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Abstract

There are approaches that successfully recognize activities of daily living by using a trained

classifier on feature vectors created from binary sensor data. Although these approaches have

been successful, there are still open issues such as the evaluation of multiple temporal win-

dows, ensembles of classifiers or unbalanced classes which need to be addressed in order to

improve the performance of the real-time activity recognition process. In this paper, we present

a methodology for Real-Time Activity Recognition based on the diverse fields of Machine Learn-

ing, including Fuzzy Logic and Recurrent Neural Networks. The methodology uses a long-term

and short-term representation of binary-sensor activations based on Fuzzy Temporal Windows.

The paper proposes an ensemble of activity-based classifiers for the purposes of balanced train-

ing, where each classifier in the ensemble is a Long Short-Term Memory. The approach was

evaluated using two binary-sensor datasets of daily living activities and benchmarked against

previous approaches based on the combination of sensor activation features.

Keywords: Activity Recognition, Fuzzy Temporal Windows, Long Short-Term Memory,

Unbalanced Data, Ensemble architectures.

1. Introduction

Activity recognition (AR) systems deployed in smart homes are characterized by their ability

to detect human actions and their goals in order to improve assistance. Such assistive technolo-

gies have started to be adopted by smart homes and healthcare applications in practice and

have delivered promising results for improving the quality of care services for the ageing and5
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provision of responsive assistance in emergency situations (Chen, Hoey, Nugent, Cook & Yu,

2012).

AR based on the use of binary sensors is a useful approach to assess the status of daily living

within a sensorised environment in an unobtrusive manner (Espinilla, Medina, Calzada, Liu,

Martinez & Nugent, 2017b; Krüger, Nyolt, Yordanova, Hein & Kirste, 2014). Binary sensors10

are small and light devices which installed in everyday objects to register human interaction.

Examples of these kinds of devices are motion detectors, contact switches, break-beam sensors,

and pressure mats (Wilson & Atkeson, 2005). They are easily connected to a middleware,

generally using wireless communications, and subsequently generate streams of binary data.

Data Driven Approaches for AR, which aim to use the information gleaned from the sensors,15

require a large dataset with the activities labelled specifying their starting and ending point

in time to represent the ground truth. The activities within such a dataset set are usually

performed by participants as part of a controlled experiment whilst the binary sensors are

activated in controlled conditions within a smart lab/home. A training process is necessary for

data driven approaches to build an activity model. Once trained the model can be exposed to20

unseen data to evaluate its generalization abilities in classifying unseen activities (Gu, Wang,

Wu, Tao & Lu, 2011; San Mart́ın, Peláez, González, Campos & Lobato, 2010; Espinilla, Liu &

Chamizo, 2017a).

A number of previously undertaken AR studies have been centered on classifying activities,

which were previously labelled by human-defined time intervals (Espinilla, Rivera, Pérez-Godoy,25

Medina, Martinez & Nugent, 2016). These approaches are referred to as explicit segmentation

(Krishnan & Cook, 2014) and do not provide real-time capabilities in AR. Within a real con-

text, however, it is desirable for any AR model to be capable of running in real-time (Cook,

Schmitter-Edgecombe, Crandall, Sanders & Thomas, 2009). Real-time refers to the recognition

of activities: i) when they are being undertaken (Yan, Liao, Feng & Liu, 2016), ii) while new30

sensor events are being recorded, and iii) the processing of data to produce results within an

acceptable period of time (Martin, 1965). Including real-time capabilities has become a key chal-

lenge in AR to provide responses to real-world conditions (Chen et al., 2012) enabling adequate

assistance services, which can be offered within Ambient Assisted Living (Storf, Kleinberger,

Becker, Schmitt, Bomarius & Prueckner, 2009). In real-time AR, explicit information relating35

to the labelled time interval is generally not included whilst learning. This subsequently requires

window based approaches to segment the data stream (Krishnan & Cook, 2014).

The main difficulty with real-time AR approaches is the ability to correctly define the size of
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the temporal window to allow effective recognition of activities (Ordónez, de Toledo & Sanchis,

2013; Banos, Galvez, Damas, Pomares & Rojas, 2014). The difficulty of using a single sliding40

window is that the more sensor events from the past that are included, implying noise in the

trained model (Espinilla, Medina, Hallberg & Nugent, 2018; Banos, Galvez, Damas, Pomares &

Rojas, 2014; Krishnan & Cook, 2014). In this work, the use of multiple temporal windows and

fuzzy aggregation methods are proposed to enable the long and mid term evaluation of sensors,

discriminating sensor activations by more than one temporal window.45

A further issue when considering the development of Data Driven approaches to AR is

that the datasets used usually suffer from a class imbalance problem (Van Kasteren, Noulas,

Englebienne & Kröse, 2008), (Ordónez et al., 2013), where activity events are extremely scarce

(Yin, Yang & Pan, 2008). For example, cooking is an activity which usually has a duration

around one hour with a many sensor activations, while go to the toilet typically only lasts a50

few minutes with a few sensor activations. Balancing methods are recommended to assist with

improving generalization of the model (Logan, Healey, Philipose, Tapia & Intille, 2007). An

example of balancing method is to learn using data leads to minority classes, ignoring majority

classes, when a specific classifier for a minority class is trained (Guo, Yin, Dong, Yang & Zhou,

2008).55

This work takes these issues into consideration proposing a Data Driven Approach whose

methodology aims:

• to propose a representation focused on the long-term and short-term based on a temporal

sequence, which is defined by multiple and incremental fuzzy temporal windows under

a fuzzy aggregation. Here, shorter term is related to finer temporal granularity and the60

longer term is related to coarser granularity. Together they provide an adequate aggrega-

tion of past events whilst at the same time provide an accurate representation of recent

events from binary data streams.

