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Abstract: Among many rule-based systems employed to deal with classification problems, the extended belief-rule-based (EBRB) 

system is an effective and efficient tool and also has potentials in handing both quantitative and qualitative information under 

uncertainty. Despite many advantages, several drawbacks must be overcome for better applying the conventional EBRB system, 

including counterintuitive individual matching degrees, insensitivity to the calculation of individual matching degrees, and the 

inconsistency problem. Accordingly, by constructing the activation region of extended belief rules and revising the calculation 

formula of activation weights, the new procedures of activation rule determination and weight calculation are proposed to improve 

the conventional EBRB system, while the original procedures of rule inference and class estimation are retained from the 

conventional EBRB system. Nineteen classification datasets with different numbers of classes are studied to validate the 

efficiency and effectiveness of the proposed EBRB classification system compared with existing works. The comparison results 

demonstrate that the proposed EBRB classification system not only obtains a high accuracy better than the conventional EBRB 

system, but also has an excellent response time for classification. More importantly, the results derived from multi-class datasets 

show the significant performance of the proposed EBRB classification system compared with some state of art classification tools. 

Keywords: Extended belief-rule-based system; Classification problem; Activation rule determination; Activation weight 

calculation; Multi-class 

 

1. Introduction 

Classification is a common and fundamental problem involved in various theoretical and practical applications, including, 

but not limited to, image processing [1], medical application [2], pattern recognition [3], and intrusion detection [4]. However, 

classification problems are not always easy to be solved due to the interconnected sophistications of the correlations attached to 

high dimensions [5] and the large number of samples [6]. Therefore, proposing an effective system or approach to handle 

classification problems is one of the most urgent challenges in these applications. 

As one of the most visible and fastest growing branches of artificial intelligence (AI) [7], rule-based systems have been 

applied to handle classification problems in the past decades. The common rule-based systems include fuzzy rule-based (FRB) 

systems [8][9] and belief rule-based (BRB) systems [10][11][12]. Because of the capability for building a linguistic model 

interpretable to users and handling both quantitative and qualitative information derived from domain experts and mathematical 
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models [13], these rule-based systems have been successfully utilized to deal with classification problems and have played an 

important role with some distinct advantages compared with some black-box classification tools, e.g. deep learning based 

classification tools [14][15]. 

However, many existing rule-based systems suffer from the combination explosion problem while dealing with high 

dimensional classification datasets, because of the rule generation that is required to cover all combinations of each alternative for 

each attribute [13]. For example, the establishment of fuzzy regions is the most important step to construct FRB systems but the 

number of fuzzy regions is always growing exponentially along with the increase of attributes and fuzzy numbers [8]. Meanwhile, 

the time complexity of generating a rule base usually imposes hard restrictions on the rule-based systems, mainly because the rule 

base needs to be trained iteratively and thus it is very expensive to train and re-train them [17]. For instance, parameter-learning is 

a well-known approach to train parameters for the BRB system. Actually, it is a time-consuming process to solve nonlinear 

programming problems [18][19], especially for the large number of training data. 

Recently, the extended-rule-based (EBRB) system developed by Liu et al. [20] has three advantages compared with the FRB 

system and the BRB system. 

(1)  Belief structures are embedded into the consequent attribute and all antecedent attributes of an extended belief rule. 

Thus, both of fuzzy rules and belief rules are a special case of extended belief rules [21];  

(2) The EBRB system is either a knowledge-driven or a data-driven, or combined decision model. It can be a data-driven 

model in the sense that extended belief rules can be generated from input-output data pairs [22];  

(3) Now that the EBRB system can be a data-driven decision model, it is unnecessary to obtain the optimal parameters by 

using the parameter-learning which has been proven to be a time-consuming process [20].  

Therefore, the EBRB system has the potential to be an effective and efficient tool to handle classification problems. However, 

several drawbacks were found in the procedures of activation rule determination and weight calculation in the conventional EBRB 

system. The most significant drawback is that the conventional EBRB system may suffer from the inconsistency problem in the 

conventional activation rule determination because two or more rules with different consequents are activated for the same input. 

Another two significant drawbacks were found in the conventional activation weight calculation, the conventional EBRB system 

may produce counterintuitive individual matching degrees while calculating activation weights and sometimes it is over 

insensitive to the calculation of individual matching degrees. These drawbacks must be overcome to more effectively utilize the 

conventional EBRB system in classification problems. 

Motivated by these drawbacks, new procedures of activation rule determination and weight calculation are proposed. 

For the new procedure of rule activation determination, the key idea is to construct activation regions for each extended 

belief rule and then use the activation regions to judge which extended belief rule should be activated. Since the activation regions 

can be constructed before utilizing the EBRB system to classify input data with a low requirement of real-time, utilizing activation 

regions can help the EBRB system determine consistent activation rules more efficiently. 

For the new procedure of activation weight calculation, it aims to revise the original calculation formula of activation weights. 
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Through mathematical derivations, it is easy to find the limitations of the conventional activation weight calculation. Actually, 

these limitations are the causes of counterintuitive results and insensitive calculations found in the conventional EBRB system. By 

considering the importance of referential values and the normalization of individual matching degrees, the new activation weight 

calculation can help the EBRB system calculate activation weights for activation rules more effectively. 

In addition, the original procedures, including using the evidential reasoning (ER) algorithm [23][24] as the inference engine 

and the strategy of seeking maximum belief degree as class estimation, are retained from the conventional EBRB system. Finally, 

based on these procedures, a novel EBRB classification system is developed in this study. 

In order to demonstrate the efficiency and effectiveness of the proposed EBRB classification system, a case study with 

nineteen classification datasets comprising two/three/multi-class are carried out to test the performance of the proposed EBRB 

classification system compared with existing works. Three aspects, namely, accuracy, failed data, and response time, are adopted 

to compare with other improved EBRB systems and popular machine learning approaches. 

