

&
	H$	' − 1.		The	words	of	

the	first	half	of	the	column	are	stored	in	Register	3,	they	are	
then	 fed	 to	 the	adders	along	with	 the	column’s	second	half.		
The	 results	 of	 the	 addition	 operation	 are	 multiplied	 by	 the	
appropriate	 TFs.	 After	 which,	 the	 results	 of	 the	 subtraction	
operation	which	were	first	stored	in	Register	3	are	fed	to	the	
multiplier	 for	 the	 multiplication	 by	 the	 TFs.	 The	 multiplier	
output	is	input	to	the	next	butterfly	stage.	As	with	sub-stages	
1	 and	 2,	 Switch	 3	 multiplexes	 data	 and	 its	 control	 signal	 is	

periodic	and	changes	its	value	every	
5

&
	cycles.	

In	 the	general	case	of	 the	mth	butterfly	stage,	data	 is	 split	

into	 2-u6-	 cubes	 of	
v

&wx<

-

	 words;	 the	 first	 butterfly	 sub-

stage	 is	 used	 to	 perform	 the	 addition	 and	 subtraction	
operations	between	the	two	halves	of	each	input	data	cube;	

the	 words	 involved	 are	 indexed	 from	0	to	
5
8

&y
− 1	 and	 from	

5
8

&y
	to	

5
8

&yx<
.	During	the	first	

5
8

&y
	cycles,	the	data	cube’s	first	half	

is	stored	in	Register	1;	in	the	next	
5
8

&y
	cycles,	the	addition	and	

subtraction	operations	take	place;	the	results	of	the	addition	
operation	are	fed	to	the	adjacent	butterfly	sub-stage	while	the	
results	of	the	subtraction	operations	are	stored	in	Register	1	

before	 being	 fed	 to	 the	 adjacent	 sub-stage	 in	 the	 next	
5
8

&y
	

cycles.	In	a	similar	way	and	with	an	appropriate	switching,	the	
second	and	third	butterfly	sub-stages	implement	the	addition	
and	 subtraction	 operations	 between	 the	 first	 and	 second	
halves	 of	 the	 data	 blocks	 and	 columns,	 respectively.	 The	

lengths	of	registers,	Register	2	and	Register	3,	is	
5
;

&y
-word	and	

5

&y
-word,	 respectively,	 which	 allows	 for	 storing	 half	 of	 each	

block	 and	 column	of	data	 as	 appropriate.	 The	multiplication	
operation	 by	 a	 twiddle	 factor	 (TF)	 takes	 place	 once	 all	
arithmetic	operations	of	sub-stage	3	have	been	carried	out.	

	

Butterfly
Stage	log2N
(m=log2N)

Butterfly
Stage	2
(m=2)

Butterfly
Stage	1
(m=1)

Reordered	
data

Out

	
	

Figure	3.	The	block	diagram	of	butterfly	stages	

	

+

-

N3/2m

Switch	1

Register	1

+

-

N2/2m

Switch	2

Register	2

+

-

N/2m

Switch	3

Register	3

×	

Sub-stage	1 Sub-stage	2 Sub-stage	3

in out
TF

	
Figure	4.	SPDFA	mth	butterfly	internal	architecture	

	

a.

-
Register 1 -

Mux 1

PIn

P
Register 2

Register 3

-
Mux 2

P
Register 4

-
Mux 3

2P
Out

Post addition
Sub-stage 1

P=N

Post addition
Sub-stage 2

P=1

Post addition
Sub-stage 3

P=N2
3-D BROIn Out

b.
	

Figure	5.	a.	A	parameterised	post	addition	sub-	stage	for	SPDFA.	b.	A	post	
addition	stage	and	3-D	BRO	

4.2	Post	Addition	and	3-D	BRO	Stages	

The	 third	 part	 of	 SPDFA	 is	 the	 post	 addition	 stage	 which	
performs	 the	 computation	 of	 the	 terms	 outside	 the	 curly	
brackets	 in	 (6)-(13).	 Reflecting	 the	 three	 dimensions	 of	 the	
input	data,	the	post	addition	stage	can	be	divided	into	three	
sub-stages;	 each	 sub-stage	 carries	 out	 addition	 operations	
over	 a	 given	 dimension.	 In	 the	 first,	 second	 and	 third	 post	
addition	 sub-stage,	 the	 addition	 operations	 are	 carried	 out	
within	 the	 same	 N×N-word	 block,	 the	 same	 column	 or	 the	

 6

same	 data	 cube;	 respectively.	 Hence,	 the	 length	 of	 the	
registers,	used	 in	Figure	5	and	 labelled	as	parameter	P,	may	
vary.	 Still	 the	 internal	 architecture	 of	 each	 sub-stage	 is	
identically	the	same.		

The	output	of	the	third	post	addition	stage	is	fed	to	the	3-D	
BRO	 stage	 which	 performs	 data	 reordering	 as	 the	 fast	
algorithm	used	 introduces	a	bit	 reversal	permutation	on	 the	
binary	 indices	of	 the	 results.	Bit	 reversal	 is	 performed	along	
each	row,	column	and	frame	directions	in	each	N×N×N-word	
data	 cube	 using	 a	 regular	 bit	 reversal	 algorithm	 [25].	 The	
output	from	this	stage	represents	the	3-D	DCT	coefficients	of	

the	 input	 data.	 It	 is	 implemented	using	 a	
3'

4
− 1 '

2-word	

dual-port	 block	 RAM.	 This	 stage	 is	 placed	 next	 to	 the	 post	
addition	stage	to	act	as	a	buffer	for	the	subsequent	system	if	
required;	for	instance,	it	can	be	integrated	with	a	quantizer	as	
in	conventional	data	compression	algorithms.		

	
5.	Dual	Path	Data	Flow	3-D	DCT	Architecture	

DPDFA	is	a	dual	data	path	architecture	for	the	3-D	DCT	VR	
computation.	 It	 is	 devised	 to	produce	a	high	 speed	3-D	DCT	
architecture	which	can	be	easily	retimed	and	pipelined.	DPDFA	
consists	of	3-D	data	reordering,	butterfly	stages,	post	addition	
and	3-D	BRO	stages.	The	3-D	data	reordering	stage	is	the	same	
as	that	presented	earlier	in	the	paper.	

5.1	Butterfly	Stages	

The	 scheduling	 of	 arithmetic	 operations	 in	 DPFDA	 is	
different	 from	 SPDFA.	 Rather	 than	 feeding	 the	 subtraction	
operations	 intermediate	 results	 back	 to	 the	 same	 sub-stage	
register	as	in	SPDFA,	the	results	of	the	addition	and	subtraction	
are	fed	forward	to	the	next	sub-stage	or	to	the	next	stage.	This	
reduces	the	time	during	which	registers	are	utilised	for	storing	
partial	 results,	 adds	 another	 line	of	 data	 for	 communication	
between	adjacent	stages	and	sub-stages,	and	hence	increases	
the	 number	 of	 required	 multipliers	 to	 cope	 with	 the	
computation	of	two	coefficients	per	clock	cycle.	However,	this	
simplifies	pipelining	and	retiming	in	the	DPDFA.		