• to develop a more representative and balanced approach to learning in order to: i) increase

the learning capabilities using an ensemble of classifiers, and ii) create a training dataset65

based on the similarity relation between activities, which encourages learning in conflicting

activities.

The proposed approach is introduced in Section 2 along with related works. The proposed

approach is formally defined in Section 3. The proposed methodology is evaluated on two

popular datasets, (Ordónez et al., 2013) and (Singla et al., 2009) in Section 4. Finally, in70
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Section 5, conclusions and ongoing work are discussed.

2. Related works

The proposed approach presented in this work is based on two main concepts: i) a repre-

sentation based on fuzzy temporal windows to describe long-to-short sequences of binary-sensor

activations suitable for sequence classifiers and, ii) learning an ensemble of classifiers based on75

activity similarity to address the class imbalance problem.

2.1. Representation of temporal data for real-time Activity Recognition

AR is an open field of research where approaches based on different types of sensors have

been proposed. Wearable devices have been used to analyze activities such as walking, sitting or

lying down (Reyes-Ortiz, Anguita, Ghio & Parra, 2012; Ortiz, 2015; Medina, Fernandez-Olmo,80

Peláez & Espinilla, 2017b). Approaches based on body-worn devices can, however, be intrusive

for daily life (Roggen, Calatroni, Rossi, Holleczek, Förster, Tröster, Lukowicz, Bannach, Pirkl,

Ferscha et al., 2010) and, at the same time, they are not appropiate to provide a long-term

vision of daily activities due to being focused on gesture rather than a user’s interaction with

the smart environment.85

Vision based sensors have also been used as a rich source for the recognition of human

activities, generally in outdoor environments (Robertson & Reid, 2006). Within the home-

based literature description of activities through the detection of human joints with a vision

sensor has been considered (Rege, Mehra, Vann & Luo, 2017). In addition, the wearable vision

sensors (Shewell, Medina-Quero, Espinilla, Nugent, Donnelly & Wang, 2017) in daily object90

interaction has been reported. The main disadvantages of vision sensor approaches include the

high computational costs, in addition to privacy concerns (Sixsmith & Johnson, 2004).

Binary sensors have been proposed as suitable devices for describing daily human activi-

ties within a smart environment setting (Van Kasteren et al., 2008). Their main advantages

are that they are: i) easy to install, ii) small in size, iii) low-cost and iv) minimally inva-95

sive in comparison to videos and microphones (Tapia, Intille & Larson, 2004). Their main

drawback, however, is their ability to manage situations of multi-occupancy within smart en-

vironments. More recently, approaches based on binary sensors have been extended to Smart

Meters (Koutitas & Tassiulas, 2016), which enable identifying user interaction with electrical

devices (Belley, Gaboury, Bouchard & Bouzouane, 2013) based on power consumption (Alcalá,100

Ureña, Hernández & Gualda, 2017).
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Within the domain of real-time AR with binary sensors, the definition of a temporal window

size requires a deep analysis to segment the data correctly (Banos et al., 2014; Espinilla et al.,

2018). To date, several attempts have evaluated the performance of Machine Learning classifiers,

such as, Decision Trees (DT), Support Vector Machines (SVM), naives Bayes (NB) or Hidden105

Markov Model (HMM), based on sliding windows (Stikic, Huynh, Van Laerhoven & Schiele,

2008; Tapia, Intille & Larson, 2004; Yala, Fergani & Fleury, 2015) or dynamic windows (Yan

et al., 2016; Krishnan & Cook, 2014; Espinilla et al., 2018).

These previous efforts highlight studies which have strived to adjust fixed or dynamic window

sizes in real-time AR involving context-based complexity (Shahi, Woodford & Lin, 2017), which110

we aim to avoid.

From an evaluation perspective, real-time AR has mainly been provided by two methods:

• usage of time-slots: In this approach, the process of recognizing the activity is evaluated

for each given time-slot with a given duration (Van Kasteren, Englebienne & Kröse, 2010).

Related approaches have found that a time-slot of 60 seconds provides good performance115

in human activity recognition with binary sensors (Van Kasteren et al., 2010; Ordónez

et al., 2013). An adaption of this approach has been used for the purposes of evaluation

within the current works.

• usage of events: In this approach, the sensor data stream is evaluated taking into account

the changes in sensor events (Patterson et al., 2017). With this method, the approach clas-120

sifies every sensor event based on the information encoded in a sliding window of preceding

sensor events. This approach is mainly adopted by research studies that i) analyze sensors

which provide continuous data from wearable devices, such as accelerometers (Banos et al.,

2014), and ii) using binary sensors in AR together with dynamic windowing approaches

(Shahi et al., 2017).125

2.2. Fuzzy temporal windows to describe long-to-short sequences of binary-sensor activation

In this work, a methodology is proposed to aggregate data from binary sensors by means of

incremental temporal windows to recognize daily activities in real-time from a single occupancy

scenario. In previous works, a combination of human-defined features in binary sensors, such

as last activation, change point or raw activation in current time, has been proposed as a130

suitable representation for features in real-time AR (Van Kasteren et al., 2010) under windowing

approaches (Huynh, Blanke & Schiele, 2007). The use of dynamic windowing and human-defined

features for representing binary sensors has been evaluated previously considered (Shahi et al.,
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2017). Nevertheless, these representations based on human interpretation lack a longer temporal

representation, which has been recognized as a critical aspect impinging upon the performance135

of sliding window approaches (Espinilla et al., 2018).