The remainder of the study is organized as follows: Section 2 briefly reviews the applicability and drawbacks of the 

conventional EBRB system in classification problems. Section 3 introduces and illustrates a novel EBRB classification system 

and the procedures of new rule activation determination and its weight calculation. Section 4 provides comparative case studies to 

demonstrate the efficiency and effectiveness of the proposed EBRB classification system, and the paper is concluded in Section 5. 

 

2. Conventional EBRB System for Classification Problems 

In this section, a well-known classification dataset is used to illustrate how the conventional EBRB system can handle 

classification problems and what significant drawbacks can be overcome to better develop a novel EBRB classification system. 

2.1. Applicability of conventional EBRB system to classification problems 

Suppose Ui is the ith (i=1,..., M) antecedent attribute in an EBRB, Ai,j is the jth (j=1,…, Ji) referential value of the ith 

antecedent attribute, D is the consequent attribute in the EBRB, and Dn is the nth (n=1,..., N) referential value of the consequent 

attribute D. The kth (k=1,…, L) extended belief rule in the EBRB can then be written as: 

},...,1);,{(},,...,1);,{(},...,1);,{(:
,,1,1,11
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n . In addition, the weight of the ith antecedent attribute and the kth rule are denoted as 

i  
( 10  i ) and 

k  ( 10  k ), respectively. 

Let a classification dataset, Iris [25], illustrate the applicability of the conventional EBRB system to classification problems. 

For convenience, two antecedent attributes “sepal length” and “sepal width” are used to distinguish the species of iris. Three 

referential values of the two antecedent attributes and one consequent attribute are provided as follows: 

}9.7,1.6,3.4{},,{},,{ 3,12,11,11 === AAAHighMediumLowU                     (2a) 

}4.4,2.3,0.2{},,{},,{ 3,22,21,22 === AAAHighMediumLowU                     (2b) 

},,{},,{ 321 DDDVirgicaVersicolorSetosaD ==                             (2c) 
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Suppose that one input-output data pair of dataset Iris, namely, {4.3, 3.2, Virgica}, can be transformed into a belief 

distribution format as introduced in [17]. 

})},0,(),1,(),0,{()},0,(),0,(),1,{{( 3,22,21,23,12,11,1 VirgicaAAAAAA                      (3) 

 Since the input-output data pair is categorized as “Virgica”, which means that the belief degree of being “Virgica” is 100% 

and the other belief degrees are both 0%, the belief distribution of the output data can be written as follows: 

)}1,(),0,(),0,{( 321 DDD                                        (4) 

Consequently, an extended belief rule transformed from the input-output data pair can be represented as follows: 

)}1,(),0,(),0,{()},0,(),1,(),0,{()}0,(),0,(),1,{(: 3213,22,21,223,12,11,11 DDDisDTHENAAAisUAAAisUIFRk      (5) 

Following the above transformation, all input-output data pairs of dataset Iris can be transformed into extended belief rules, 

which further construct one EBRB system (see literature [20] for details). When an input data is provided for the EBRB system 

shown in Fig. 1, extended belief rules should be activated and can then be used to generate an estimated class for the input data. 

  

Fig. 1. Illustration of conventional EBRB system 

From Fig. 1, the procedures of activation rule determination and weight calculation include many intermediate variables such 

as individual matching degrees ),( ii

k UxS  and activation weights wk. Readers can refer to the literature [20] for complete details. 

To show the calculation process of these variables, the following three extended belief rules are used here: 

)}0,(),0,(),1,{()},3.0,(),0.0,(),7.0,{()}8.0,(),2.0,(),0,{(: 3213,22,21,223,12,11,111 DDDisDTHENAAAisUAAAisUIFR   (6a) 

)}0,(),1,(),0,{()},3.0,(),7.0,(),0,{()}2.0,(),8.0,(),0,{(: 3213,22,21,223,12,11,112 DDDisDTHENAAAisUAAAisUIFR    (6b) 

)}1,(),0,(),0,{()},0,(),3.0,(),7.0,{()}0,(),5.0,(),5.0,{(: 3213,22,21,223,12,11,113 DDDisDTHENAAAisUAAAisUIFR    (6c) 

An input data x of the EBRB system is then supposed as follows: 

)}}0,(),0,(),1,{()},0,(),0,(),1,{{( HighMediumLowHighMediumLow=x                    (7) 

Consider that the weights of the three rules and two antecedent attributes are all set to 1. Hence, the individual matching 

degree of the two antecedent attributes and the activation weight of the three rules can be calculated by using Eqs. (10) and (11) 

shown in Section 3.1 and the calculated values are then listed in Table 1. Finally, the second and third rules are activated for the 

input data x. 
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Table 1. Individual matching degrees and activation weights from conventional EBRB system 

Rule no. (Rk) 
Individual matching degree ( ),( ii

k UxS )  
Activation weight (wk) 

Sepal length (U1) Sepal width (U2) 

1 -0.2961 0.5757 -0.1705 

2 -0.2961 -0.2570 0.3110 

3 0.2929 0.5757 0.6890 

 

2.2. Related works of conventional EBRB system in classification problems 

Since the EBRB system was shown to be applicable for handing classification problems, many attempts have been made to 

apply and improve the conventional EBRB system. For example, Calzada et al. [26] proposed the dynamic rule activation (DRA) 

method to dynamically adjust the set of activation rules, in which the essence of the DRA method is an iterative algorithm that 

needs to recalculate activation weight for each rule repeatedly. They showed that the DRA method can improve the accuracy and 

solve the inconsistency problem of the conventional EBRB system in the case of 22 classification datasets. Yang et al. [22] 

constructed the multi-attribute search framework (MaSF) based on the tree-based data structure, in which the MaSF contributes to 

decreasing the time complexity of the conventional EBRB system because there is no need to visit the entire EBRB to search for 

the activation rules. They concluded that the MaSF improves the accuracy and efficiency of the conventional EBRB system for 19 

classification datasets. Yang et al. [21] introduced the data envelopment analysis (DEA) to reduce inefficient rules for the 

conventional EBRB system. They showed that 23%, 8%, 22%, 11%, and 9% rules can be reduced from the classification datasets 