DPDFA	 comprises	 	#$%&'	 butterfly	 stages;	 each	 can	 be	
divided	 into	 three	 sub-stages,	 registers,	 switches	 and	 two	
multipliers.	A	generic	sub-stage	consists	of	 two	add/subtract	

elements	for	carrying	out	addition	and	subtraction	operations	
between	 the	 two	 halves	 of	 each	 input	 along	 the	 three	
dimensions	of	data.	It	also	contains	two	registers	and	a	switch	
for	data	ordering	and	multiplexing;	 the	exception	 is	 the	 first	
sub-stage	of	the	first	butterfly	which	utilises	only	one	register	
as	shown	in	Figure	6.	The	first	butterfly	 internal	architecture	
takes	into	account	the	fact	that	data	is	received	at	its	input	at	
the	rate	of	one	word	per	clock	cycle	which	are	then	stored	and	
processed	at	the	rate	of	two	words	per	clock	cycle.		

The	 first	 sub-stage	 performs	 addition	 and	 subtraction	
between	 the	 two	 halves	 of	 the	 input	 data	 cube;	 Register	 1	
stores	 the	 first	 half	 that	 contains	 words	 of	 indices	 from	

0	to	
5
8

&
− 1	then	feeds	it	to	the	adder	components	during	the	

next	
5
8

&
		cycles	when	the	second	data	cube	part	that	contains	

words	indexed	from	
5
8

&
	to	'

-
− 1	is	also	available	at	the	input	

of	 the	 adder	 components.	 Data	 multiplexing	 is	 carried	 out	
using	Switch	1	which	 is	used	to	 twofold	parallelise	 the	serial	
input.	Its	control	signal	is	periodic	with	a	period	of	'-

		cycles	
and	a	50%	duty	cycle.		

In	sub-stage	2,	the	registers	Register	2	and	Register	3,	and	
Switch	2	re-order	data	with	the	aim	to	implement	the	addition	
and	 subtraction	 operations	 in	 each	 block	 of	 data;	 a	 block	 is	

divided	into	two	halves;	words	with	indices	from	0	to	
5
;

&
− 1	

are	stored	in	Register	3	while	the	second	half	which	includes	

words	 of	 the	 same	 block	 with	 indices	 from	
5
;

&
	H$	'

&
− 1	 is	

stored	in	Register	2.	The	flow	of	data	between	sub-stages	1	and	
2	and	the	selection	of	where	and	when	results	are	stored	 in	
registers	Register	2	and	Register	3	 is	carried	out	by	Switch	2.	
Such	a	switch	has	a	50%	duty	cycle	control	signal	with	a	period	
of	'&	cycles.		

When	 sub-stage	 2	 processes	 blocks	 of	 data	 of	 the	 same	
cube,	in	a	similar	way	the	third	stage	carries	out	the	addition	
and	subtraction	operations	on	columns	of	data	belonging	 to	
the	same	block	of	data.	For	'/2		cycles,	the	addition	results	of	
sub-stage	 2	 are	 fed	 to	Register	 5;	 the	 subtraction	 operation	
results	stored	in	Register	4	are	fed	to	the	adder	components	of	
sub-stage	 3;	 during	 the	 next	 '/2		cycles,	 Register	 4	 is	
connected	 to	 Register	 5	 while	 the	 results	 of	 the	 addition	

Figure	6.	a.	The	first	butterfly	of	DPDFA,	b.	The	mth	butterfly	of	DPDFA

 7

operation	of	sub-stage	2	are	fed	to	the	adder	components	of	
sub-stage	3.	Both	registers	Register	4	and	Register	5	are	of	a	
length	of	'/2-word.	Switch	3	which	allows	for	data	switching	
and	 controls	 the	 flow	 of	 partial	 results	 in	 sub-stage	 3	 has	 a	
periodic	 control	 signal	 which	 changes	 its	 value	 every	 '/2	
cycles.	Once	all	addition	and	subtraction	operations	have	been	
carried	out	by	the	first	butterfly	three	sub-stages,	two	further	
tasks	have	to	be	carried	out,	namely;	the	multiplication	by	the	
appropriate	TFs	and	re-arranging	data	in	an	order	suitable	for	
the	next	butterfly	stage	operations	to	be	executed.		

Re-arranging	data	in	SPDFA	butterflies	is	simply	carried	out	
by	feedback	registers.	However,	to	re-arrange	data	 in	DPSFA	
one	 has	 to	 cancel	 out	 the	 data	 order	 engendered	 by	 the	
selection	 and	 switching	 behaviour	 of	 Switch	 2,	 Switch	 3,	
Register	 2,	 Register	 3,	 Register	 4	and	 Register	 5.	 The	design	
approach	 adopted	 in	 this	work	 is	 to	 use	 the	 same	 set-up	of	
registers	and	switches	to	re-arrange	the	order	of	data	and	then	
to	retime	for	memory	optimization.	Hence,	the	behaviour	of	
Switch	4	and	Switch	5	is	similar	to	that	of	Switch	2	and	Switch	
3,	 respectively.	The	 impact	of	using	retiming	 is	shown	 in	the	
length	of	Register	7	of	the	first	butterfly	of	Figure	6.a	and	 in	
the	 length	 of	Register	 1	 in	 the	 first	 sub-stage	 of	 the	 second	
butterfly	stage	illustrated	in	Figure	6.b.	Hence	the	order	of	data	
when	 it	 leaves	the	first	butterfly	 is	similar	to	 its	order	at	the	
adder	elements	of	the	first	sub-stage.	

In	the	general	case,	the	two	data	inputs	presented	at	the	mth	
butterfly	 stage	 are	 the	 two	 halves	 of	 the	 '--word	 cube;	
however	each	half	data	is	ordered	as	2{6&	sets	of	2{6+×2{6+	

interleaved	 data	 cubes	 of	 size	
v

&wx<

-

	 words.	 The	 control	

signals	of	all	switches	in	Figure	6.b	are	periodic	with	a	50%	duty	
cycle.	The	control	signal	period	of	Switch	1,	Switch	2	and	Switch	

3	is	
5
8

&yx<
		cycles,	

5
;

&yx<
		cycles	and	

5

&yx<
		cycles,	respectively.	By	

carefully	 controlling	 the	 flow	 of	 partial	 results	 into	 registers	
Register	 1,	Register	 2,	Register	 3,	Register	 4,	Register	 5	 and	
Register	 6	 in	 Figure	 6.b,	 all	 the	 addition	 and	 subtractions	
operations	can	be	carried	out	along	the	three	dimensions	of	
the	 data.	 Switches	 Switch	 4	 and	 Switch	 5,	 share	 the	 control	
signals	of	Switch	3	and	Switch	2,	respectively.	Their	switching	
behaviour	and	the	use	of	registers	Register	7	and	Register	8,	
re-arrange	data	to	the	same	order	it	was	received	at	the	input	
of	 the	 adder	 elements	 of	 sub-stage	 1;	 the	 multiplication	
operations	can	then	take	place.	

	
5.2	Post	addition	Stage	and	3-D	BRO	Stages		

The	 post	 addition	 stage	 can	 be	 divided	 into	 three	 sub-
stages.	To	cope	with	processing	two	words	per	clock	cycle,	the	
first	 two	 sub-stages	 are	 built	 using	 two	 of	 the	 sub-stages	
shown	in	Figure	5.a;	the	third	sub-stage	is	depicted	in	Figure	
7.a	and	is	composed	of	five	add/subtract	elements,	registers	
and	 a	 multiplexer.	 The	 post	 addition	 sub-stages	 are	
parameterised.	The	parameter	P	shown	in	Figure	7,	refers	to	
the	length	of	registers	used.	