Taking these previous findings into consideration, the use of long-term or mid-term windows

is considered a key to represent events from the previous minutes or hours, which can be critical

in the overall recognition of a given activity. For example, the difference between breakfast

and dinner is usually provided by activations as well as deactivations of the bed sensor from140

long-term to short-term. In the case of breakfast, the short-term deactivation of the bed sensor.

While dinner, the bed sensor is deactivated from the longer term to short term. Therefore, there

is a relation between the sleep/sitting in the bed with the breakfast/dinner activity.

In order to define the activation for each sensor within a long-term, mid-term and short-

term representation, this work proposes the definition of Fuzzy Temporal Windows (FTWs) of145

incremental size, which represent the temporal activation from binary-sensors. With such an

approach, the selection of a critical single window size is reduced by offering a wide range of

FTWs (refer to Figure 1). In developing intelligent systems from sensor data stream, Fuzzy

Logic (Zadeh, 1996) has provided successful results in aggregating sensor information using

linguistic representations (Medina, Espinilla, Zafra, Mart́ınez & Nugent, 2017a; Espinilla &150

Nugent, 2017). The proposed FTWs (Medina, Martinez & Espinilla, 2017c) provide a model to:

i) weight sensor activation based on temporal membership functions, ii) define progressive and

interpretable temporal windows, and iii) reduce the complexity of the temporal representation

from long and mid-term sensor activation.

Furthermore, the use of FTWs can define a temporal-sequence representation of sensor acti-155

vation by means of incremental temporal size (Edwards, Coward, Hamer, Twitchen & Hobson,

2000; Rossetti, Milli, Giannotti & Pedreschi, 2017). The advantage of including a sequence

representation is the improvement in learning by a sequence classifier, such as Long Short-Term

Memories (LSTM) (Hochreiter & Schmidhuber, 1997). LSTM is a Recurrent Neural Network

which is formed by a chain of repeated modules called memory cells. Each memory cell is com-160

posed of an input gate, a self-recurrent connection, a forget gate and an output gate (refer to

Figure 1). The cell states of LSTMs can be controlled in order to remove or add information

based on the learning of the gates. LSTMs have also provided state-of-the-art learning of video

representations (Srivastava et al., 2015), which have been adapted to AR from fixed windows

or video shot segments of daily activities (Donahue, Anne Hendricks, Guadarrama, Rohrbach,165

Venugopalan, Saenko & Darrell, 2015).
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Figure 1: A) Relevance of activation for some sensors (S1, S2, S3) in a given current time t∗ within a long-term,

mid-term and short-term representation. B) Scheme of a LSTM cell.

LSTMs have been previously described as an appropriate choice for use in sensor-based AR:

i) (Singh et al., 2017), where together with Convolutional Neural Networks (CNN), they have

been considered under a time slice approach; and ii) (Ordóñez & Roggen, 2016), where an

approach based on wearable devices, human activity recognition and human gesture recognition170

was presented. In both instances, LSTM has provided high accuracy in learning activities,

however, avoided aggregation of long and mid-term representations. For example, (Singh et al.,

2017) proposed 70 sequences for one-minute time-slots, and (Ordóñez & Roggen, 2016) used a

500 ms sliding window with 250 ms time-slots (we note the difference between the binary and

wearable sensor representation of time). In this work, we propose the use of FTWs to describe175

multiple temporal windows, whose size is defined from a half day to a few minutes by means of

a long-to-short term fuzzy temporal representation.

In Tables 1 and 2, we summarize the related work considered for different types of sensors

in AR and the representation of features and classifiers, respectively.

Table 1: Example approaches with different types of sensors in AR

Type Reference works Advantages Disadvantages

Vision (Rege et al., 2017; Robertson & Reid, 2006; Shewell

et al., 2017; Sixsmith & Johnson, 2004; Donahue

et al., 2015)

Low invasiveness, rich visual de-

scription

Privacy, cost, computational

burden

Wearable (Ortiz, 2015; Ordóñez & Roggen, 2016; Banos et al.,

2014)

Individual granularity, precision,

high collecting rate

Invasive, limited to gesture

recognition, computational

burden

Binary (Van Kasteren et al., 2010; Ordónez et al., 2013;

Singh et al., 2017; Yan et al., 2016; Krishnan & Cook,

2014; Yala et al., 2015; Espinilla et al., 2018)

Easy-to-install and maintain,

minimally invasive, low-cost

Non-individual granularity, low

performance in multi-occupancy

Sensing Electricity

Data

(Belley et al., 2013; Alcalá et al., 2017) Easy-to-install, minimally inva-

sive

Non-individual granularity, low

performance in multi-occupancy
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Table 2: Representation of features and classifiers of AR

Reference works Representation Classifier

(Yan et al., 2016; Krishnan &

Cook, 2014; Espinilla et al.,

2018)

Windowing approaches (binary

sensors)

NB+SVM+HMM+Others

(Ortiz, 2015; Banos et al., 2014) Windowing approaches (wear-

able sensors)

SVM+Decision

Trees+Bayes+Others

(Van Kasteren et al., 2010;

Ordónez et al., 2013)

Human-defined features+ short

sliding window for time-slots

DT+SVM+HMM+Others

(Shahi et al., 2017) Human-defined features+ dy-

namic window

NB

(Donahue et al., 2015) CNN+ Fixed sequences (video

sensors)

LSTM

(Singh et al., 2017) CNN+fixed sequence of time-

slots (binary sensors)

LSTM

(Ordóñez & Roggen, 2016) CNN+Sliding window (wearable

sensors)

LSTM

2.3. Balanced-based similarity training for an ensemble of classifiers180

A dataset is considered to be imbalanced when its classes are not equally represented

(Chawla, Bowyer, Hall & Kegelmeyer, 2002; Japkowicz & Stephen, 2002). It has been previously

reported that daily activity datasets suffer from a severe class imbalance problem (Ordónez et al.,

2013; Van Kasteren et al., 2008). In Neural Network (NN) approaches, the classifier performance

deteriorates with even the most modest of class imbalance in the training data (Mazurowski,185

Habas, Zurada, Lo, Baker & Tourassi, 2008).

