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ABSTRACT 

The thermal hazards from ignited under-expanded cryogenic releases are not yet fully understood and 

reliable predictive tools are missing. This study aims at validation of a CFD model to simulate flame 

length and radiative heat flux for cryogenic hydrogen jet fires. The simulation results are compared 

against the experimental data by Sandia National Laboratories on cryogenic hydrogen fires from 

storage with pressure up to 5 bar abs and temperature in the range 48-82 K. The release source is 

modelled using the Ulster’s notional nozzle theory. The problem is considered as steady-state. Three 

turbulence models were applied, and their performance was compared. The realizable k-ε model 

showed the best agreement with experimental flame length and radiative heat flux. Therefore, it has 

been employed in the CFD model along with Eddy Dissipation Concept for combustion and Discrete 

Ordinates (DO) model for radiation. A parametric study has been conducted to assess the effect of 

selected numerical and physical parameters on the simulations capability to reproduce experimental 

data. DO model discretization is shown to strongly affect simulations, indicating 10x10 as minimum 

number of angular divisions to provide a convergence. The simulations have shown sensitivity to 

experimental parameters such as humidity and exhaust system volumetric flow rate, highlighting the 

importance of accurate and extended publication of experimental data to conduct precise numerical 

studies. The simulations correctly reproduced the radiative heat flux from cryogenic hydrogen jet fire 

at different locations.  
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1 INTRODUCTION 

Cryo-compression is a competitive technique when storage of large quantities of hydrogen is needed 

[1]. Understanding of consequences of potential accidents with cryogenic release of hydrogen is 

fundamental to protect life and prevent property loss. Predictive models are needed for hydrogen 

safety engineering to calculate hazard distances in case of cryogenic unignited and ignited releases. 

Only few experiments have been performed to investigate thermal hazards from cryogenic jet fires. 

Friedrich et al.’s experiments performed in Germany concerned releases with pressures from 7 to 35 

bar abs and temperature in the range 34-65 K [2]. Flame stability, combustion regimes and thermal 

radiation were analysed. Health and Safety Laboratory (HSL) in UK performed experiments on 60 

l/min spills of LH2 combustion and estimated that the minimum safety distance to avoid damage from 

jet fire thermal effects shall be about 14 m [3]. The most recent experiments on cryogenic hydrogen jet 

fires were conducted at Sandia National Laboratories (SNL) in USA [4]. The radiative thermal heat 

flux and flame length were analysed for release temperature 37-295 K and pressures up to 6 bar abs. It 

was found that for a constant mass flow rate, the radiative heat flux increases for colder release 

temperatures, as consequence of the higher flame residence time. The present study simulated a 

selection of these experiments using Fluent as computational engine. Several numerical studies 

investigated liquefied (LH2) and cryogenic hydrogen unignited jets [5]–[7], while there is a lack of 

investigations on ignited releases, i.e. jet fires. Therefore, the aim of this study is to develop and 

validate a CFD model to predict radiative heat fluxes from a cryogenic jet fire at different locations 

from the flame. As part of the model development, a parametric study has been conducted, giving 

insights into the effect of several parameters and model assumptions on simulation results.  
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2 VALIDATION EXPERIMENTS 

The experiments were conducted at the Turbulent Combustion Laboratory of SNL in USA. The main 

aim of the experiments was to investigate the ignition and flame characteristics of cryogenic under-

expanded jet fires. The analysed scenarios were concerned with hydrogen releases with temperature in 

the range 37-295 K and pressure 2-6 bar abs. The release temperature and pressure were maintained 

constant during each test and monitored upstream the interchangeable orifice of diameter 0.75 mm or 

1 mm or 1.25 mm. The hydrogen was released vertically upward in the laboratory equipped with an 

exhaust gases collection system. The facility geometry and dimensions are presented in Figure 1. The 

exhaust hood volumetric flow rate was varied from approximately 5100 to 7650 m3/h, depending on 

the hydrogen mass flow rate. The incident thermal radiation was monitored at 5 sensors located along 

the jet flame and at 0.2 m from the jet axis. The exact location of each sensor is shown in Figure 1. 