Iris, Seeds, Ecoli, Diabetes, and Glass, respectively. Espinilla et al. [27] proposed the adaption of the EBRB system for human 

activity recognition in a smart environment. They suggested that the Hamming distance can improve the accuracy of the EBRB 

system for the binary classification problems. Recently, Yang et al. [28] proposed the consistency analysis-based rule activation 

(CABRA) method to define and select suitable activation rules, where the essence of the CABRA method is a linear optimization 

model. They showed that the CABRA method can solve the inconsistency problem and also make the conventional EBRB system 

have a better accuracy than that improved by the DRA method for 9 classification datasets. 

Among the above attempts for improving the conventional EBRB system in classification problems, the DRA method and the 

CABRA method are the typical representatives because both of them aim at solving the inconsistency problem by embedding an 

activation mechanism into the process of determining activation rules, which is the same starting point to the present work. 

However, the essence of the DRA method and the CABRA method decides that they need a lot of extra time to perform the 

iterative algorithm or the linear optimization model during determining activation rules for each input data. Clearly, this situation 

should be avoided as much as possible in the improved EBRB system, which is another starting point in the present work. As such, 

the case studies shown in Section 4 are mainly for  comparative analysis based on the DRA method and CABRA method. 
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2.3. Drawbacks of conventional EBRB system in classification problems  

As mentioned before, the conventional EBRB system suffers from some drawbacks while being used to handle classification 

problems. These drawbacks can be summarized as follows: 

(1) The most significant drawback is that the EBRB system may suffer from the inconsistency problem, which will decrease 

the accuracy of the EBRB system because almost all rules must be activated no matter what input data is provided for 

the EBRB system. Clearly, Table 1 shows that except for the first rule which has an irrational activation weight, the other 

rules are all activated for the input data. Although many attempts, including the DRA method [26] and the CABRA 

method [28], were made to solve the inconsistency problem, they all failed to effectively construct an efficient procedure 

of activation rule determination for the EBRB system. 

(2) Another significant drawback is that the EBRB system may produce counterintuitive individual matching degrees in the 

conventional procedure of activation weight calculation. As shown in Table 1, three individual matching degrees are 

negative values and these values may further produce negative activation weights for such as the first and second rules. 

Although the second rule has a positive activation weight, it is calculated from two negative individual matching degrees, 

namely -0.2961 and -0.2570. Such weights obviously make no sense and are irrational, which may restrict the 

application of the EBRB system. 

(3) The last significant drawback is that the EBRB system is sometimes over insensitive to the calculation of individual 

matching degrees. As shown in Table 1, the individual matching degree of “sepal width” regarding the first rule is the 

same to that regarding the third rule. However, the belief distribution of “sepal width” regarding the first rule is {(A2,1, 

0.7), (A2,2, 0.0), (A2,3, 0.3)} and that regarding the third rule is {(A2,1, 0.7), (A2,2, 0.3), (A2,3, 0.0)}. In other words, two 

different rules produce a same individual matching degree for the input data. This drawback may also restrict the 

application of the EBRB system. 

In the subsequent sections, it is necessary to develop the new procedures of activation rule determination and weight 

calculation for the EBRB system to overcome the above-mentioned drawbacks in classification problems. 

 

3. New EBRB System for Classification Problems 

This section introduces the conventional procedures of activation rule determination and weight calculation to investigate the 

causes of the drawbacks shown in Section 2.2. Based on these causes, new procedures of activation rule determination and weight 

calculation are proposed to improve the EBRB system. Besides, by using the conventional procedures of rule inference and class 

estimation, a novel EBRB classification system is developed to deal with classification problems. 

3.1. Analysis of conventional activation rule determination and weight calculation 

In order to illustrate the conventional procedure of activation rule determination, consider that there is one classification 

example with two antecedent attributes, and each antecedent attribute has a set of referential values, namely },...,{
1,11,1 JAA  and 

},...,{
2,21,2 JAA , respectively. As such, the input space of the EBRB system can be represented by all lowest and highest referential 
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values [29], as shown in Fig. 2.  

  

Fig. 2. Input region and conventional activation rule determination 

From Fig. 2, there are four rules {R1, R2, R3, R4} and one input data x in the input space of the EBRB system. To classify the 

input data x, the rules located in the input space are directly used to calculate activation weights. In other words, all rules R1, R2, 

R3, and R4 should take part in the conventional procedure of activation weight calculation for the input data x. Clearly, for the 

EBRB system, the cause of the inconsistency problem is due to lack of effective approach to screening consistent activation rules. 

In order to illustrate the conventional procedure of activation weight calculation, consider that there is an input data x=(x1,…, 

xM), where M is the number of antecedent attributes. Each input xi is transformed into the following belief distribution [30]: 

},...,1);,{()( ,, ijijii JjAxS ==  ,                                     (8) 
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where u(Ai,j) is the utility value of the referential value Ai,j, ji ,  is the similarity degree to which the input xi matches the 

referential value Ai,j, Ji is the number of referential values referred to the ith antecedent attribute. 

The individual matching degree of the ith antecedent attribute in the kth rule is calculated by the following formula: 

 =
−−=

Ji

j
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jijiii

k UxS
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)(1),(  ,                                (10) 

where 
k

ji ,
  is the belief degree to which antecedent attribute Ui is evaluated to be the referential value Ai,j in the kth rule, Sk(xi,Ui) 

is the individual matching degree of the input xi to the antecedent attribute Ui in the kth rule. 

The activation weight for the kth rule is then calculated by the following formulas: 
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where 
k  is the weight of the kth rule; i  is the weight of the ith antecedent attribute; and wk is the activation weight of the kth 

rule. 