Due to our approach being based on sequence learning through NN (specifically LSTM)

from imbalanced daily activity datasets, we propose the following two key points to minimize

the impact of the imbalance problem.

Firstly, an ensemble of activity-based classifiers is included. Ensemble of classifiers have190

been proposed to handle class imbalance problems (Galar, Fernandez, Barrenechea, Bustince &

Herrera, 2012). The use of an ensemble of classifiers for wearable-based activity recognition has

been previously proposed in (Lester, Choudhury, Kern, Borriello & Hannaford, 2005). In this

approach, a feature selection together with an ensemble of static classifiers and hidden Markov

models were proposed to recognize different activities. In (Catal, Tufekci, Pirmit & Kocabag,195

2015) an ensemble of machine learning classifiers werw evaluated for accelerometer-based AR.

Secondly, a balancing method has been included to introduce an ad hoc training dataset for

each specific activity. The balancing method is developed by a random process which weights
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the ratio of samples according to the similarity between activities. Similar random sampling has

been described as an effective method for dataset balancing (Sanchez, Martinez & Gonzalez,200

2017; Möller-Acuña, Ahumada-Garćıa & Reyes-Suárez, 2017), having been included in common

tools, such as, Weka and R. In addition, balancing the data based on similarity has been proved

to deal with the problem of learning from imbalanced datasets (Batista, Prati & Monard, 2004).

In this work, we have computed the similarity based on the statistical analysis of the activation

of sensors within the activation of activities as it provides a useful metric when evaluating AR205

(Carnevali, Nugent, Patara & Vicario, 2015).

The combination of both methods, which weight the training dataset based on the conflict

between classes within an ensemble of classifiers, has been demonstrated to create strong learning

methods (Dietterich, 2000).

In Section 3, we detail the methodology for i:) defining long-to-short sequences in binary-210

sensor activation using fuzzy temporal windows and ii) balancing the training in ensemble learn-

ing classifiers based on activity similarity.

3. Methodology

In this Section, the proposed methodology is presented for defining the activation of binary

sensors and activities in different ranges of time.215

A set of binary sensors is represented by S = {S1, . . . , S|S|} and a set of daily activities

is represented by A = {A1, . . . , A|A|}, where |S| and |A| are the number of sensors and daily

activities respectively. Each of the binary sensors and daily activities are described by a set of

binary activations within a set of ranges of time, which are defined by a starting and ending

point in time as shown by Eq. (1):220

Si = {Si0 , . . . , S|Si|}, Sij = {S0
ij , S

+
ij
}

Ai = {Ai0 , . . . , A|Ai|}, Aij = {A0
ij , A

+
ij
}

(1)

being i) |Si|, |Ai| the total number of activations for a given binary sensor Si and a daily

activity respectively, and ii) S0
ij

,S+
ij

the starting and ending point of a given time of activation

respectively.

3.1. From activation between ranges of time to segmented time-slots

The first step in processing the dataset is to generate a segmented timeline of time-slots (van225

Kasteren et al., 2011). Given that the activation of sensors and activities is defined by ranges of
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time, we are able to generate the segmented timeline which indicates the activation of activities

and sensors for a given time interval ∆t.

Subsequently, we divide the timeline T = {min(S0
ij

),max(S+
ij

)}, which configures the range

of time between minimal starting point and maximal ending point, in time-slots ti of equal230

duration ∆t. The range of evaluation for each time-slot is defined by a sliding window between

[ti, ti +∆t]. For each time-slot and a given sensor, we determine its activation based on whether

it has been activated (even just partially) within it:

S(ti, s) =

1 ∃[S0
sj , S

+
sj ] ∩ [ti, ti + ∆t]∀Ssj

0 otherwise

(2)

In a similar way, for each time-slot and a given activity, we determine its activation based

on whether it has been carried out (even just partially) within it:235

S(ti, a) =

1 ∃[A0
ij
, A+

ij
] ∩ [ti, ti + ∆t]∀Aij

0 otherwise

(3)

In this way, the segmented timeline can be represented as a binary matrix where for each

time-slot ti we return the value 1 if a sensor or an activity has been active. Additionally, the

segmented timeline for a given sensor or activity is represented as a row which involves the

activation in all time-slots S(s) = {S(t0, s), . . . , S(tn, s)}. For the sake of simplicity, we refer to

t+ as a time-slot ti in the timeline T .240

An example of segmentation from temporal activation ranges to time-slots is presented in

Figure 2.
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Figure 2: Example of the segmentation for activity and sensor activation (∆t = 60s). The labels beginning with

#A represent an activity and #S represent a sensor.

3.2. Representation of sensor activation based on Fuzzy temporal windows

In this Section, a binary-sensor representation approach is described, which is based on fuzzy

temporal windows (FTWs). A real-time classification of daily activities is proposed to decide245

which activity, or the absence thereof (Idle), is identified for all time-slots in the timeline.