Additional experimental data to publication in [4] were provided by the authors through personal 

communication. The flame length was given as average of the visible and infrared (IR) cameras 

images. 5 tests out of the entire set of experiments performed by SNL have been selected for the CFD 

model development and validation. Table 1 shows the details of the experimental operating conditions 

of the selected tests. The orifice diameter for selected tests was 1.25 mm. 

 

Figure 1. Scheme of the experimental set-up  

Table 1. Experimental operating conditions of 5 validation tests [8] 

Test No. Mass flow rate, g/s Temperature, K Pressure, bar abs 

1 0.33 64 2 

2 0.38 48 2 

3 0.45 75 3 

4 0.56 78 4 

5 0.64 82 5 
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3 MODEL AND NUMERICAL DETAILS 

3.1 Governing equations 

The Reynolds-Averaged Navier-Stokes (RANS) conservation equations for mass, momentum, energy 

and species were solved: 
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where ρ is the density, t is the time, i,j and k correspond to the Cartesian coordinates and u to the 

velocity components, p is the pressure, 𝜇𝑡 is the turbulent dynamic viscosity, 𝛿𝑖𝑗 is the Kronecker 

symbol, 𝑔𝑖 is the gravity acceleration, 𝐸 is the total energy, 𝑘𝑡 is the thermal conductivity, 𝑐𝑝 is the 

specific heat at constant pressure, 𝑃𝑟𝑡 and 𝑆𝑐𝑡 are the energy turbulent Prandtl and turbulent Schmidt 

numbers equal to 0.85 and 0.7 respectively, 𝐷𝑚 is the molecular diffusivity of the species m,  𝑌𝑚 is the 

corresponding mass fraction, 𝑆𝐸 and 𝑆𝑚 are the source terms in the energy equation and m chemical 

species transport equation.  

Turbulence was accounted using the realizable k-ε model [9], solving the transport equations for 

turbulence kinetic energy, k, and turbulent dissipation rate, ε, as follow: 
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where 𝐺𝑘 and 𝐺𝑏 represent the generation of k by, respectively, mean velocity gradients and buoyancy, 

𝑌𝑀 is the contribution of the fluctuating dilatation in compressible turbulence to the overall dissipation 

rate, 𝜎𝑘 and 𝜎𝜀 are the turbulent Prandtl numbers for k and ε equal to 1 and 1.2,  𝜈 is the kinematic 

viscosity. 𝐶1 is evaluated as function of the modulus of the mean rate of strain tensor, S.  𝐶2 and 𝐶1𝜀 

are constants equal to 1.9 and 1.44, while 𝐶3𝜀 is calculated as function of the flow velocity 

components with respect to the gravitational vector. Realizable k-ε model performance was compared 

against standard k-ε model [10] and RNG k-ε model [11]. However, the specifics of these two models 

are not presented as they are not a part of the CFD model under validation.  
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Combustion was modelled through the Eddy Dissipation Concept (EDC) [12]. The rate of reaction of 

the species i is evaluated as follow: 
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where 𝑌𝑖 is the species mass fraction, with value 𝑌𝑖
∗ over the time scale 𝜏∗, which represents the fine 

structure regions residence time, 𝜉∗ is the fine scale length and ν is the kinematic viscosity. 𝐶𝜉 and 𝐶𝜏 

are the volume fraction and times scale constants, equal to 2.1377 and 0.4082. The EDC model 

includes detailed chemical mechanisms. In the present model, 18 elementary reactions and 9 species 

are considered for hydrogen combustion in air. Complete description of chemical reaction mechanism 

is given in [13].  

The DO model was employed to simulate radiation [14]. The Radiative Transfer Equation (RTE) is 

solved for a finite number of solid angles 𝛺′ associated to the direction 𝑠: 
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where κ is the absorption coefficient, σs indicates the scattering coefficient and 𝑟 is the position vector 

in  𝑠 direction, n is the refractive index and Ф is the scattering phase function. The direction 𝑠 of the 

control angle is determined by the polar and azimuthal angles, respectively θ and ϕ. The number of 

angular divisions for θ and ϕ, respectively 𝑁𝜃 and 𝑁𝜙, can be increased to obtain a finer spatial 

discretization and more accurate calculation. The solid angle is furtherly subdivided in θ and ϕ pixels 

to take account of any control angle overhang. When the control volume face is not aligned to the 

global angular discretisation, control angles may be partially outgoing and partially incoming to the 

face. Pixelation subdivides each control angle in smaller portions where radiation can be treated as 

incoming or outgoing. 