To investigate the causes of the drawbacks found in the conventional EBRB system, the formula derivations shown in Eqs. 

(12) and (13) are used to analyze the conventional procedure of activation weight calculation. 
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 Firstly, according to Eq. (10), the calculation formula of individual matching degrees can be deduced as follows: 
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 It is obvious from Eq. (12) that a necessary normalization is neglected in Eq. (10), so that the lower bound of individual 

matching degrees is 1- 2 . This is why the conventional EBRB system produces counterintuitive individual matching degrees. 

Secondly, when Eq. (10) is regarded as a special weighted calculation formula, it can be written as follows: 

 ==
−−=−−=
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j
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jijiji
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j
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where ji ,  is the weight of the referential value Ai,j and its value is equal to 1, namely, 1, =ji  
(i=1,…, M; j=1,…, Ji), for the 

conventional procedure of activation weight calculation. 

 It is clear from Eq. (13) that the difference between referential values is neglected in Eq. (10), so that the conventional EBRB 

system is sometimes over insensitive to the calculation of individual matching degrees. 

 

3.2. New activation rule determination based on the activation region of extended belief rules 

The new procedure of rule activation determination divides the input space of the EBRB system into four two-dimensional 

local regions using the lines which are made by two rules, as shown in Fig.3(a), where LRi represents the ith (i=1,…, 4) local 

region. The following definition is given to define the activation region of extended belief rules: 

Definition 1. Suppose the input space of an EBRB system is decomposed into multiple local regions according to the lines 

which are made by extended belief rules. Thus, the activation region of the kth (k=1,…, L) extended belief rule is defined as the 

region that: 1) is formed by any adjacent local regions; 2) only includes the kth extended belief rule. 

From Definition 1, if an input data falls into an activation region, the extended belief rule located in the activation region is 

necessary to be activated for the input data. For example on Figs.3(a) - 3(c), Fig.3(a) shows that the activation region of the rules 

R1, R2, R3, and R4 is {LR1, LR2}, {LR1, LR4}, {LR3, LR4}, and {LR2, LR3}, respectively. As shown in Figs.3(b) and 3(c), if the input 

data x falls into the local region LR2, then only rules R1 and R4 are activated and integrated to classify the input data x. 

  

(a) Activation regions              (b) Activation region of R1              (c) Activation region of R4 

Fig. 3. Activation regions and new rule activation determination 
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To construct activation regions, below steps in the case of the kth (k=1,…, L) extended belief rule should be done: 

Step 1. Express extended belief rules in the form of tuple [26]. Suppose u(Ai,j) is the utility value of the referential value Ai,j 

(i=1,…, M; j=1,…, Ji) in the ith antecedent attribute, M is the number of antecedent attributes, Ji is the number of referential 

values in the ith antecedent attribute. Thus, the kth rule can be expressed by the following formulas: 

= k
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where 
k

ji ,
  is the belief degree of the referential value Ai,j

 
in the kth rule. 

Step 2. Calculate the absolute distance of each antecedent attribute between the kth rule and the other rules {Rj; j=1,..., L; j

k} in the form of tuple. For the sake of clarity, these distances are expressed by the following matrix: 
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Step 3. Construct lines that separate the kth rule from the others {Rj; j=1,..., L; j  k} in the input space of the conventional 

EBRB system. Suppose that the line through Rl{Rj; j=1,..., L; j  k} is able to separate the kth rule and the other rules {Rj; j=1,..., 

L; j  k}. In other words, there exists a set of weights },...,{ 1

l

M

l   for the rule Rl to ensure the minimal weighted distance 
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||  comparing to other rules {Rj; j=1,…, L; j l; j  k}. Without loss of generality, it is assumed that the minimal 

weighted distance is 1. The set of weights for the rule Rl can be obtained by the following linear programming model: 
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where 
l  is the maximum weighted distance obtained from the minimal weighted distance of the rules {Rj; j=1,…, L; j  l; j  k}. 

If 1l , it means that the line through Rl fails to separate the kth rule and the other rules {Rj; j=1,..., L; j  k}; Otherwise, the set 

of weights },...,{ 1

l

M

l   can be used to construct a line for the kth rule. 

Step 4. Construct the activation region of the kth rule using the set of weights },...,{ 1

l

M

l  . The activation region of the kth 

rule can be expressed by the following formula: 

},...,1,1||),...,{()(
11

kM

i i

k

i

l

iMk LlxxxxRQ =−=  =
                      (18) 

where xi is the input variable in the ith antecedent attribute; Lk is the number of rules that can be used to construct the line for the 

kth rule; Q(Rk) is the activation region of the kth rule. 

For the abovementioned steps, the following remarks are provided: 

Remark 1. The activation region of each extended belief rule can be constructed by an offline process because it is 

completely independent of the procedures of activation rule determination and weight calculation. Hence, comparing with the 
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existing activation rule determination, such as the DRA method and the CABRA method, the new rule activation determination is 

high-efficient due to the fact that the construction of activation regions has no effect on the time complexity of EBRB system. 

Based on the activation region Q(Rk), the new procedure of rule activation determination can be described as the following 

formula: 
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where x=(x1,…, xM) is the input data of EBRB system, RA(Q(Rk), x) is the evaluation function of activating the kth rule. If 

RA(Q(Rk), x) = -1, it means that the activation weight of the kth rule should be calculated for the input data x; Otherwise, the rule 

should not be activated. 

 Remark 2. The new procedure of rule activation determination must be able to overcome the inconsistency problem found in 

the conventional EBRB system, because the activation region of each extended belief rule can be used to effectively determine 

consistent activation rules for each input data. 

Remark 3. When input data are provided for an EBRB system, it is linear time complexity to determine activation rules. The 

time complexity of the rule activation determination procedure is also linearly increasing as the number of input data rises. 