As	with	SPDFA,	the	3-D	BRO	stage	is	required	to	re-order	the	
output;	it	adjusts	for	the	bit	reversal	permutation	engendered	
by	 the	 fast	 transform	 algorithm	 used.	 The	 3-D	 BRO	 is	

implemented	 using	
5

&
− 1 '

&-word	 dual	 port	 block	 RAM.	

This	memory	element	can	be	merged	with	systems	where	the	
presented	3-D	DCT	core	is	used.	

	
	

Mux 2

1

Register 3

-

Mux 3

1
Register 5

-

P

Register 7

-
Mux 4

1

P

Register 6

Register 1

-
Mux 1

1

P

Register 2 +

3P-1

1

Out

Register 4

Register 8

Register 9

In0

In1

a.

Post addition
Sub-stage 1

P=N

Post addition
Sub-stage 2

P=1

Post addition
Sub-stage 3

P=N2
3-D BRO Out

b.

In0

In1

	
Figure	7:	a.	Third	post	addition	sub-stage	for	DPDFA.	b.	A	

post	addition	stage	and	3-D	BRO	for	DPDFA.	

6.	Performance	Evaluation		

The	presented	architectures	have	been	designed	using	Xilinx	
System	 generator	 tool	 and	 they	 have	 been	 tested	 and	
implemented	on	a	Xilinx	Virtex5	5vlx50tff1136-3	FPGA	device.	
Various	video	sequences	and	wordlengths	have	been	used	to	
test	 and	 evaluate	 the	 presented	 architectures	 performance	
and	attributes.		

	

6.1	Test	Bench	and	Rate	Distortion	Performance		
DCTA	represents	the	3-D	DCT	of	each	frame	computed	using	

the	 presented	 architectures;	 as	 they	 implement	 the	 same	
algorithm,	both	structures	exhibit	virtually	the	same	accuracy,	
as	shown	in	Table	1	and	Table	2.	When	employing	|}~�,	the	
annotation	(x,y)	refers	to	a	fixed-point	wordlength	of	x+y-bits	
where	x	and	y	represent	the	number	of	bits	of	the		integer	and	
fractional	parts,	respectively.	Results	of	DCTA	implementation	
using	(12,	8),	(12,	4)	and	(12,	2)-bit	wordlengths	are	shown	in	
this	 section.	 In	 comparison,	 DCTM	 represents	 coefficients	
calculated	 using	Matlab	 code	 that	 implements	 the	 3-D	DCT,	
and	Ä|}~[represents	a	Matlab	implementation	of	the	inverse	
3-D	DCT.	Both	Ä|}~[and	|}~[Matlab	implementations	are	
floating-point	 based.	 	 For	 testing	 and	 validation	 purposes	
|}~[and	DCTA	have	been	applied	on	various	MRI	and	video	
sequences	 of	 512×512×8-word	 [50];	 the	 Ä|}~[is	 then	
applied	to	the	output	of	|}~�	to	yield	reconstructed	frames.	
The	peak	 signal-to-noise	 ratio	 (PSNR)	 and	 root	mean	 square	
error	 (RMSE)	 are	 used	 for	 evaluating	 the	 accuracy	 of	 the	
presented	 architectures	 output.	 The	 RMSE	 between	 the	
original	and	reconstructed	frames	is	defined	as:	
	

 8

Ç]ÉÑ *

=
1

Ö×Ü
Ä|}~[|}~� L, X, * − Ä(L, X, *)

&

á

D9+

à

Y9+

				(14)	

Where	Ä(L, X, *)	 is	the	original	frame	and	*	 in	the	range	 	1 ≤
* ≤ ä			is	the	frame	index.	F	is	the	number	of	frames	in	Ä,	P	and	
Q	 are	 the	 number	 of	 its	 rows	 and	 columns,	 respectively.	 In	
addition,	 the	 PSNR	 between	 the	 original	 and	 reconstructed	
frames	is	computed	as	follows	[51]:	
	

ÖÉ'Ç * = 10#$%
[ãå çé

è[êë 1

&

	 	 	 	 	 	 	 	 	 	 	 (15)	

	
where]í3 Ä1 	 represents	 the	maximum	 intensity	 value	 of	
the	kth	frame.	Further,	the	average	of	maximum	absolute	error	
(AvgMaxErr)	 of	 the	 coefficients	 for	 the	 presented	 3-D	 DCT	
architectures	 |}~�	in	 comparison	 to	 the	 Matlab	
implementation	|}~[is	computed	as:	
	

]í3ÑFF * =]í3 íìM |}~[L, X, * − |}~� L, X, * 	

	(16)	
	

AvgMaxErr =
+

ö
]í3ÑFF *

ö

19+ 																																										(17)	

	
where]í3ÑFF * 	 represents	 the	maximum	 absolute	 error	
for	each	frame	 * .	

Performance	 accuracy,	 for	 both	 presented	 architectures,	
was	studied	over	a	selection	of	implementation	wordlengths.	
Table	1	and	Table	2	show	that	the	PSNR	 increases	when	the	
fractional	 part	 increases	 for	 both	 SPDFA	 and	 DPDFA,	
respectively.	As	such	and	as	expected,	the	highest	accuracy	is	
obtained	 using	 a	 20-bit	 wordlength	 (namely,	 (12,	 8)-bit),	
providing	 perfect	 accuracy.	 The	 presented	 architectures	
produce	 very	 good	 image	 quality	 using	 all	 the	 selected	
wordlengths.	The	average	PSNR	of	the	eight	test	sequences	for	
SPDFA	are	∞,	57	and	45	dB	using	(12,	8),	(12,	4)	and	(12,	2)-bit	
wordlengths,	 respectively.	 DPDFA	 achieves	 very	 comparable	
results.	Further,	in	Table	1	and	Table	2,	the	AvgMaxErr	of	both	
architectures	are	almost	identical.	For	the	aim	of	using	visual	
inspection	as	a	subjective	fidelity	criterion	[52],	the	images	of	
the	original	and	reconstructed	MRI2	scans	are	shown	in	Figure	
8.	 For	 both	 architectures,	 the	 reconstructed	 images	 are	
computed	using	wordlengths	 (12,2),	 (12,4)	and	 (12,8)	bits.	 It	
can	be	noticed	that	the	(12,2)-bit	wordlength	produced	a	good	
quality	 image	where	 the	 visual	 error	 can	 hardly	 be	 noticed;	
longer	wordlengths	however	lead	to	a	much	better	quality.	