Based on previous works (Medina, Espinilla & Nugent, 2016),(Medina et al., 2017c), a fuzzy

aggregation of the sensor activation has been integrated within the segmented timeline using

FTWs. In this previous work, a fuzzy temporal aggregation of wearable and binary sensors was

proposed to define an interpretable representation of a smart environment.250

FTWs are therefore described from a given current time t∗ to a past point in time ti as a

function of the temporal distance ∆t∗i = t∗ − ti, t∗ > ti (Medina et al., 2016). For this purpose,

a given FTW Tk relates the sensor activation S(s, ti) in a current time t∗ to a fuzzy set Tk(∆t∗i ),

which is characterized by a membership function µT̃k
(∆t∗i = t∗ − ti). A given FTW can be

represented as Tk(∆t∗i ) instead of µT̃k
(∆t∗i ).255

For a given FTW Tk and the current time t∗, each past sensor activation S(ti, s) is weighted

by calculating the degree of time-activation within the fuzzy temporal window Tk according to
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Eq. (4).

Tk(s, t∗, ti) = S(ti, s) ∩ Tk(∆t∗i ), ti <= t∗ (4)

The degrees of time-activation are subsequently aggregated using the t-conorm operator in

order to obtain a single activation degree of both fuzzy sets S(s) ∩ Tk by Eq. (5).260

Tk(s, t∗) = S(s) ∪ Tk(∆t∗) =
⋃
t̄i∈T

S(ti, s) ∩ Tk(∆t∗i ), ti <= t∗ (5)

We note several fuzzy operators can be applied to implement semantics in the t-norms.

Nevertheless. In this paper we propose the use of maximal and minimal operators, being
⋃

=

max,∩ = min, which compute the highest degree of activation within the fuzzy temporal

window. They are recommended for representing binary sensors due to they present a low

activation rate (Medina et al., 2017c).265

Tk(s, t∗) = S(s) ∪ Tk(∆t∗) = max(min(S(ti, s), Tk(∆t∗i )),∀ti ∈ T, ti <= t∗ (6)

An example of the representation of a FTW within a sensor activation in the segmented

timeline is presented in Figure 3.

Figure 3: Representation of a fuzzy temporal window Tk within a sensor activation in the segmented timeline

S(s, ti). In the example, the aggregated degrees of activation Tk(s, t∗) are 0.5.

3.3. LSTM for sequence classification of FTW

The representation of a sensor activation based on FTWs can be used to define a sequence

for the purposes of classification. In this work, we propose to define multiple FTWs with270
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incremental temporal size. The aim of this representation is to collect long-term to short-term

sensor activations, where shorter activations have finer temporal granularity and the longer

activations have a coarser temporal granularity.

A simple definition of FTWs is described, the durations of which are represented by a fuzzy

set characterized by a membership function whose shape corresponds to a trapezoidal function.

Other membership functions can also be used to define FTWs, however, the trapezoidal shape is

proposed to define the limit in a straightforward way. The well-known trapezoidal membership

functions are defined by a lower limit l1, an upper limit l4, a lower support limit l2, and an

upper support limit l3, as per Eq (7):

TS(x)[l1, l2, l3, l4] =



0 x ≤ l1

(x− l1)/(l2 − l1) l1 < x < l2

1 l2 ≤ x ≤ l3

(l4 − x)/(l4 − l3) l3 < x < l4

0 l4 ≤ x

(7)

Each FTW Tk is described by a trapezoidal function based on the time interval from a

previous time ti to the current time t∗: Tk(∆t∗i )[l1, l2, l3, l4]. In order to generate FTWs in275

a simple manner, we propose to define them from a set of incrementally ordered evaluation

times L = {L1, . . . , L|L|}, Li−1 < Li, where the limits of the trapezoidal functions are calculated

according to the index of the temporal window Tk.

Tk = Tk(∆t∗i )[Lk, Lk−1, Lk−2, Lk−3] (8)

Once the FTWs {T0, . . . , T|T |} have been defined by incrementally ordered times, we apply

the fuzzifization to each time-slot in the timeline t+ ∈ T and sensor activation S(t+, s) as per280

Eq. (5). Subsequently it generates a feature vector of components Tk(s, t+) for each time-slot

in the timeline t+, the size of which is equal to the number of FTWs multiplied by the number

of sensors |T | × |S|.

As the semantic of windows provides a description from short to long temporal components,

we can define an order sequence of aggregated degrees from the sensor activations within fuzzy285

temporal windows for each given time-slot in the timeline t+ and the sensor s:

T (s, t+) = {T0(s, t+)→ . . .→ Tk(s, t+)→ . . .→ T|T |(s, t
+)} (9)
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Table 3: An example of fuzzy temporal windows described by incrementally ordered evaluation times L =

{720, 540, 360, 180, 60, 30, 15, 5, 3, 2, 1} mins.

FTW Lk Lk−1 Lk−2 Lk−3

T1 720 540 360 180

T2 540 360 180 60

T3 360 180 60 30

T4 180 60 30 15

T5 60 30 15 5

T6 30 15 5 3

T7 15 5 3 2

T8 5 3 2 1

T9 3 2 1 0

T10 2 1 0 0

In Table 3, we show an example of FTWs described by incrementally ordered evaluation

times L={720,540,360,180,60,30,15,5,3,2,1} min.

3.3.1. Ensemble of classifiers for activities

In this Section, an ensemble of LSTMs for the purpose of AR is proposed. The main concept290

is learning each activity in an isolated manner using an LSTM activity-based classifier.

With this approach, each LSTM activity-based classifier is focused on learning a given ac-

tivity Ai by means of a balanced training dataset. In this way, from the same training dataset,

several adapted-activity datasets can be built, namely one for each LSTM activity-based clas-

sifier. Each classifier is trained to recognise a particular activity and has a binary output to295

represent: Ai) when the target activity is presented, and, Ai) when the target activity is not

presented. This last output represents other activities and the idle activity. Moreover, the

weight of each activity in the dataset is defined by similarity of the target activity to another

and is discussed in Sections 3.3.2 and 3.3.3.