3.2 Modelling of release source 

The operating pressure of the release in experimental tests is in the range 2-6 bar abs. At pressures 

above 2 bar abs an under-expanded jet is expected. The diameter of notional nozzle was calculated 

using Ulster’s under-expanded jet theory [15], which assumes isentropic expansion, choked flow at the 

real nozzle, speed of sonic flow at the notional nozzle, and Abel-Noble equation of state (EOS) to 

describe the non-ideal behaviour of the gas. As the release is cryogenic, the problem must be handled 

carefully. The stagnation conditions are all located in the vapour/gas phase. During expansion, the 

saturation curve may be crossed leading to a multiphase release. However, even considering the worst-

case scenario, i.e. lowest recorded temperature (48 K), highest pressure (6 bar) and isentropic 

expansion to ambient pressure, the resulting point will be in the gaseous phase. In the experiments, the 

lower temperatures (< 60K) are coupled to pressure equal to 2 bar, distancing the nozzle conditions 

from the saturation curve. The second consideration regards the validity of Abel-Noble EOS for 

cryogenic releases. Abel-Noble EOS was compared to NIST EOS [16], which is generally employed 

to model LH2 releases [5]–[7]. Density comparisons for several pressures are shown in Figure 2. The 

deviation is negligible for the range of pressure under study (2-6 bar) while it becomes significant as 

the pressure increases. Thus, Abel-Noble EOS and the notional nozzle approach can be applied to the 

release cases under analysis.  
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Figure 2. Effect of EOS on density evaluation: NIST (―) versus Abel Noble (--) equations 

The calculated mass flow rate is compared against the entire set of experiments in Figure 3. 5 releases 

of the tests with orifice diameter equal to 1.25 mm were selected for the CFD study. The maximum 

deviation is about 10% and it is given for test 5. This discrepancy may be due to measurements 

uncertainty, as the measured mass flow rate is lower than a test with equal diameter and pressure but 

higher temperature (T=91 K, �̇�=0.66 g/s), while colder temperature should correspond to increase of 

released mass. The evaluated notional nozzle conditions are presented in Table 2. 

 

Figure 3. Calculated versus experimental mass flow rate  

Table 2. Calculated notional nozzle conditions for the selected tests 

Test 

No. 

Inlet 

temperature, 

K 

Inlet 

velocity, 

m/s 

Density, 

kg/m3 

Notional 

diameter, 

mm 

Calculated 

mass flow 

rate, g/s 

Variation 

calculated 

mass flow rate 

from 

experiment, % 

1 53 554.9 0.461 1.27 0.326 -1.26 

2 40 480.6 0.614 1.27 0.376 -1.10 

3 63 600.7 0.393 1.56 0.451 0.25 

4 65 612.6 0.378 1.80 0.589 4.93 

5 68 628.1 0.360 2.01 0.717 10.78 
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3.3 Computational domain and grid 

Given the axisymmetric nature of the problem, a quarter of the domain was considered for the 

analysis. Two calculation domains were used to perform simulations: 

• Rectangular domain with dimensions 0.5 m x 0.5 m x 3 m. The hood geometry was not 
included. The aim of the analysis was the investigation of the free jet fire characteristics 
without the effect of facility geometry and exhaust hood volumetric flow rate.  

• Rectangular domain with dimensions 1.2 m x 1.2 m x 2 m. The hood geometry was 
included in the numerical grid. In experiments, the hood was constituted by a bottom 
square section connected to a circular conduit for extracting the combustion fumes. In the 
present study the top part was assumed as square, considering the same section area as the 
circular duct. Figures 4a and 4b show a view of the domain and numerical grid. 