	
6.2	Area	Usage	and	Computation	Time	

The	hardware	usage,	speed	and	computation	time	of	both	
architectures	using	different	wordlengths	are	shown	in	Table	
3.	It	is	important	that	the	presented	architectures	are	efficient	
in	 terms	 of	 area	 usage;	 in	 particular,	 in	 resource-limited	
devices	 such	 as	 FPGAs.	 As	 it	 can	 be	 seen	 from	 Table	 3,	 the	
average	device	resources	usage	of	SPDFA	and	DPDFA	is	as	low	
as	12%	and	18%,	respectively.	The	hardware	usage	of	DPDFA	

is	higher	than	that	of	the	SPDFA	due	to	duplicate	circuitry	for	
multiplication,	 addition	 and	 post	 addition	 stages.	 However,	
this	extra	hardware	usage	and	the	fact	that	it	has	no	feedback	
loops	 improve	 the	maximum	operating	 frequency	 of	 DPDFA	
over	SPDFA.	It	is	easier	to	place	and	route	the	components	of	
DPDFA,	 including	 the	FPGA	device	specific	 resources	such	as	
the	 DSP	 elements	 for	 the	 implementation	 of	 arithmetic	
operations.	As	such,	the	computation	time	of	512×512×8-word	
in	DPDFA	is	shorter	than	that	of	SPDFA.	It	is	worth	pointing	out	
that	the	memory	requirements	of	both	architectures	are	low	
in	 comparison	 with	 other	 architectures	 due	 to	 the	 in-place	
computation	 and	 the	 low	memory	 requirement	 for	 the	BRO	
and	3-D	reordering	operations.	The	memory	elements	of	5N2

	

and	3N
2-word	have	been	used	for	3-BRO	for	SPDFA	and	DPDFA	

respectively.	 Further,	 a	 memory	 of	 5N2-word	 for	 3-D	
reordering	 operation	 has	 been	 used	 in	 both	 architectures.	
Thus,	 the	 total	 number	 of	 block	 memory	 used	 in	 each	
architecture	 is	 less	 than	 25%	 of	 the	 available	 memory	
resources	of	the	5vlx50tff1136-3	FPGA	device.	

Table	1.	Accuracy	and	distortion	performance	of	SPDFA	

	 Reconstructed	and	original	frames	 3-D	DCT	Coefficients	

	 PSNR	(dB)	 RMSE	 AvgMaxErr	

Video		 (12,8)	(12,4)	(12,2)	 (12,8)	 (12,4)	(12,2)	 (12,8)	 (12,4)	 (12,2)	

MRI1	 ∞	 59	 48	 ≈0	 0.28	 1.05	 0.01	 0.18	 0.77	

MRI2	 ∞	 56	 45	 ≈0	 0.40	 1.49	 0.01	 0.23	 0.88	

Akiyo	 ∞	 58	 47	 ≈0	 0.31	 1.16	 0.01	 0.21	 0.89	

Stefan	 ∞	 56	 45	 ≈0	 0.40	 1.48	 0.01	 0.23	 0.97	

Suzie	 ∞	 56	 45	 ≈0	 0.40	 1.46	 0.01	 0.21	 0.90	

Bus	 ∞	 56	 45	 ≈0	 0.40	 1.49	 0.02	 0.23	 0.92	

Flower	 ∞	 56	 45	 ≈0	 0.39	 1.45	 0.02	 0.23	 0.97	

Mobile	 ∞	 56	 45	 ≈0	 0.40	 1.49	 0.01	 0.21	 0.92	

Average	 ∞	 57	 45	 ≈0	 0.37	 1.38	 0.01	 0.22	 0.90	

Table	2.	Accuracy	and	distortion	performance	of	DPDFA	

	 Reconstructed	and	original	frames	 3-D	DCT	Coefficients	

	 PSNR	(dB)	 RMSE	 AvgMaxErr	

Video		 (12,8)	(12,4)	(12,2)	 (12,8)	 (12,4)	(12,2)	 (12,8)	 (12,4)	 (12,2)	

MRI1	 ∞	 60	 48	 ≈0	 0.25	 1.05	 0.01	 0.18	 0.77	

MRI2	 ∞	 57	 45	 ≈0	 0.36	 1.49	 0.01	 0.23	 0.86	

Akiyo	 ∞	 59	 47	 ≈0	 0.28	 1.16	 0.01	 0.21	 0.89	

Stefan	 ∞	 57	 45	 ≈0	 0.35	 1.48	 0.02	 0.23	 0.97	

Suzie	 ∞	 57	 45	 ≈0	 0.35	 1.46	 0.01	 0.21	 0.91	

Bus	 ∞	 57	 45	 ≈0	 0.35	 1.49	 0.02	 0.23	 0.93	

Flower	 ∞	 57	 45	 ≈0	 0.35	 1.45	 0.02	 0.23	 0.97	

Mobile	 ∞	 57	 45	 ≈0	 0.35	 1.40	 0.01	 0.21	 0.92	

Average	 ∞	 58	 45	 ≈0	 0.33	 1.37	 0.01	 0.22	 0.90	

 9

Figure	8.	The	original	and	reconstructed	MRI2	using	both	Architectures	for	
various	wordlength	sizes	

	

6.3	Dynamic	Power	Consumption	
The	power	consumption	in	FPGA	is	classified	into	static	and	

dynamic	power.	The	static	power	mainly	comes	from	leakage	
current,	whereas	charging	switch	capacitors	and	short	circuit	
currents	are	the	main	sources	of	dynamic	power;	hence	it	can	
be	 minimised	 by	 switching	 capacitance	 reduction	 [53].	 The	
dynamic	power	consumption	of	the	presented	architectures	is	
shown	 in	 Figure	 9.	 The	 power	 consumption	 has	 been	
computed	 using	 Xilinx	 Xpower	 analyser	 for	 various	 clock	

frequencies	 and	 different	 wordlengths.	 The	 dynamic	 power	
consumption	 is	higher	 in	DPDFA	by	around	25-100	mW	than	
SPDFA	 for	 selected	 operating	 frequencies	 and	 wordlengths.	
The	 reason	 behind	 that	 is	 the	 additional	 multipliers	 in	 the	
butterfly	stages	and	the	duplication	of	some	resources	in	the	
first	 two	post	addition	stages.	Thus,	SPDFA	 is	outperforming	
DPDFA	in	terms	of	power	consumption	which	makes	it	a	better	
choice	for	low	power	consumption	applications.	

	

	
Figure	9:	Dynamic	power	consumption	of	both	architectures.	

	
6.4	Comparison	to	Similar	Work	

The	 throughput	 of	 both	 architectures	 is	 1	 coefficient	 per	
clock	cycle;	 thus,	'--clock	cycles	are	needed	 to	compute	all	
the	3-D	DCT	coefficients	of	a	'--word	data	cube.	A	comparison	
between	 the	 presented	 and	 similar	 architectures	 in	 the	
literature	 is	shown	in	Table	4.	Of	SPDFA	and	DPDFA,	Table	4	
shows	 that	 the	 first	 architecture	 outperforms	 the	 second	 in	
terms	of	area	usage	as	it	requires	fewer	multipliers,	adders	and	
registers.	 The	 extra	 hardware	 DPDFA	 utilises	 is	 needed	 to	
perform	 the	 dual	 line	 computation	 of	 the	 3-D	 DCT.	
Nevertheless,	 DPDFA	 is	 easily	 pipelined	 and	 it	 has	 a	 lower	
latency	 and	memory	 requirement	 than	 SPDFA.	 The	memory	
requirements	 for	SPDFA	and	DPDFA,	as	 listed	 in	Table	4,	are	
used	for	data	reordering	and	BRO	only.	