The inputs of the LSTM activity-based classifier for a given activity Ai are composed of a300

given time-slot t+ and the ensuing related information:

The target activity O(t+) is defined by:

O(t∗) =

1 S(t+, Ai) == 1

0 S(t+, Ai) 6= 1

(10)

The feature vector is formed by the sequence of aggregated degrees of activation Tk(s, t+)
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within the FTWs Tk for each sensor s for a given time-slot t+, the size of which is equal to the

number of FTW multiplied by the number of sensors |T | × |S|.

Once the learning process is complete, in the testing phase, the activation of the target305

activity Ai, which has been learned by its LSTM activity-based classifier, is presented when the

prediction for being target activity pAi
overcomes the prediction of not being the target activity

pAi
. In order to provide a normalized degree of activation between [0, 1], the softmax function

as a normalized exponential function (Bishop, 2006), has been applied to output prediction as

expressed by the following equation:310

µpAi
=

epAi

epAi + epAi
(11)

In case of conflict between classifiers within the ensemble, when several activities are detected

at the same time, the maximal value of prediction from the LSTM activity-based classifiers is

selected A(t+)∗ as the activity carried out by the inhabitant in the given time-slot t+.

A(t+)∗ =

A0 µpAi
= 0,∀Ai ∈ |A|

Ai, µpAi
> µpAj

∀Ai, Aj ∈ |A|, Aj 6= Ai otherwise

(12)

We note that this step is included when the dataset is formed by activities without overlap-

ping, however, avoiding this step could provide multiple activations in the context of interleaved315

activities.

In Figure 4, a scheme for the architecture of the ensemble of LSTM activity-based classifiers

is presented.
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Figure 4: Architecture of the ensemble of LSTM activity-based classifiers

In the following sections, we describe how to build an ad hoc balanced training dataset for

each activity-based classifier based on the similarity relation to other activities.320

3.3.2. Computing similarity relation between activities based on sensor activation

Based on a given activity Ai and another activity Aj , we define a similarity relation Ra as a

function Ra : Ai×Aj → [0, 1] which determines the degree of similarity between both activities.

Next, we describe an approach to compute the similarity based on the frequency of common

sensors.325

Firstly, from the segmented timeline, we calculate a similarity relation Rs : Ai × Sj → [0, 1]

between activities and the sensor using the relative frequency of the sensor activation within

each activity:

Rs(Ai, Sj) =
|Sj ∩Ai|∑S
Sk
|Sj ∩Ai|

|Sj ∩Ai| =
T∑
t+

1 S(t+, Ai) = S(t+, Sj)

0 otherwise

(13)
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where |Sj ∩Ai| represents the number of time-slots activated when the sensor Sj is activated

together with the activity Ai. This measure is also called Mutual Information Krishnan & Cook330

(2014).

Secondly, we evaluate the similarity relation between activities Ra aggregating the similarity

relation from their sensor activations:

Ra(Ai, Aj) =

S∑
Sk

Ra(Ai, Sk)×Ra(Aj , Sk), Ai 6= Aj (14)

We note that we can normalize the degree of similarity for a given activity Ai, R̃a(Ai, Aj) =

Ra(Ai,Aj)∑A
Ak

Ra(Ai,Ak)
. In the next Section, we detail how to balance the training dataset based on the335

degree of similarity in the ensemble of activity classifiers.

3.3.3. Balancing training in the ensemble of activity classifiers

In this Section, we describe how to balance the training dataset for each activity classifier

in order to: i) solve the imbalance problem within datasets, ii) to obtain a more representative

training dataset for conflicting activities, obtaining a higher similarity relation.340

In this way, we based the balancing of the training data on the similarity relation between

activities. Specifically, we propose to build a balanced-activity training dataset, which contains

a ratio of samples (weight) for each activity Ai:

• wAi
, which represents the ratio in the balanced-activity training dataset corresponding to

the activity to be learned.345

• wA0 , which represents the ratio of samples in the balanced-activity training dataset, cor-

responding to any activity (Idle).

• wAi
, which configures the ratio of other activities in the balanced-activity training dataset

wAi
+ wA0

+ wAi
= 1. The ratio for all of the other activities is calculated by weighting

the normalized degree of similarity with the ratio of the other activities:

wAj
= wAi

× R̃a(Ai, Aj) (15)

We note that wAi
is defined as a fixed ratio for all other activities, which is weighted for

each other activity based on the similarity guaranteeing that finally wA0+wA1+. . .+wAn =

1.350

A minimal ratio wmin of time-slots per activity, in case a close-to-zero degree of similarity

is obtained, is recommended in order to guarantee a minimal representation.
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In order to select the time-slots, a random process, which is weighted by the previously

defined ratios, is established. This process selects a time-slot randomly, rejecting or accepting

them based on the current ratio of the activities which are activated within it. In Algorithm 1,355

we detail the pseudo-code of this process.