The release source was approximated as square, with release area equal to the notional nozzle. As 

shown in Table 2, the 5 release tests resulted in 4 different notional nozzle diameters (Deff). Thus, 4 

hexahedral numerical grids were created, adapting the release source and mesh to the test. The cell 

size varied from the notional nozzle size to about 10 cm in the far field. A grid independence study is 

presented in section 4.1.2. The grid refinement in proximity of the release point is shown in Figures 4c 

and 4d for the coarse and fine mesh respectively.  The maximum expansion ratio was 1.1 in the nozzle 

proximity. The number of control volumes (CVs) in the calculation domain varied, e.g. 267317 CVs in 

test 1, and 211587 CVs in test 5 for the configuration including the hood geometry. The releases were 

treated as steady-state. The velocity and temperature evaluated at the notional nozzle and indicated in 

Table 2 were imposed as inlet conditions at the nozzle. The turbulent intensity (TI) and turbulent 

length scale (TLS) were imposed as TI=25% and TLS=0.07Deff, following the conclusions of the LES 

study on under-expanded hydrogen jet flame length and shape performed in [17]. TLS= 0.07Deff is 

usually indicated for fully developed pipe flows [18]. The domain boundaries were modelled imposing 

a gauge pressure=0 and dry air was considered. However, section 4.1.5 analyses the case with moist 

air. The release pipe was assumed to be 10 cm long. The surface beneath the release pipe was 

modelled as non-slip adiabatic boundary. The radiometers, represented by 2x2 cm surfaces, were 

modelled as isothermal non-slip walls with emissivity 1. In this way, no radiation will be reflected by 

the surface and the received radiative heat flux will take account of the entire incident radiation. The 

only absorbing/emitting species in hydrogen combustion is water vapour. In this study, it was treated 

as a grey gas with Planck mean absorption coefficient defined as function of temperature and H2O 

partial pressure. The function was determined from interpolation of Hubbard and Tien’s data available 

in [19] and it will be indicated further in the text as HT. Scattering was not considered as it is 

negligible for combustion not involving soot. The Radiative Transfer Equation (RTE) was discretised 

using 5x5 angular divisions and 3x3 pixels, as suggested by [18]. The radiative discretisation will be 

varied in the range 5x5-15x15 angular divisions and 3x3-10x10 pixels in section 4.1.4. SIMPLE 

procedure was chosen for velocity-pressure coupling and convective terms were discretized using the 

second order upwind scheme. The stainless-steel hood walls considered in section 4.2 were modelled 

as non-slip walls with emissivity 0.6 [20]. The above described characteristics constitute the initial 

settings of the problem. Several parameters were varied in the proposed sensitive study and they will 

be indicated and discussed in the following sections.  
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Figure 4. Numerical grid details: 3D isometric view of computational domain (a) and grid (b) with 

hood inclusion; detail of area in proximity of release for coarse mesh (c) and fine mesh (d) for grid 

sensitivity study 

4 RESULTS AND DISCUSSION 

The aim of this section is to analyse the effect of the modifications of a set of parameters on the 

simulated thermal radiation. The sensitivity study is presented for test 1, with the exception of section 

4.2.3, where the results are shown for tests 4 and 5. The effect of each variation was investigated 

singularly and in sequence, selecting each time the best value/sub-model and applying it in the 

following part of the study. The effect of physical models and numerical features, such as the 

turbulence model and radiation discretisation, and grid refinement level were assessed for a free jet 

fire configuration, so that results of the parametric study would be free from further experimental 

uncertainty, such as the fumes velocity at the hood. Results are discussed in section 4.1. Analysis in 

section 4.2 includes the hood geometry, investigating the effect of the experimental settings, such as 

the exhaust gases extraction speed. Once the set-up of the model was completed, it was applied to the 

whole set of releases to validate it against experiments. Evaluations are shown in section 4.3.   

4.1 Free jet fire  

4.1.1 Effect of turbulence model 

Simulations were performed for the standard k-ε, RNG k-ε and realizable k-ε turbulence models. The 

resulting axial temperature distribution is reported in Figure 5, showing significant differences. 