The	number	of	multipliers	and	adders	employed,	memory	
requirements,	controller	circuits	complexity,	and	computation	
time	of	the	presented	architectures,	are	also	compared	to	the	
requirements	and	performance	of	the	architectures	in	[38-43].	
As	 shown	 in	 Table	 4.	 It	 can	 be	 seen	 that	 the	 presented	
architectures	 require	 the	 lowest	 number	 of	 multipliers	 and	
memory	 usage	of	 all	 architectures.	Only	 #$%&'	 and	2#$%&'	
multipliers	are	required	to	perform	the	3-D	DCT	computation	
using	 SPDFA	 and	 DPDFA,	 respectively;	 for	 instance,	 N	
multipliers	are	required	in	[41,	42].	In	addition,	except	for	the	
architectures	in	[43],	the	presented	architectures	carry	out	the	
3-D	 DCT	 computation	 with	 the	 lowest	 latency.	 Table	 4	 also	
shows	 the	 performance	 of	 various	 architectures	 in	 terms	 of	
computation	 time;	 although	 the	 presented	 architectures	
exhibit	a	 longer	computation	time	than	the	work	 in	[39,	43],	
this	 is	 largely	 balanced	 by	 the	 presented	 architectures	 low	
hardware	usage.	 This	 improvement	 over	 similar	work	 in	 the	

20

70

120

170

220

270

320

370

420

200 100 66.67 50 40 33.33
D

yn
am

ic
 p

ow
er

 (m
W

)
Clock Frequency (MHz)

SPDFA (12,8)

DPDFA (12,8)

SPDFA (12,2)

DPDFA (12,2)

Reconstructed Image (One Image)

Reconstructed Image (One Image)

Reconstructed Image (One Image)

Reconstructed; SPDFA; (x,y)
= (12,2)

Reconstructed; SPDFA; (x,y)
= (12,4)

Reconstructed; SPDFA; (x,y)
= (12,8)

Original Image (One Image)

Original MRI2

Reconstructed; DPDFA; (x,y)
= (12,2)

Reconstructed; DPDFA; (x,y)
= (12,4)

Reconstructed; DPDFA; (x,y)
= (12,8)

Reconstructed Image (One Image)

Reconstructed Image (One Image)

Reconstructed Image (One Image)

 10

literature	is	mainly	due	to	the	fact	that	unlike	the	architectures	
in	[38-43],	the	focus	is	on	employing	and	regularising	the	data	
flow	of	a	fast	algorithm	while	traditional	DCT	architectures	are	
based	on	the	direct	algorithm	[25,	38-43];	this	however	is	not	
the	 only	 benefit	 of	 using	 a	 VR	 approach,	 in	 fact	 the	 control	
circuits	attached	to	the	presented	architectures	are	simple	as	
there	 is	 no	 data	 transpose.	 This	 makes	 the	 controller	
complexity	comparable	to	that	of	parallel	direct	approaches	in	
in	[38,	42].
	
7.	Conclusions	

This	 paper	 has	 presented	 two	 new	 3-D	DCT	 architectures	
based	on	a	3-D	DCT	VR	algorithm.	The	use	of	a	fast	algorithm	
has	yielded	architectures	with	improved	processing	speed	and	
a	 reduced	 hardware	 usage	 as	 they	 both	 require	 the	 lowest	
number	of	arithmetic	components	and	memory	requirement	
among	known	architectures	in	the	literature;	at	the	same	time,	
such	architectures	 avoid	 the	need	 for	memory	 transposition	
and	hence	are	easy	to	implement	and	employ	a	simple	control	
circuitry.	The	presented	architectures	are	parameterisable	 in	
terms	 of	 word	 and	 transform	 lengths	 and	 exhibit	 various	
power	consumption,	hardware	usage,	processing	speeds	and	
levels	 of	 pipelining,	 which	 provides	 the	 designer	 with	more	
flexibility	 and	 a	 larger	 choice	 when	 selecting	 the	 right	
architecture	for	the	application	under	consideration.	
	

	

References	
[1]	 M.	 Ayinala	 and	 K.	 K.	 Parhi,	 "Parallel	 pipelined	 FFT	 architectures	 with	
reduced	number	of	delays,"	in	Proceedings	of	the	ACM	Great	Lakes	Symposium	
on	VLSI	(GLSVLSI),	2012,	pp.	63-66.	
[2]	O.	Nibouche,	S.	Boussakta,	M.	Darnell,	and	M.	Benaissa,	"Algorithms	and	
pipeline	 architectures	 for	 2-D	 FFT	 and	 FFT-like	 transforms,"	 Digital	 Signal	
Processing:	A	Review	Journal,	vol.	20,	pp.	1072-1086,	2010.	
[3]	M.	Ayinala,	M.	Brown,	and	K.	K.	Parhi,	"Pipelined	parallel	FFT	architectures	
via	folding	transformation,"	IEEE	Transactions	on	Very	Large	Scale	Integration	
(VLSI)	Systems,	vol.	20,	pp.	1068-1081,	2012.	
[4]	S.	 Saponara	 and	 B.	 Neri,	 "Radar	 Sensor	 Signal	 Acquisition	 and	
Multidimensional	 FFT	 Processing	 for	 Surveillance	 Applications	 in	 Transport	
Systems,"	IEEE	Transactions	on	Instrumentation	and	Measurement,	vol.	66,	pp.	
604-615,	2017.	
[5]	S.	Saponara	and	B.	Neri,	"Design	of	compact	and	low-power	X-band	Radar	
for	 mobility	 surveillance	 applications,"	 Computers	 &	 Electrical	 Engineering,	
vol.	56,	pp.	46-63,	2016.	
[6]	A.	Das,	A.	Hazra,	and	S.	Banerjee,	"An	efficient	architecture	for	3-D	discrete	
wavelet	 transform,"	 IEEE	 Transactions	 on	 Circuits	 and	 Systems	 for	 Video	
Technology,	vol.	20,	pp.	286-296,	2010.	
[7]	B.	 K.	Mohanty	 and	 P.	 K.	Meher,	 "Memory-efficient	 architecture	 for	 3-D	
DWT	 using	 overlapped	 grouping	 of	 frames,"	 IEEE	 Transactions	 on	 Signal	
Processing,	vol.	59,	pp.	5605-5616,	2011.	
[8]	B.	 K.	 Mohanty	 and	 P.	 K.	 Meher,	 "Memory	 efficient	 modular	 VLSI	
architecture	for	highthroughput	and	low-latency	implementation	of	multilevel	
lifting	 2-D	DWT,"	 IEEE	 Transactions	 on	 Signal	 Processing,	vol.	 59,	 pp.	 2072-
2084,	2011.	
[9]	S.	 Al-Azawi,	 "Low-Power,	 Low-Area	 Multi-level	 2-D	 Discrete	 Wavelet	
Transform	Architecture,"	Circuits,	Systems,	and	Signal	Processing,	vol.	37,	pp.	
444-458,	2018.	
[10]	 R.	E.	Atani,	M.	Baboli,	S.	Mirzakuchaki,	S.	E.	Atani,	and	B.	Zamanlooy,	
"Design	 and	 implementation	 of	 a	 118	 MHz	 2D	 DCT	 processor,"	 in	 IEEE	
International	Symposium	on	Industrial	Electronics,	2008,	pp.	1076-1081.	
[11]	 M.	Jridi	and	A.	Alfalou,	"A	low-power,	high-speed	DCT	architecture	for	
image	 compression:	 Principle	 and	 implementation,"	 in	 18th	 IEEE/IFIP	 VLSI	
System	on	Chip	Conference	(VLSI-SoC),	2010,	pp.	304-309.	