Therefore, the new procedure of rule activation determination is an efficient procedure for the EBRB system. 

 

3.3. New activation weight calculation by considering the weight of referential values and normalization 

The new procedure of activation weight calculation assumes that there is an input data vector x=(x1,…, xM) and a set of utility 

values {u(Ai,j); i=1,…, M; j=1,…, Ji} regarding the referential value Ai,j, where the relationship between adjacent utility values in 

the ith antecedent attribute is u(Ai,j)<u(Ai,j+1) (j=1,…, Ji-1), M is the number of antecedent attributes, and Ji is the number of 

referential values referred to the ith antecedent attribute. 

Hence, based on those utility values, the weight of the referential value Ai,j is calculated as 
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By considering the weight ji ,  and the normalization process, new individual matching degree of the ith antecedent 

attribute in the kth rule is calculated by 
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where 
k

ji ,
  is the belief degree to which the antecedent attribute Ui is evaluated to be the referential value Ai,j in the kth rule, 

ji ,  is the similarity degree to which the input xi matches the referential value Ai,j. 

 Based on the new individual matching degree, new activation weight of the kth rule is calculated by using Eq. (11) with the 

new individual matching degree, namely: 
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where k  is the weight of the kth rule; i  is the weight of the ith antecedent attribute. 
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Remark 4. The new procedure of activation weight calculation overcomes the drawbacks of conventional EBRB system 

because of the following three reasons: 

(1) As shown in Eq. (20), the weight of referential values can avoid 0, =ji  
(i=1,…, M; j=1,…, Ji) because the function es 

is a computation component to the weight ji ,  and the output of this function is bigger than 0 for any input data. 

(2) As shown in Eq. (21), the weight of referential values is used to calculate individual matching degrees and these 

weights can illustrate different importance for different referential values. 

(3) As shown in Eq. (21), the value range of individual matching degrees is [0, 1] since two maximal weights of referential 

values are regarded as a denominator to normalize individual matching degrees. 

Table 2 shows the results obtained from the new activation weight calculation while {u(A1,1), u(A1,2), u(A1,3)} to “Sepal length” 

is {4.3, 6.1, 7.9} and {u(A2,1), u(A2,2), u(A2,3)} to “Sepal width” is {2.0, 3.2, 4.4}. 

Table 2. Individual matching degrees and activation weights from new activation weight calculation 

Rule no. (Rk) 
Individual matching degree ( ),( ii

k UxS ) 
Activation weight (

kw ) 

Sepal length (U1) Sepal width (U2) 

1 0.1985 0.7232 0.2037 

2 0.2961 0.3144 0.1321 

3 0.6106 0.7664 0.6642 

By comparing with Table 1, it is clear from the values marked as bold in Table 2 that the new procedure of activation weight 

calculation can overcome the drawback of counterintuitive individual matching degrees, e.g., new individual matching degrees 

and activation weights are all positive values, and the drawback of insensitive to the calculation of individual matching degrees, 

e.g., ),( 22

1 UxS  ),( 22

3 UxS  in Table 2 is more reasonable than ),( 22

1 UxS = ),( 22

3 UxS  in Table 1. 

 

 

3.4. EBRB classification system with new activation rule determination and weight calculation 

Based on the new procedures of activation rule determination and weight calculation, a novel EBRB classification system is 

developed in this section, as shown in Fig. 4. 

  

Fig. 4. Illustration of the proposed EBRB classification system 
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There are two main processes in the proposed EBRB classification system. The first process is the new procedures of 

activation rule determination and weight calculation, these procedures aim to judge which rule should be activated and how to 

calculate activation weights. The second process is the original procedures of conventional EBRB system and their roles are to 

integrate activation rules using the ER algorithm and estimate the final class based on inference results. Correspondingly, four 

steps are given as follows: 

Step 1. Activation rule determination based on the activation region of each extended belief rule shown in Section 3.2. In 

order to ensure the efficiency of the proposed EBRB classification system, the activation region of all extended belief rules is 

constructed in advance. After that, for the given input data x, the proposed EBRB classification system can efficiently determine 

activation rules based on the evaluation function shown in Eq. (19). 

Step 2. Activation weight calculation for each activation rule showed in Section 3.3. In order to calculate activation weights 

for each activation rules, the first step is to transform the input data x into the belief distribution by using Eqs. (8) and (9); the 

second step is to calculate individual matching degrees for each antecedent attribute by using Eqs. (20) and (21); and finally the 

third step is to calculate activation weights for each activation rule by using Eq. (22). 

Step 3. Rule inference using the ER algorithm. After calculating activation weights, all activation rules should be integrated 

using the following analytical ER algorithm [23][24]: 
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where 
kw  is the new activation weight of the kth activation rule; 

k

n  is the belief degree of the class Dn in the kth activation 

rule; L* is the number of activation rules; and 
n  is the integrated belief degree of the class Dn to classify the input data x. 

Step 4. Class estimation based on the inference result. The class estimation is to seek the biggest belief degree from the 

inference results to determine the final estimated class by the following formulas: 

)(maxarg,)(
,...,1

n
Nn

t tDf 
=

==x                                     (24) 

 

 

4. Case Study 

 Nineteen classification datasets obtained from the University of California at Irvine [25] are studied to validate the efficiency 

and effectiveness of the proposed EBRB classification system. Table 3 summarizes the number of attributes, classes, and samples. 

For each classification dataset, the experiment results are obtained under the assumption that each antecedent attribute has five 

referential values and their utility values are generated uniformly from the upper and lower boundaries of each antecedent attribute. 