Considering a 1300-1500 K region as corresponding to the visible flame length [21], the standard k-ε, 

RNG k-ε and realizable k-ε models resulted in flame length included in the range, respectively, 0.5-

0.59 m, 0.38-0.44 m and 0.63-0.72 m. Experimental flame length, evaluated as average of visible and 

infrared recordings, resulted 0.66 m. The realizable k-ε turbulence model gives the best value 

compared to experiment. However, it must be highlighted that flame length evaluations in experiments 

and simulations are somehow arbitrary and uncertain, mining the reliability of results. The different 

temperature distribution affects strongly the radiative heat flux, shown in Figure 6, where the 5 

diamonds of each curve represent the records at the 5 sensors. The realizable k-ε model shows the best 

agreement with experiment, although a significant underestimation of the radiative heat flux by 

approximately 50% for RD1. 

a) b) 

c) 

d) 
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Figure 5. Effect of turbulence model on axial temperature distribution  

 

  

Figure 6. Effect of turbulence model on radiative heat flux 

4.1.2 Grid independency test 

A sensitivity study on the computational domain resolution was conducted at the initial stage, in 

agreement with the CFD model evaluation protocol [22]. A finer mesh was created, heeding the 

regions where higher gradients and complex phenomena are expected. Thus, the length of the 

computational cells was halved where the release point, the jet flame and the radiation sensors are 

located. An expansion ratio equal to 1.1 was maintained. The total number of CVs was increased from 

196314 to 507524. The effect on the axial temperature distribution was found to be negligible, while 

slight differences were observed on its radial distributions. Figure 7 shows the radial distributions of 

temperature and water vapour at 0.2 and 0.6 m from the release. The effect of the mesh refinement on 

the measured radiative heat flux is shown in Figure 8 and it is limited to the proximities of the release 

point, resulting in a maximum difference of 5% at sensors RD1 and RD2 (y=0.06 and y=0.22 m). 

Therefore, it is concluded that the built mesh using the minimum refinement (1 CV at the release 

point) can be used for the following analysis, as the mesh resolution is sufficient to solve accurately 

the problem. 
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Figure 7. Results for grid independency: radial temperature (---) and H2O mole fraction (...) 

distributions at 0.2 and 0.6 m from the release 

 

Figure 8. Results for grid independency: received radiative heat flux 

4.1.3 Effect of inlet turbulence intensity and turbulence length scale  

The current section is aimed to define the appropriate turbulence quantities at the inlet flow, i.e. at the 

notional nozzle exit. Indeed, these parameters affect the mixing occurring between the fuel and 

oxidizer, influencing the flame shape and species distribution in the jet fire. The flow perturbations at 

the inlet were modelled in terms of turbulence intensity and turbulence length scale. The case 

employing TI=25% and TLS=0.07.Deff was compared to: a) TI=4% and TLS=0.07.Deff, based on 

experimental observations on air under-expanded jets [23]; b) TI=30% and TLS=0.33.Deff, based on 

the results of a parametric study conducted at HySAFER on hydrogen jet concentration decay. Figure 

9 demonstrates that the turbulence inlet parameters affect the radiative heat flux only in proximity of 

the release point. However, the difference is negligible for turbulence intensity and turbulence length 

scale lower than, respectively, 30% and 0.33.Deff. The effect on flame length was limited to ±2 cm 

variation. A further analysis was conducted for TI=30% and TLS=0.07.Deff. The similarity of the 

results to the cases with equal TLS and different TI indicate that TLS is the cause of the variation for 

30% and 0.33.Deff. However, if for 30% and 0.33.Deff case the prediction improves for radiation sensor 

2, it worsens for sensor 1. Therefore, the selected inlet conditions are turbulence intensity 25% and 

turbulence length scale 0.07.Deff.  
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Figure 9. Effect of inlet turbulent intensity and turbulent length scale  

4.1.4 Effect of radiation model angular discretisation 

The number of Theta and Phi divisions determine the number of control angles associated to the RTE. 

5x5 divisions are generally suggested for problems involving small geometry features and strong 

variation of temperature in space [18]. Under-prediction of radiative heat flux at the radiometers 

located in proximity of the release point may be due to insufficient angular discretisation, preventing 

the sensors to receive the radiation emitted by the flame along all its length. Thus, the number of 

divisions was increased, maintaining the same number of pixels. Comparisons for 5x5, 7x7, 10x10 and 

12x12 are shown in Figure 10. Case with 15x15 was also analysed but not reported in Figure 10, as it 

practically overlaps the curves with 10x10 and 12x12 divisions. It was found that the angular 

discretisation has a great effect on the recorded radiative heat flux. Over 10x10 divisions the results 

are not sensitive to any further refinement. 10x10 was chosen as it is the adequate compromise 

between accuracy of the results and computational time (simulation time from 5x5 case increases by 

1.9 for 10x10 and 2.4 for 12x12 angular divisions). Maximum deviation from experiment is given for 

sensor RD5 (about 40%). 