[12]	 M.	El	Aakif,	S.	Belkouch,	N.	Chabini,	and	M.	M.	Hassani,	"Low	power	and	
fast	 DCT	 architecture	 using	multiplier-less	method,"	 in	2011	 Faible	 Tension	
Faible	Consommation	(FTFC),	2011,	pp.	63-66.	
[13]	 B.	Z.	Guo,	L.	Niu,	and	Z.	M.	Liu,	"Implementation	of	2-D	DCT	based	on	
FPGA,"	 in	 Proceedings	 of	 SPIE	 -	 The	 International	 Society	 for	 Optical	
Engineering,	2010.	
[14]	 G.	 K.	 a.	 S.	 V.	 Khurram	 Bukhari,	 "DCT	 and	 IDCT	 implementations	 on	
different	FPGA	technologies,"	Computer	Engineering	Lab,	Delft	University	of	
Technology,	2009		
[15]	 O.	Nibouche,	S.	Boussakta,	and	M.	Darnell,	"Pipeline	Architectures	for	
Radix-2	New	Mersenne	Number	Transform,"	IEEE	Transactions	on	Circuits	and	
Systems	I:	Regular	Papers,	vol.	56,	pp.	1668-1680,	2009.	
[16]	 H.	L.	P.	A.	Madanayake,	R.	 J.	Cintra,	D.	Onen,	V.	S.	Dimitrov,	and	L.	T.	
Bruton,	 "Algebraic	 integer	based	8×8	2-D	DCT	 architecture	 for	 digital	 video	
processing,"	in	IEEE	International	Symposium	on	Circuits	and	Systems	(ISCAS),	
2011,	pp.	1247-1250.	
[17]	 A.	M.	Shams,	A.	Chidanandan,	W.	Pan,	and	M.	A.	Bayoumi,	 "NEDA:	A	
low-power	high-performance	DCT	architecture,"	 IEEE	Transactions	on	Signal	
Processing,	vol.	54,	pp.	955-964,	2006.	
[18]	 E.	D.	Kusuma	and	T.	S.	Widodo,	"FPGA	implementation	of	pipelined	2D-
DCT	 and	 quantization	 architecture	 for	 JPEG	 image	 compression,"	 in	 2010	
International	Symposium	in	Information	Technology	(ITSim),	2010,	pp.	1-6.	
[19]	 S.	Al-Azawi,	Y.	A.	Abbas,	and	R.	Jidin,	"Low	complexity	multidimensional	
CDF	5/3	DWT	architecture,"	 in	Communication	Systems,	Networks	&	Digital	
Signal	Processing	(CSNDSP),	2014	9th	 International	Symposium	on,	2014,	pp.	
804-808.	
[20]	 G.	 K.	 Wallace,	 "The	 JPEG	 still	 picture	 compression	 standard,"	 IEEE	
Transactions	on	Consumer	Electronics,	vol.	38,	pp.	xviii-xxxiv,	1992.	
[21]	 D.	 J.	 Le	 Gall,	 "The	 MPEG	 video	 compression	 standard,"	 in	 Compcon	
Spring	'91:	Digest	of	Papers,	1991,	pp.	334-335.	
[22]	 W.	 Li,	 "Overview	 of	 fine	 granularity	 scalability	 in	 MPEG-4	 video	
standard,"	IEEE	Transactions	on	Circuits	and	Systems	for	Video	Technology,	vol.	
11,	pp.	301-317,	2001.	
[23]	 A.	Madisetti	and	A.	N.	Willson,	Jr.,	"DCT/IDCT	processor	design	for	HDTV	
applications,"	in	International	Symposium	on	Signals,	Systems,	and	Electronics	
(ISSSE	'95),	1995,	pp.	63-66.	
[24]	 T.	Wiegand,	G.	J.	Sullivan,	G.	Bjøntegaard,	and	A.	Luthra,	"Overview	of	
the	 H.264/AVC	 video	 coding	 standard,"	 IEEE	 Transactions	 on	 Circuits	 and	
Systems	for	Video	Technology,	vol.	13,	pp.	560-576,	2003.	
[25]	 S.	Boussakta	and	H.	O.	Alshibami,	"Fast	algorithm	for	the	3-D	DCT-II,"	
IEEE	Transactions	on	Signal	Processing,	vol.	52,	pp.	992-1001,	2004.	
[26]	 X.	Li,	A.	Dick,	C.	Shen,	A.	van	den	Hengel,	and	H.	Wang,	"Incremental	
learning	of	3D-DCT	compact	representations	for	robust	visual	tracking,"	IEEE	
Transactions	on	Pattern	Analysis	and	Machine	 Intelligence,	vol.	35,	pp.	863-
881,	2013.	
[27]	 S.	Sawant	and	D.	A.	Adjeroh,	"Balanced	multiple	description	coding	for	
3D	DCT	video,"	IEEE	Transactions	on	Broadcasting,	vol.	57,	pp.	765-776,	2011.	
[28]	 H.	Y.	Huang,	C.	H.	Yang,	and	W.	H.	Hsu,	"A	video	watermarking	technique	
based	 on	 pseudo-3-D	 DCT	 and	 quantization	 index	 modulation,"	 IEEE	
Transactions	on	Information	Forensics	and	Security,	vol.	5,	pp.	625-637,	2010.	
[29]	 R.	 Atta	 and	 M.	 Ghanbari,	 "Spatio-temporal	 scalability-based	 motion-
compensated	3-D	subband/DCT	video	coding,"	 IEEE	Transactions	on	Circuits	
and	Systems	for	Video	Technology,	vol.	16,	pp.	43-55,	2006.	
[30]	 S.	 C.	 Chan	 and	 K.	 L.	 Ho,	 "Direct	 methods	 for	 computing	 discrete	
sinusoidal	transforms,"	 IEE	Proceedings	on	Radar	and	Signal	Processing,	vol.	
137,	pp.	433-442,	1990.	
[31]	 S.	 An	 and	 C.	 Wang,	 "Recursive	 algorithm,	 architectures	 and	 FPGA	
implementation	of	the	two-dimensional	discrete	cosine	transform,"	IET,	Image	
Processing	vol.	2,	pp.	286-294,	2008.	
[32]	 G.	 Jiun-In	 and	 L.	 Chih-Chen,	 "A	 generalized	 architecture	 for	 the	 one-
dimensional	discrete	cosine	and	sine	transforms,"	IEEE	Transactions	on	Circuits	
and	Systems	for	Video	Technology,	vol.	11,	pp.	874-881,	2001.	
[33]	 Z.	Wu,	 J.	 Sha,	 Z.	Wang,	 L.	 Li,	 and	M.	 Gao,	 "An	 improved	 scaled	 DCT	
architecture,"	IEEE	Transactions	on	Consumer	Electronics,	vol.	55,	pp.	685-689,	
2009.	
[34]	 C.	 Yuan-Ho	 and	 C.	 Tsin-Yuan,	 "A	 high	 performance	 video	 transform	
engine	by	using	 space-time	 scheduling	 strategy,"	 IEEE	Transactions	on	Very	
Large	Scale	Integration	(VLSI)	Systems	vol.	20,	pp.	655-664,	2012.	