Furthermore, the 10/2-fold cross-validation [31] is performed and the proposed EBRB classification system is implemented in 

Microsoft Visual C++ on Intel (R) Core (TM) i5-4300U CPU @ 1.90GHz with Windows 7. 
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Table 3. Statistics on nineteen classification datasets 

No. Dataset No. of samples No. of attributes No. of classes 

1 Mammographic 830 5 2 

2 Banana 5300 2 2 

3 Titanic 2201 3 2 

4 Banknote 1372 4 2 

5 Phoneme 5404 5 2 

6 Diabetes 393 8 2 

7 Cancer 569 30 2 

8 Iris 150 4 3 

9 Seeds 210 7 3 

10 Wine 178 13 3 

11 Knowledge 403 5 4 

12 Car evaluation 1728 6 4 

13 Pageblocks 5473 10 4 

14 Nursery 1296 8 5 

15 Shuttle 2175 9 5 

16 Glass 214 9 6 

17 Red wine 1599 11 6 

18 Ecoli 336 7 8 

19 Yeast 1484 8 10 

 

4.1. Comparative analysis with the conventional EBRB systems 

Based on the number of classes, the nine small scale classification datasets with the sample range [150, 830] are divided into 

three groups, namely the group of two-class datasets shown in Table 4, three-class datasets shown in Table 5, and multi-class 

datasets shown in Table 6. For five independent runs with 10-fold cross-validation, the sample of each dataset is randomly 

partitioned into 10 equal sized subsamples with 9 subsamples as a training dataset and the remaining subsample as a testing 

dataset. In addition, the conventional EBRB system [20] and its improvements, including the improved EBRB system by the DRA 

method [26] and the CABRA method [28], are used to compare the proposed EBRB classification system, where all these EBRB 

systems are abbreviated as C-EBRB, DRA-EBRB and CABRA-EBRB in Tables 4, 5, and 6, respectively. 

The average results obtained from 5 independent runs for each classification dataset are measured with: 1) Accuracy, which 

shows the percentage of testing data correctly classified by the EBRB system; 2) Failed data, which shows the number of testing 

data where the EBRB system cannot produce any estimated class due to lack of activation rules; and 3) Response time, which 

shows the running time of the EBRB system to classify each input data in millisecond. 

 For the group of two-class datasets shown in Table 4, CABRA-EBRB has the best accuracies in two of three datasets, which 
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are 97.01% and 76.34% obtained from datasets Cancer and Diabetes, respectively. Despite this fact, it is still possible to see some 

considerable improvements in accuracies. For example, the accuracies of the proposed EBRB classification system are all better 

than those of the C-EBRB and DRA-EBRB. In terms of failed data, except for the results of C-EBRB obtained from datasets 

Cancer and Mammographic, the results of the other EBRB systems are 0 for different datasets. It is proved that the proposed 

EBRB classification system is the same as the other improved EBRB systems and can effectively activate rules to classify input 

data. In terms of response time, the results show that the CABRA-EBRB is the most time-consuming system compared with the 

others, and the proposed EBRB classification system needs more response time than the C-EBRB and DRA-EBRB but there is no 

much difference.  

Table 4. Comparisons of average results for two-class datasets 

Dataset (No. of samples/classes) Criterion C-EBRB[26] DRA-EBRB[26] CABRA-EBRB[28] This study 

Cancer (569/2) Accuracy (%) 94.59 94.61 97.01 95.47 

Failed data 8.8 0 0 0 

Response time (ms) 27.5 29.6 >68.5 35.2 

Diabetes (393/2) Accuracy (%) 73.39 71.44 76.34 75.98 

Failed data 0 0 0 0 

Response time (ms) 6.0 7.0 >28.8 7.1 

Mammographic (830/2) Accuracy (%) 77.64 78.39 79.52 79.57 

Failed data 0.1 0 0 0 

Response time (ms) 7.3 6.8 >11.0 7.5 

Average Accuracy (%) 81.87 81.48 84.29 83.67 

Failed data 3.0 0 0 0 

Response time (ms) 13.6 14.4 >36.1 16.6 

For the group of three-class datasets, Table 5 shows that the accuracies of the proposed EBRB classification system start 

being better comparing to others. In such group of datasets, the new procedure of rule activation can contribute to that more 

consistent activation rules are used to classify input data and it thus becomes a more important procedure than in the group of 

two-class datasets. Although for dataset Iris the accuracy improves just slightly and worse than the CABRA-EBRB, in the 

remaining datasets Seeds and Wine the accuracies improve very significantly and are better than the others. In addition, the 

proposed EBRB classification system takes the minimum response time to classify each input data for dataset Iris, where the 

minimum running time means that the proposed EBRB classification system is possible to improve the computing efficiency of 

the procedure of rule inference owning to fewer activation rules. Meanwhile, the considerable good efficiency of the proposed 

EBRB classification system is further demonstrated by comparing the response time of the DRA-EBRB and CARBA-EBRB. 

Taking dataset Wine for example, the response time derived from the proposed EBRB classification system is less than that from 

the DRA-EBRB and further less than that from the CABRA-EBRB. 
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Table 5. Comparisons of average results for three-class datasets 

Dataset (No. of samples/classes) Criterion C-EBRB[26] DRA-EBRB[26] CABRA-EBRB[28] This study 

Seeds (210/3) Accuracy (%) 87.04 92.02 92.38 93.24 

Failed data 0 0 0 0 

Response time (ms) 2.8 2.8 >14.8 3.4 

Iris (150/3) Accuracy (%) 95.20 95.50 96.00 95.73 

Failed data 0 0 0 0 

Response time (ms) >1.6 >1.6 >15.7 >1.2 

Wine (178/3) Accuracy (%) 96.32 96.46 96.63 97.87 

Failed data 0 0 0 0 

Response time (ms) 4.1 8.1 >26.5 4.8 

Average Accuracy (%) 92.85 94.66 95.00 95.61 

Failed data 0 0 0 0 

Response time (ms) >2.8 >4.2 >19.0 >3.1 

For the group of multi-class datasets, it is clear from Table 6 that the proposed EBRB classification system can produce the 

best accuracies for all classification datasets and these accuracies are significantly better than the accuracies of the C-EBRB. 