  Figure 10. Effect of number of angular divisions (3x3 pixels) 

3x3 Theta and Phi pixels are usually suggested for problems involving symmetry [18]. The number of 

pixels was increased to 10x10 and no variation was sensed in the results. The reason may be due to the 

use of a rectilinear hexahedral mesh, where the control volumes faces are aligned to the angular 
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Turbulence model  eali able   ε

TI and TLS 25%, 0.07Deff

Angular divisions 10x10

Angular pixels 3x3

〖𝑚𝑓

mfH2O 0, 0.008

Absorption coefficient HT

Sct 0.7

discretization, preventing the control angle overhang problem to arise. Thus, 3x3 pixels are sufficient 

to obtain reliable results and they were used with 10x10 angular divisions in the following analysis.  

4.1.5 Effect of air humidity 

The initial assumption of dry air for a controlled laboratory environment may not be adequate and the 

effect of water vapour presence must be assessed. As described in section 3.3, water vapour behaves 

as an absorbing/emitting species. Absence of water vapour in air implies that all the radiation emitted 

by the flame reaches the radiometers. Conversely, if air is humid, radiation is absorbed along the path 

to sensors, causing a decrease of the recorded radiative heat flux. The amount of absorbed radiation 

depends on temperature and quantity of water vapour in air, which determine the value of absorption 

coefficient considered in the radiation model, and the travelled distance. The amount of water vapour 

in air is highly variable, depending on location and time. Mass fraction equal to 0.008 was assumed, 

according to the average meteorological data for SNL location, i.e. relative humidity equal to 74% and 

temperature 288 K [24]. As shown in Figure 11, the presence of water vapour has a significant effect 

on simulation results, remarking how indispensable is the availability of accurate description of 

various test conditions from experimentalists, including relative humidity. Sensors RD4 and RD5 are 

less affected, as they are located in proximity of the wider portion of the combustion products plume. 

In the following sections, moist air will be considered, as it is more realistic and it provides better 

agreement with experiments.  

 Figure 11. Effect of water vapour presence in air 

4.1.6 Effect of absorption coefficient 

Hubbard and Tien’s Planck mean absorption coefficient (HT) was compared to the coefficient 

evaluated according to Yan et al ’s (Y) calculations [25]. The two coefficients mainly differ for 

temperatures lower than 800 K, where HT coefficient is higher than Y coefficient. As shown in Figure 

12, this difference is translated in less radiation at the sensors located close to the release point, as 

radiation from the flame has a longer distance to cover and, because of higher absorption coefficient, 

greater chance to be absorbed. Given the better agreement with experiments, HT formulation was 

selected for the model. 
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Turbulence model  eali able   ε

TI and TLS 25%, 0.07Deff

Angular divisions 10x10

Angular pixels 3x3

〖𝑚𝑓

mfH2O 0.008

Absorption coefficient HT, Y

Sct 0.7

   

Figure 12. Effect of absorption coefficient 

4.2 Hood inclusion in the geometry  

The laboratory was equipped with an exhaust gases system. Therefore, the combustion can be affected 

by the flow imposed at the hood. The extension of the computational domain including the hood was 

decided according to a sensitivity study on the domain size. The width of the domain was changed 

from 0.7 m to 1.2 m. Maximum variation of radiative heat flux of about 8% was detected on sensor 