 11

[35]	 S.	 Al-Azawi,	 S.	 Boussakta,	 and	 A.	 Yakovlev,	 "High	 precision	 and	 low	
power	 DCT	 architectures	 for	 image	 compression	 applications,"	 in	 IET	
Conference	on	Image	Processing	(IPR),	2012,	pp.	1-6.	
[36]	 A.	Aggoun	and	I.	Jalloh,	"Two-dimensional	DCT/IDCT	architecture,"	IEE	
Proceedings	on	Computers	and	Digital	Techniques,	vol.	150,	pp.	2-10,	2003.	
[37]	 J.	 I.	 Guo,	 "Efficient	 parallel	 adder	 based	 design	 for	 one-dimensional	
discrete	cosine	transform,"	IEE	Proceedings	on	Circuits,	Devices	and	Systems,	
vol.	147,	pp.	276-282,	2000.	
[38]	 I.	 Jalloh,	 A.	 Aggoun,	 and	 M.	 McCormick,	 "3D	 DCT	 architecture	 for	
compression	of	 integral	3D	 images,"	 in	 IEEE	Workshop	on	Signal	Processing	
Systems,	SiPS:	Design	and	Implementation,	2000,	pp.	238-244.	
[39]	 A.	 Aggoun	 and	 I.	 Jalloh,	 "A	 parallel	 3D	 DCT	 architecture	 for	 the	
compression	of	integral	3D	images,"	in	The	8th	IEEE	International	Conference	
on	Electronics,	Circuits	and	Systems	(ICECS)	2001,	pp.	229-232	vol.1.	
[40]	 M.	 Bakr	 and	 A.	 E.	 Salama,	 "Implementation	 of	 3D-DCT	 based	 video	
Encoder/Decoder	 system,"	 in	Midwest	 Symposium	on	 Circuits	 and	 Systems,	
2002,	pp.	II13-II16.	
[41]	 S.	Saponara,	L.	Fanucci,	and	P.	Terreni,	"Low-power	VLSI	architectures	
for	3D	discrete	cosine	transform	(DCT),"	in	IEEE	46th	Midwest	Symposium	on	
Circuits	and	Systems,	2003,	pp.	1567-1570	Vol.	3.	
[42]	 S.	Saponara,	"Real-time	and	low-power	processing	of	3D	direct/inverse	
discrete	 cosine	 transform	 for	 low-complexity	 video	 codec,"	 Journal	of	Real-
Time	Image	Processing,	pp.	1-11,	2012.	
[43]	 Y.	 Ikegaki,	T.	Miyazaki,	and	S.	G.	Sedukhin,	"3D-DCT	processor	and	 its	
FPGA	 implementation,"	 IEICE	Transactions	on	 Information	and	Systems,	vol.	
E94-D,	pp.	1409-1418,	2011.	
[44]	 L.	 Yuanyuan,	 C.	 Hexin,	 Z.	 Yan,	 and	 Y.	 Chuxi,	 "Three	 dimensional	 DCT	
similar	 butterfly	 algorithm	 and	 its	 pipeline	 architectures,"	 in	 2016	 IEEE	
Information	 Technology,	 Networking,	 Electronic	 and	 Automation	 Control	
Conference,	2016,	pp.	506-510.	
[45]	 S.	 Al-Azawi,	 "Efficient	 Architectures	 for	 Multidimensional	 Discrete	
Transforms	 in	 Image	 and	 Video	 Processing	 Applications,"	 PhD	 Thesis,	
Newcastle	University,	UK,	2013.	
[46]	 L.	 Yuanyuan,	 C.	 Hexin,	 Z.	 Yan,	 and	 Y.	 Chuxi,	 "Device-saving	 pipeline	
architectures	of	multi-dimensional	DCT	similar	butterfly	algorithm,"	 in	2016	
International	 Conference	 on	 Integrated	 Circuits	 and	 Microsystems	 (ICICM),	
2016,	pp.	339-344.	
[47]	 J.	 A.	 Nikara,	 J.	 H.	 Takala,	 and	 J.	 T.	 Astola,	 "Discrete	 cosine	 and	 sine	
transforms—regular	algorithms	and	pipeline	architectures,"	Signal	Processing,	
vol.	86,	pp.	230-249,	2006.	
[48]	 O.	Alshibami	and	S.	Boussakta,	"Fast	algorithm	for	the	3D	DCT,"	in	IEEE	
International	 Conference	 on	 Acoustics,	 Speech,	 and	 Signal	 Processing	
Proceedings	(ICASSP	'01),	2001,	pp.	1945-1948	vol.3.	
[49]	 M.	C.	 Lee,	R.	 K.	W.	Chan,	 and	D.	A.	Adjeroh,	 "Fast	 three-dimensional	
discrete	cosine	transform,"	SIAM	Journal	on	Scientific	Computing,	vol.	30,	pp.	
3087-3107,	2008.	
[50]	 Xiph.org,	 "Video	 Test	 Media	 [derf's	 collection],"	 Xiph.org,	 [Online].	
Available:	https://media.xiph.org/video/derf/	Accessed	on	20/09/2016.	
[51]	 Q.	Huynh-Thu	 and	M.	Ghanbari,	 "The	 accuracy	 of	 PSNR	 in	 predicting	
video	quality	for	different	video	scenes	and	frame	rates,"	Telecommunication	
Systems,	vol.	49,	pp.	35-48,	2012/01/01	2012.	
[52]	 H.	 R.	 Sheikh,	 A.	 C.	 Bovik,	 and	 G.	 d.	 Veciana,	 "An	 information	 fidelity	
criterion	 for	 image	 quality	 assessment	 using	 natural	 scene	 statistics,"	 IEEE	
Transactions	on	Image	Processing,	vol.	14,	pp.	2117-2128,	2005.	
[53]	 S.	McKeown	and	R.	Woods,	"Low	power	field	programmable	gate	array	
implementation	of	fast	digital	signal	processing	algorithms:	Characterisation	
and	manipulation	of	data	locality,"	IET	Computers	and	Digital	Techniques,	vol.	
5,	pp.	136-144,	2011.		
	

Saad	Al-Azawi	received	the	B.Sc.	Degree	in	
Electrical	 Engineering	 from	 University	 of	
Baghdad	and	M.Sc.	degree	in	Electronic	and	
Communication	 Engineering	 from	 Al-
Mustansiriya	 University,	 Baghdad,	 Iraq.	 He	
received	 his	 Ph.D.	 degree	 in	 Electrical	 and	
Electronic	 Engineering	 from	 Newcastle	

University,	 Newcastle	 Upon	 Tyne,	 England,	 2013.	 Assistant	
Professor	 Dr.	 Saad	 is	 currently	 working	 as	 a	 head	 of	 the	

department	of	Electronic	Engineering,	College	of	Engineering,	
University	of	Diyala,	Diyala,	Iraq.	His	research	interests	include	
Hardware	 architectures	 for	 signal	 and	 image	 processing	
algorithms	 and	 transforms,	 Digital	 Image	 Processing,	 Digital	
Signal	Processing.	

Omar	 Nibouche	 received	 his	 BEng	 degree	 in	
Electronic	 Engineering	 form	 the	 Polytechnic	
School	 of	 Algiers	 and	 Ph.D.	 degree	 in	
Computer	 Science	 from	 Queen's	 University	
Belfast.	 He	 is	 a	 lecturer	 in	 computing	 in	 the	
School	of	Computing	and	Mathematics,	Ulster	
University	 at	 Jordanstown.	 His	 research	

interests	 include	 machine	 learning,	 applications	 of	 artificial	
intelligence,	computer	vision	and	biometrics.	