Data: {wA0 , wA1 , . . .}, N

Result: ts = {. . . tk, . . .}

c′A1···|A|
= 0;

count = 0;

ts = �;

while count < N do

tk = randomIndex(t0, . . . , t|T |);

forall Ai ∈ Ai(tk) = 1 do

w′Ai
= 0;

if count > 0 then

w′Ai
= c′Ai

/count;

end

if w′Ai
< wAi then

ts = ts ∪ tk;

c′Ai
= c′Ai

+ 1;

count+ +;

if count >= N then

break;

end

end

end

end

Algorithm 1: Algorithm for obtaining random time-slots from a balanced ratio of activities

{wA0 , wA1 , . . .}

For a time-slot tk, which is obtained from the function randomIndex selecting a random

time-slot in the timeline, we evaluate if the computed ratio w′Ai
= c′Ai

/count of the activities

activated Ai in the time tk does not overcome the threshold ratio wAi
, in which case we accept

the time-slot tk. At the end, when the target number of samples N is collected (and even in360

18



each iteration) the method guarantees that the ratio of selected time-slots per activity remains

under the defined threshold ratio of the activities.

4. Evaluation

In this Section, the experiments performed according to the proposed methodology are

evaluated using two popular datasets: Ordoñez (Ordónez et al., 2013) and CASAS (Cook &365

Schmitter-Edgecombe, 2009; Singla, Cook & Schmitter-Edgecombe, 2009), where the binary

sensor activation is related to the daily activities of an inhabitant labelled by an external ob-

server.

In both datasets, the methodology proposed in this work defines the following parameters:

• Number of FTWs=|T | = 10.370

• Incrementally ordered evaluation times L = {720, 540, 360, 180, 60, 30, 15, 5, 3, 2, 1} · ∆t.

L is defined by a human expert to relate to short, mid and long intervals of time from

minutes to hours.

• For balancing the training dataset for each activity:

– Number of training samples = 10,000.375

– Weight of samples corresponding to the target activity wAi = 0.4.

– Weight of samples corresponding to the idle activity wA0 = 0.1.

– Weight of samples corresponding to the non-target activity wAi
= 0.6.

– Minimal ratio of similarity per activity wmin = 0.05.

• For each LSTM activity-based classifier:380

– Learning rate = 0.0001, to work well as a standard parameterization (Salimans &

Kingma, 2016; Wu, Zhang, Zhang, Bengio & Salakhutdinov, 2016).

– Number of neurons = 64, as a minimal reference value in learning patterns in RNN

(De Pietro, Gallo, Howlett & Jain, 2018).

– Number of layers = 3, due to a great number of layers increasing learning time385

exponentially without significance in accuracy (Collins, Sohl-Dickstein & Sussillo,

2017).
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– Training epochs = 40 and batch size = 1000 to complete almost 4 iterations over the

training dataset (training samples = 10000).

The following three popular metrics are used to evaluate the datasets:390

• Accuracy (acc), which represents the correctly classified percentage, TP being true pos-

itives, TN, true negatives, FP, false positives and, finally, FN, fase negatives: acc =

TP+TN
TP+TN+FP+FN .

This metric has been used in other related works (Singh et al., 2017), however, in learning

situations using imbalanced datasets, the overall classification accuracy is not considered395

as an appropriate measure of performance.

• F1-score (F1-sc), which provides an insight into the balance between precision, which is

precision = TP
TP+FP , and recall, which is recall = TP

TP+FN . Although this metric is well-

known in AR (Van Kasteren et al., 2010), we note a key issue from this metric on time

interval analysis: the FPs of an activity far from any time interval activation are equally400

computed to false positives closer to the end of activities, which are common in the end

of activities (refer to Figure 5). For taking into account a time interval evaluation, we

propose the following additional metric.

• F1-interval-intersection (F1-ii), which evaluates the time intervals of each activity based

on: i) the precision of predicted time intervals which intersect with a ground truth time405

interval, ii) the recall of the ground truth time intervals which intersect with a predicted

time interval.
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Figure 5: Evaluation and metrics of predicted and ground truth activity time intervals in AR.

4.1. Ordoñez Dataset

In this dataset, two experiments were carried out in different rooms (A and B). In room

A, 12 binary sensors describe 14 days where 9 daily activities were carried out over a period410

of 19,932 minutes. In room B, 12 binary sensors describe 22 days where 10 daily activities are

carried out over a period of 30,495 minutes.

We have initially segmented the timeline in time-slots using the window size ∆t = 60s, based

on the standard reference from (van Kasteren et al., 2011; Ordóñez & Roggen, 2016; Singh et al.,

2017).415

For evaluation purposes, we have developed a leave-one-day cross-validation, where the test

is composed by a single day and training is composed by other days. Then, the process is

repeated, selecting different test days and finally iterating over all days. (Van Kasteren et al.,

2008). To include a complete day cycle without splitting a short activity, we have taken into

account the days between 4:00pm and the following 24 hours. After obtaining the results of420

classification with leave-one-day cross-validation, other authors have provided an average of the

metrics between days (Ordóñez & Roggen, 2016; Singh et al., 2017). Nevertheless, initial and

end days are usually shorter and many days do not include the development of all activities,

which can undermine the total performance. To solve this issue, we have merged all time-slots

from leave-one-day tests configuring a timeline test per activity which can be analyzed by the425
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metrics.

4.2. CASAS Dataset

This dataset includes two experiments of activities which were performed individually and

sequentially by several inhabitants. Experiment A (Singla et al., 2009) contains 8 activities

carried out by 21 inhabitants with a total of 10.334 binary sensor records, and experiment B430

(Cook & Schmitter-Edgecombe, 2009) contains 5 activities carried out by 51 inhabitants with a

total of 6.425 binary sensor records.

We have evaluated three window sizes for segmenting the timeline in time-slots ∆t =

{5s, 20s, 60s}. We note in the Ordoñez dataset that the optimal window size for time-slots

was fixed by the evaluation of previous works (van Kasteren et al., 2011; Ordóñez & Roggen,435

2016; Singh et al., 2017).