RD1, leading to the choice of domain size=1.2 m. To ensure that the domain boundaries are located 

sufficiently far from the area of interest, an additional sensitivity analysis was conducted on the 

domain boundary conditions. Turbulence kinetic energy and turbulent dissipation rate were varied 

from, respectively, 1.5·10-4 m2/s2 and 3.0·10-6 m2 (evaluated for the analysis in section 4.2) to unitary 

values. The effect on radiative heat flux was confined to 4% variation, which was considered 

acceptable considering the needs to minimize the impact of boundary conditions on simulation results 

and to limit the required computational time. Figure 13 shows the comparison between the results of 

the free jet fire and the configuration including the hood. The removal of the combustion products by 

forced ventilation caused a decrease of radiative heat flux, reaching over 30% reduction. A further 

observation shall be made on emissivity for the stainless steel of the hood, as it may vary in a wide 

range according to the material composition and the maintenance status. A parallel analysis, not shown 

in Figure 13, on the variation of the hood surfaces emissivity was conducted, varying it from 0.60 to 

0.07 [20]. The maximum increase was +8% and it was detected on sensor RD5. Emissivity of 0.60 

will be used in the following simulations.  

 

Figure 13.  Effect of hood inclusion in the calculation domain (stainless steel emissivity=0.60) 
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4.2.1 Effect of turbulent Schmidt number  

The turbulent Schmidt number, Sct, was changed in the range 0.7-1. The variation affected the 

temperature and species distribution in the jet. Figure 14 shows that the increase of Sct causes the 

radiative heat flux from the first portion of the flame to decrease, while it has the opposite effect for 

the second half. The reason is due to the flame highest temperature region movement towards the 

flame tip, thus increasing the emitted radiation from the final part of the flame. Sct=0.9 was selected 

for the following analysis, as it reproduced better the experimental radiative heat flux distribution 

trend, decreasing the gap between simulation and experiment for the sensors recording the highest 

radiative heat flux. In addition, Sct=0.9 gave the best reproduction for axisymmetric jets in the review 

proposed by [26]. 

Figure 14. Effect of turbulent Schmidt number 

4.2.2 Effect of extraction velocity in the hood 

For each test, the volumetric flow rate of the ventilation system was adapted to the released mass flow 

rate of hydrogen. The only available experimental data is the range of variation of the volumetric flow 

rate, 5100-7650 m3/h, corresponding to extraction velocity 7.0 m/s and 10.5 m/s respectively. No exact 

data for each test is available. Therefore, the minimum fumes speed has been considered in sections 

4.2 and 4.2.1, based on the assumption that since the hydrogen mass flow rate (0.33 g/s) is closer to 

the minimum of the released mass range (about 0.1 g/s), the consequent extraction velocity will be 

more likely to be similar to the minimum of 7.0 m/s. However, tests 4 and 5 are characterised by a 

higher mass flow rate of 0.56-0.64 g/s, which is closer to the maximum mass flow rate of the overall 

tests set (0.7 g/s). Thus, fumes speed should be closer to 10.5 m/s rather than 7.0 m/s. This section 

aims to analyse the effect of the ventilation velocity on such releases, analysing the cases with 

minimum and maximum volumetric flow rate imposed at the hood as extreme cases. Figure 15 shows 

the effect of the hood extraction speed on the radiative heat flux. Since minimum and maximum limits 

were considered, the radiative heat flux curve simulating the actual fumes speed should be located 

between the green and red dashed curves, representing, respectively, the simulations for 7.0 and 10.5 

m/s. For both the releases, considering the minimum extraction velocity led to a considerable 

overestimation (+36%) of the radiative heat flux for the sensors more exposed to the radiation from 

combustion products. The increase of the extraction velocity to the maximum limit, led to a reasonable 

reproduction of the experimental data, with deviations contained in the range ±14%. Therefore, 

extraction velocity of 10.5 m/s is considered for tests 4-5, while 7.0 m/s is considered for releases 1-3.  
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Figure 15. Effect of the hood extraction velocity in tests 4 and 5 

4.3 Definition of model set-up based on the parametric study and validation 

Following the conclusions of the previous sections, the best settings for the predictive model were 

identified and they are summarized in Table 3. 