Taking dataset Ecoli for example, the accuracy of the proposed EBRB classification system has been improved 258.4% compared 

with that of C-EBRB. Beyond that, the proposed EBRB classification system can classify each input data using the minimal 

response time, especially for datasets Glass and Knowledge where the response time of the proposed EBRB classification system 

are less than those of C-EBRB. In terms of failed data, except for 3.55 and 1 in datasets Glass and Ecoli for the C-EBRB, the other 

improved EBRB systems such as DRA-EBRB, CABRA-EBRB, and the proposed EBRB classification can effectively avoid 

undesired situation where none of rules are activated for special input data.  

Table 6. Comparisons of average results for multi-class datasets 

Dataset (No. of samples/classes) Criterion C-EBRB[26] DRA-EBRB[26] CABRA-EBRB[28] This study 

Knowledge (403/4) Accuracy (%) 75.07 80.71 89.33 92.01 

Failed data 0 0 0 0 

Response time (ms) 4.5 6.8 >21.7 3.8 

Glass (214/6) Accuracy (%) 51.43 69.65 72.90 75.51 

Failed data 3.55 0 0 0 

Response time (ms) 4.6 9.2 >28.5 4.2 

Ecoli (336/8) Accuracy (%) 33.72 83.76 85.42 87.14 

Failed data 1.00 0 0 0 

Response time (ms) 4.3 6.5 >27.8 4.9 

Average Accuracy (%) 53.41 78.04 82.55 84.89 

Failed data 1.52 0 0 0 

Response time (ms) 4.5 7.5 >26.0 4.3 
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In order to further compare the proposed EBRB classification system with other improved EBRB systems including the 

DRA-EBRB and CABRA-EBRB, Fig. 5 shows their increased accuracies and response time in comparison with the conventional 

EBRB system based on the average results of two/three/multi-class datasets.  

 

(a) Increased accuracy in different datasets                (b) Increased response time in different datasets 

Fig. 5. Comparisons of increased accuracy and response time for different improved EBRB systems 

According to Fig. 5, some preliminary conclusions can be summarized as follows:  

(1) Compared with the DRA-EBRB, the accuracies of the proposed EBRB classification system are always better than 

those of the conventional EBRB system. 

(2) Compared with the CABRA-EBRB, the response time of the proposed EBRB classification system are close to the 

conventional EBRB system. 

(3) For the multi-class datasets, the proposed EBRB classification system is the only system that can not only increase the 

accuracy of the conventional EBRB system, but also decreases the response time of the conventional EBRB system. 

 

4.2. Comparative analysis under larger scale classification datasets 

Consider that the comparative analyses in Section 4.1 are based on the small scale classification datasets with the sample 

range [150, 830]. Another ten larger scale classification datasets, which belong to the sample range [1296, 5473], are applied to 

compare the proposed EBRB classification system with other EBRB systems, including C-EBRB and DRA-EBRB, where the 

CABRA-EBRB does not involve in the comparative analysis based on these ten datasets because Tables 4-6 and Fig. 5 show that 

the CABRA-EBRB is much more time-consuming. Additionally, the results of Table 7 are obtained from 2-fold cross-validation 

for each dataset and are measured with: 1) Accuracy; 2) Distance, which shows the minimum attribute distance between activation 

rules and input data in terms of the single attribute value [22]; 3) Response time; 4) Activation ratio, which shows the average 

percentage of rules that is activated for each input data. 
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Table 7. Comparisons of average results for larger scale datasets 

Dataset (No. of samples/classes) Criterion C-EBRB DRA-EBRB This study 

Banknote (1372/2) Accuracy (%) 91.98 99.93 98.83 

Distance 106.467 55.858 4.597 

Response time (ms) 1.3 7.1 1.1 

Activation ratio (%) 100 51.62 2.02 

Banana (5300/2) Accuracy (%) 63.43 87.06 87.28 

Distance 630.752 609.177 6.498 

Response time (ms) 2.7 13.9 2.4 

Activation ratio (%) 100 97.64 0.17 

Titanic (2201/2) Accuracy (%) 76.74 78.83 78.06 

Distance 31.174 0.362 0 

Response time (ms) 1.4 8.7 2.0 

Activation ratio (%) 100 80.86 48.26 

Phoneme (5404/2) Accuracy (%) 71.89 76.02 85.23 

Distance 216.286 149.747 10.109 

Response time (ms) 4.6 34.5 8.4 

Activation ratio (%) 100 62.65 1.42 

Car evaluation (1728/4) Accuracy (%) 78.13 82.58 90.22 

Distance 75.382 18.563 0 

Response time (ms) 1.8 12.1 1.3 

Activation ratio (%) 100 32.32 1.72 

Pageblocks (5473/4) Accuracy (%) 89.77 94.19 94.30 

Distance 2.871 1.919 0.652 

Response time (ms) 7.0 72.6 21.2 

Activation ratio (%) 100 94.19 2.94 

Shuttle (2175/5) Accuracy (%) 84.51 98.62 98.71 

Distance 0.211 0.169 0.009 

Response time (ms) 2.9 26.1 4.6 

Activation ratio (%) 100 68.61 4.37 

Nursery (1296/5) Accuracy (%) 81.71 74.61 82.10 

Distance 18.787 0 0 

Response time (ms) 1.8 13.1 2.5 

Activation ratio (%) 92.27 0.62 8.58 

Red wine (1599/6) Accuracy (%) 57.10 58.72 59.91 

Distance 18.728 7.962 5.214 

Response time (ms) 2.6 21.1 10.9 

Activation ratio (%) 100 12.46 20.39 

Yeast (1484/10) Accuracy (%) 38.27 53.91 54.51 

Distance 0.003 0 0.001 

Response time (ms) 2.2 15.0 1.9 

Activation ratio (%) 100 54.45 2.93 

Average Accuracy (%) 73.35 80.45 82.92 

Distance 110.066 84.376 2.708 

Response time (ms) 2.83 22.4 5.6 

Activation ratio (%) 99.23 55.54 9.28 
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As we can observe in Table 7, some preliminary conclusions are summarized as follows:  

(1) The proposed EBRB classification system has a better accuracy in two of four two-class datasets and all six multi-class 

datasets, e.g. it is clear from Table 7 that only the 98.83% and 78.06% accuracies of two-class datasets Banknote and 

Titanic obtained from the proposed EBRB classification system are worse than the 99.93% and 78.83% accuracies 

obtained from DRA-EBRB. For the remaining eight classification datasets, the accuracy of the proposed EBRB 

classification system outperforms all listed studies. Consequently, the average accuracy of the proposed system is better 

than that of C-EBRB and DRA-EBRB for the ten classification datasets. 