Said	 Boussakta	 received	 the	 PhD	 degree	 in	
Electrical	 Engineering	 from	 Newcastle	
University,	 U.K.,	 in	 1990.	 Since	 1990,	 he	 has	
been	 working	 in	 academia,	 fully	 involved	 in	
both	 research	 and	 teaching.	 From	2000-2006	
he	was	at	the	University	of	Leeds	as	a	Reader	
in	 Digital	 Communications	 and	 Signal	

Processing.	 Since	 2006,	 he	 has	 been	 with	 the	 School	 of	
Engineering,	 Newcastle	 University	 as	 a	 Professor	 of	
Communications	 and	 Signal	 Processing,	 lecturing	 in	
Communication	Networks	and	Signal	Processing	subjects.	He	
has	 supervised	 over	 50	 students	 to	 Ph.D.	 completion	 and	
published	 over	 200	 conference	 proceedings	 and	 journal	
articles.	 His	 research	 interests	 are	 in	 the	 areas	 of	 fast	 DSP	
algorithms,	Digital	Communications,	Communication	Network	
Systems,	 Cryptography,	 and	 Digital	 Signal/Image	 Processing.	
He	 has	 also	 served	 as	 Chair	 in	 conferences	 and	 presented	
several	invited	talks	in	communications,	signal	processing	and	
security.	 Prof	 Boussakta	 is	 a	 Fellow	of	 the	 IEE,	 and	 a	 Senior	
Member	 of	 the	 Communications	 and	 Signal	 Processing	
Societies.	

Gaye	 Lightbody	 has	been	a	 Lecturer	
within	 the	 School	 of	 Computing	 in	
Ulster	 University	 since	 2006.	 She	
received	an	M.Eng.	(1995)	and	a	PhD	
(2000)	 in	 Electrical	 and	 Electronic	
Engineering	 from	Queen’s	University	
of	Belfast.	Her	PhD,	High	Performance	
VLSI	Architectures	for	Recursive	Least	

Squares	 Adaptive	 Filtering,	 involved	 the	 research	 and	
development	 into	 a	 scalable	 efficient	 architecture	 for	 highly	
intensive	 adaptive	 beamforming	 applications.	 Gaye	 then	
worked	 in	 industry	 from	 2000	 to	 2006	 for	 Amphion	
Semiconductor	Limited	developing	intellectual	property	cores	
for	ASIC	and	FPGA	solutions	in	the	areas	of	audio,	image	and	
video	processing.	She	is	a	co-author	of	the	book	FPGA-based	
Implementation	 of	 Signal	 Processing	 Systems	 published	 by	
Wiley	 in	 2008.	 A	 second	 edition	 has	 been	 released	 in	 2017	
which	 provides	 an	 update	 to	 reflect	 the	 latest	 iterations	 of	
FPGA	 theory,	 applications,	 and	 technology.	 This	 revision	
includes	coverage	of	FPGA	solutions	for	Big	Data	Applications.	
	

 12

	
TABLE	3.	Hardware	utilisation	rate,	maximum	operating	frequencies	and	computation	times	for	both	architectures	using	various	wordlengths	

Slice	Logic	Utilization	 Available	

SPDFA	 DPDFA	

Hardware	usage	for	wordlength	sizes	Hardware	usage	for	wordlength	sizes	

(12,8)	 (12,6)	 (12,4)	 (12,2)	 (12,8)	 (12,6)	 (12,4)	 (12,2)	

Hardware	usage	

No	of	Slice	Registers	 28,800	 1840	 1726	 1593	 1459	 3691	 3414	 3120	 2826	

No	of	Slice	LUTs	 28,800	 2351	 2171	 1991	 1811	 3309	 3044	 2781	 2517	

No	of	occupied	Slices	 7,200	 743	 607	 588	 605	 1229	 1096	 1053	 1008	

No	of	bonded	IOBs	 480	 30	 28	 26	 24	 30	 28	 26	 24	

No	of	36k	BlockRAM	used	 60	
	
	

1	 -	 -	 -	 1	 -	 -	 -	

No	of	18k	BlockRAM	used	 14	 15	 15	 15	 15	 16	 16	 16	
No	of	DSP48Es	 48	 9	 8	 8	 8	 16	 12	 12	 12	

Average	utilization	rate	 12%	 12%	 11%	 11%	 18%	 16%	 15%	 15%	

Maximum	frequencies	(MHz)	 241	 230	 244	 226	 266	 338	 258	 333	

Computation	times	for	512×512×8-pixel	data	(ms)	 8.7	 9.1	 8.6	 9.3	 7.9	 6.2	 8.1	 6.3	

	
	
	
	
	
	
	
	
	

	

 13

	
Table	4.	Comparison	to	Similar	Architectures	in	the	Literature	

Architectures	 Adders/Sub.	 Multipliers	 Memory	 Registers	 Initial	
Latency	

Computation	
Time	(cycles)	

Controller	
Complexity	 DCT	Algorithm	

[38]	 3"	 3"	 "# " + 1 	 N/R*	 "& + 3"	 "&	 Simple	 Regular;	Row-Column-
Frame,	cascaded	

[39]	
	

5"# + "
2 	

5"#

2 	
"&	(transpose	

memory)	

"	register	between	the	2-
D	DCT	and	the	1-D-DCT-

frame	direction	
	

"& + 32"	 "#	 Complex	

Regular,	Parallel;	
Row-Column-Frame	
N×N	1-D	DCT+1-D	DCT	
for	frame	direction	

[40]	 3" − 3	 3"	 "# " + 1 	 N/R	 > "#	 6"&	**	 Medium	 Regular	1-D	DCT;	Row-
Column-Frame	

[42]	 	 	 	 	 	 	 	 	

Full	Parallel	(FP)	 " 2" + 1 	 " 2" + 1 				∗∗∗	 " "# + 1 	 N/R	 N/R	 2"#	 Medium	

1-D	DCT	Radix2	
Row-Column-Frame	Cascaded	(CS)	 3"	 3"	∗∗∗	 "# " + 1 	 N/R	 N/R	 2"&	 Simple	

Hardware	
Multiplexed	(HM)	 "	 "	∗∗∗	 "&	 N/R	 N/R	 6"& Complex	

[43]	 	 	 Input	Mem.	 	 	 	 	 	

Sequential	 "&	 "&	 2"&	 "& 3" + 4 	 "&	 3"	 Complex	

Regular	1D	DCT;	Row-
Column-Frame	

Pipelined1	 ≈ 2"&	 2"&	 2"&	 "& 3" + 4 	 "&	 3"	 Complex	

Piplined2	 ≈ 3"&	 3"&	 2"&	 "& 3" + 8 	 "&	 3"	 Complex	

Block	 N&
8 	

N&
8 	 2N&	 ≈ 1

6N
& 3N + 4 	 N&	 3N	 Complex	

SPDFA	 12 + 6234#"	 234#"	
"
4 + " "#	

For	reordering	
and	BRO	

"& + 5"# + 5" + 4	 ≅ 2"&	 "&	 Simple	 Vector-Radix	3-D	DCT	

DPDFA	 20 + 6234#"	 2234#"	
	
"&	

For	reordering	
and	BRO	

3"&

2 + 6"# + 11" + 8	 ≅ 3
2"

&	 "&	 Simple	 Vector-Radix	3-D	DCT	

	
*						N/R	:	Not	reported	in	their	paper.	
**			Computed	for	4×4×4	data	block.	
***	Multiplication	is	performed	by	a	serial	distributed	arithmetic	architecture.	
	