Table 3. Model set-up 

Turbulence model Realizable k-ε 

Turbulence intensity and length scale 25% and 0.07D 

Angular divisions 10 x 10 

Angular pixels 3 x 3 

Water vapour mass fraction 0.008 

Absorption coefficient Hubbard and Tien (1978) 

Turbulent Schmidt number 0.9 

Velocity at the hood 
Tests 1,2,3: v=7.0 m/s 

Tests 4,5: v=10.5 m/s 

Results for the 5 tests are shown in Figure 16. Experimental radiative heat flux is predicted in 

simulations within ±15%, which is acceptable for safety engineering design accuracy. There is one 

exception, i.e. the overestimations of flux at 5th sensor for tests 1 and 2, where radiation is 29% and 

17.5% higher respectively. It must be reminded that this sensor is the most affected by the hood 

characteristics taken in simulations, such as the material emissivity or the hood geometry, which is 

entirely approximated as square. In addition, the 5th sensor is the most exposed to the water vapour of 

the jet flame, strongly affected by the velocity field imposed by the extraction system. Since no precise 

volumetric flow rate was available for each test, the assumption of either minimum or maximum flow 

velocity in the hood can lead to inaccuracy of results. The water vapour, while accumulating and 

cooling down, may also be affected by condensation, which is not taken in account in simulation. 

Experimental data on relative humidity were not available. Thus, the annual average for California 

(74%) was accepted. However, relative humidity is generally lower in environments where controlled 

air ventilation systems are present, such as combustion or chemical laboratories. Therefore, the slight 

under predicting trend present in most of the tests might be caused by such approximation.  
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Figure 16. Radiative heat flux evaluation for validation experiments (model set-up: Table 3) 

 

Table 4 reports the flame length evaluations based on the range of temperature 1300-1500 K and OH 

mole fraction=10-3. In general, the simulated flame length resulted somewhat longer than reported by 

experimentalists. The difference becomes more significant for jet fires in tests 4 and 5. This can be due 

to the mass flow rate overestimations in simulations by, respectively, 5% and 10% of the release 

source modelling (Table 2). Similarly, overpredictions were expected for the radiative heat flux, 

mainly for test 5. However, the maximum deviation was 14%, maintaining an acceptable accuracy of 

the results.  
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Table 4. Experimental and calculated flame length  

Test No. 1 2 3 4 5 

Experiment, m 0.66 0.7 0.72 0.74 0.78 

CFD 1300 K, m 0.74 0.80 0.85 0.94 1.02 

CFD 1500 K, m 0.65 0.70 0.74 0.82 0.88 

CFD 𝑚𝑓𝑂𝐻 = 0.001, m 0.67 0.76 0.78 0.88 0.94 

 

5 CONCLUSIONS 

Simulations of cryogenic hydrogen jet fires were conducted to develop a predictive CFD model for 

assessment of thermal hazards. The simulations were validated against experiments in the range of 

pressures 2-5 bar abs and temperatures 48-82K. Release source was modelled using the notional 

nozzle theory [15]. Three turbulence models were compared and realizable k-ε model showed the best 

agreement with the measured flame length and radiative heat flux. A sensitivity analysis of different 

parameters in simulations on thermal radiation from the jet fires has been carried out. The angular 

divisions’ refinement for radiation model and humidity in air are shown to affect considerably the 

simulated radiative heat flu         angular divisions’ number was found to be the resolution, which 

provides independence of simulations on further refinement, for the problem under study. The 

presence of water vapour in air demonstrated a strong effect on the flame thermal radiation, causing 

variations up to 13%.  Larger variations were found for different velocities at the hood for releases 

with higher hydrogen mass flow rate. Therefore, it is fundamental for experimental studies to make 

available exact measurements of test conditions to develop and validate predictive CFD models. The 

hydrogen inlet turbulence parameters, the absorption coefficient and turbulent Schmidt number 

showed to have a minor effect on radiative quantities. Turbulence intensity of 25% and turbulent 

length scale of 0.07.Deff at the inlet  Hubbard and Tien’s absor tion  oeffi ient model and Sct=0.9 were 

selected to describe the jet fires. Five cryogenic jet fire tests were used to validate the CFD model. For 

all five tests experimental radiative heat flux at 5 sensors along the jet flame was predicted within 

±15% accuracy, with few exceptions. During the study, the Abel Noble EOS was found to be 

applicable to cryogenic releases only for low pressure (< 6 bar). Further research should be conducted 

to extend the domain of the CFD model applicability to high pressure cryogenic releases.  
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