(2) Apart from the dataset Yeast, the proposed EBRB classification system has a smaller distance between activation rules 

and input data, which means that the proposed EBRB classification system tends to activate the rule closer to input data, 

leading to more consistent activation rules and better accuracy for the proposed EBRB classification system. Clearly, 

the significant improvement is more likely to be found in the multi-class datasets because it is easier to activate 

inconsistent rules for an EBRB system while the dataset has more classes.  

(3) The proposed EBRB classification system is completely better than DRA-EBRB but partially better than C-EBRB in 

terms of response time. For example, the average response time of the proposed EBRB classification system (5.6 ms) is 

more than that of C-EBRB (2.83 ms) but much less than that of DRA-EBRB (22.4 ms). The reason for this situation is 

that, as we can observe in average results, the 9.28% rules are activated for each input data in the proposed EBRB 

classification system. However, there are 99.23% activation rules in the C-EBRB. Although the 55.54% rules are 

activated in the DRA-EBRB, the DRA method has to determine the activation rules by recalculating activation weights 

for all rules many times, leading to lots of running time to classify input data. 

4.3. Comparative analysis with conventional machine learning approaches 

To further verify the validity of the proposed EBRB classification system, the accuracies derived from 5 independent runs 

with 10-fold cross-validation are further compared with conventional machine learning approaches, as shown in Table 8. 

Table 8. Comparisons of accuracy for conventional machine learning approaches 

Methods Core supporting theory 
Multi-class  Three-class  Two-class 

Glass Ecoli  Wine Iris Cancer Diabetes 

KNN[32] K nearest neighbor 66.85% 81.27%  96.05% 85.17%  - - 

AISWNB[33] Naive Bayes 57.74% -  - 94.87%  97.24% 75.86% 

EFRBCS[9] Fuzzy set 68.57% 82.39%  - 92.00%  92.00% 71.54% 

WLTSVM[5] Support vector machine 49.91% -  96.40% 98.00%  - 77.08% 

LST-KSVC[34] Neural network 65.76% -  94.27% 99.27%  - - 

CMQFS[35] Feature vector graph 70.06% -  98.88% -  - - 

HHCART[36] Decision tree 61.90% -  91.40% -  97.00% - 

EBRB system[26] Extended belief rule 51.43% 33.72%  96.32% 95.20%  94.59% 73.39% 

This study Extended belief rule 75.51% 87.14%  97.87% 95.73%  95.47% 75.98% 
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By comparing with the accuracies of these machine learning approaches, it is proved that the proposed EBRB classification 

system can produce satisfactory accuracies. For example, for the multi-class datasets, the 75.51% and 87.14% accuracies obtained 

from datasets Glass and Ecoli outperform all listed studies, especially for dataset Glass because the comparison results are based 

on all the machine learning approaches. For the remaining four classification datasets, although the proposed EBRB classification 

system fails to achieve the most satisfactory accuracies, it still improves the accuracies of the conventional EBRB system and 

reach the second, third, third, and second best accuracies in datasets Wine, Iris, Cancer, and Diabetes, respectively, compared to 

other selected approaches. 

In addition, some implicit information can be further found from the comparison results:  

(1) The proposed EBRB classification system has superior accuracy to handle multi-class datasets, e.g., it is clear from 

Table 8 that the rank of the accuracies obtained from the datasets Glass and Ecoli are better than those from the other 

datasets.  

(2) Based on Table 8, it is almost impossible to find a best approach or system which can has the best accuracies for all 

classification datasets, because many factors such as data structure and noise data are likely to affect the accuracy of 

classifiers.  

5. Conclusions and Future Research 

In this study, a novel EBRB classification system with the new procedures of activation rule determination and weight 

calculation has been proposed to handle classification problems. Nineteen classification datasets were tested with 10/2-fold cross- 

validations to validate the efficiency and effectiveness of the proposed EBRB classification system compared with the 

conventional EBRB classification and some commonly used classification tools. The detailed contributions can be summarized 

into three aspects below: 

(1) Different drawbacks of the conventional EBRB system, including counterintuitive individual matching degrees, 

insensitivity to the calculation of individual matching degrees, and the inconsistency problem have been carried out. 

Furthermore, a case analysis and mathematical derivation have been further applied to investigate the causes of these 

drawbacks, respectively. 

(2) Based on the causes of the drawbacks found in the conventional EBRB system, the activation region of extended belief 

rules has been defined and an effective method to construct the activation region for each extended belief rule has been 

introduced. Besides, the new procedures of activation rule determination and weight calculation have been proposed to 

determine consistent activation rules and revise the calculation formula of activation weights. 

(3) In the case studies of common classification datasets, the comparison results demonstrated that the proposed EBRB 

classification system could improve the accuracy and efficiency of the conventional EBRB systems. More importantly, 

for the multi-class classification datasets, the proposed EBRB classification system had a significant performance better 

than other improved EBRB systems and conventional machine learning approaches. 

For the future research, the determination of EBRB parameters, which are often given by expert knowledge with lots of 
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subjectivities, is one of challenges to promote the application of the EBRB system in classification problems 
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