For evaluation purposes we have developed a leave-one-inhabitant cross-validation, where for

each inhabitant, the test is composed of activities developed by the given inhabitant and training

is composed of the activities developed by other inhabitants. After obtaining the classification

results from the leave-one-inhabitant cross-validation, we have merged all time-slots from the440

tests configuring a timeline test per activity which can be analyzed by the metrics.

4.3. Results

In this Section, we compare the results of the proposed methodology with the two datasets

and results from previous works. In (Ordónez et al., 2013), the representation of sensor by means

of raw and last activation was demonstrated to provide encouraging results in real-time AR by445

means of non-sequence classifiers, highlighting Support Vector Machines (SVM) and Decision

Trees (C4.5), which have been compared against the methodology proposed in this work.

As previously detailed, all time-slots from leave-one cross-tests have been merged configuring

a timeline test per activity which can be analyzed with the metrics. For each metric (accuracy,

F1-score and F1-interval-intersection), we have analyzed the average of the metric per activity450

in the timeline test. To avoid the possible effect of imprecision when segmenting the dataset

into time-slots, a confidence interval of one time-slot is allowed in computing the F1-score and

F1-interval-intersection.

The results from the experiments within the Ordoñez dataset (Room A and Room B) are

described in Table 4 and 5.455

In the CASAS dataset, we have evaluated three time intervals of ∆t = {5s, 20s, 60s} in

length. In Table 6, we present the average of the metrics for each approach and time interval.

22



Table 4: Metrics expressed by percentage for real-time AR in Ordoñez Room A

FTW+LSTM Raw+Last+SVM Raw+Last+C4.5

Acc F1-

ii

F1-

sc

Acc F1-

ii

F1-

sc

Acc F1-

ii

F1-

sc

Leaving 99.53 90.32 97.26 99.75 96.55 98.56 99.75 96.55 98.56

Toileting 98.73 72.96 51.74 98.89 86.74 38.09 98.89 80.52 35.19

Showering 99.92 100 94.02 99.96 100 96.43 99.96 100 96.43

Sleeping 99.99 100 99.99 99.98 100 99.98 99.99 100 99.99

Breakfast 99.78 100 85.71 99.72 77.0 81.76 99.74 80 82.71

Lunch 99.55 90.00 86.98 99.53 72 82.26 99.54 72 86.49

Snack 99.97 80.0 80 99.92 40.0 40.0 99.92 0 0

Spare Time98.16 98.99 97.91 98.73 98.99 98.56 98.71 97.96 98.53

Grooming 99.57 91.36 76.92 99.58 79.54 75.22 99.57 79.57 75.21

Total 99.47 91.51 85.61 99.56 83.51 79.43 99.56 78.51 74.79

Table 5: Metrics expressed by percentage for real-time AR in Ordoñez Room B

FTW+LSTM Raw+Last+SVM Raw+Last+C4.5

Acc F1-

ii

F1-

sc

Acc F1-

ii

F1-

sc

Acc F1-

ii

F1-

sc

Leaving 98.09 90.47 94.69 99.54 98.67 98.68 99.53 98.67 98.66

Dinner 99.53 47.61 28 99.60 0 0 99.58 21.05 11.11

Toileting 99.83 89.11 85.39 99.83 94.18 84.78 99.85 97.17 88.0

Showering 99.96 90.91 92.31 99.98 95.62 95 99.98 95.65 95.54

Sleeping 98.65 92.15 98.08 98.87 96.35 98.34 98.89 98.04 98.41

Breakfast 99.30 81.18 69.52 98.49 33.33 29.36 98.56 52.53 41.64

Lunch 98.04 45.55 40.87 98.63 49.48 13.28 98.62 45.28 13.20

Snack 97.32 46.86 30.85 98.18 42.11 17.26 98.32 42.70 13.54

Spare Time94.84 84.17 91.28 94.94 65.86 91.15 94.83 66.28 90.97

Grooming 99.54 93.23 85.77 99.71 98.41 90.31 99.73 97.33 90.79

Total 98.51 76.12 71.68 98.77 67.40 61.99 98.79 71.47 64.19

Moreover, in Tables 7 and 8, we detail the activity performance for each approach in its best

time interval for Experiment A and B, respectively.

It is noteworthy that the data and code from the experiments and results described are460
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Table 6: Total metrics expressed by percentage for time intervals in the CASAS dataset ∆t = {5s, 20s, 60s}

FTW+LSTM Raw+Last+SVM Raw+Last+C4.5

Exp ∆t Acc F1-

ii

F1-

sc

Acc F1-

ii

F1-

sc

Acc F1-

ii

F1-

sc

A 5s 97.97 95.79 90.59 95.35 52.03 77.80 95.66 51.00 79.72

A 20s 97.68 97.56 89.67 95.86 68.83 82.91 95.82 66.84 82.39

A 60s 97.27 94.69 88.19 94.96 88.98 81.21 94.35 82.30 78.96

B 5s 95.47 92.67 84.98 90.25 46.43 60.27 90.45 47.47 63.71

B 20s 95.73 97.48 88.62 91.04 65.20 74.47 90.30 63.02 71.12

B 60s 95.98 96.89 90.32 90.05 80.68 72.57 90.20 76.91 71.28

Table 7: Metrics expressed by percentage for real-time AR in CASAS Experiment A

FTW+LSTM Raw+Last+SVM Raw+Last+C4.5

∆t = 20s ∆t = 60s ∆t = 60s

Acc F1-

ii

F1-

sc

Acc F1-

ii

F1-

sc

Acc F1-

ii

F1-

sc

Medication 99.61 97.44 97.96 96.41 77.55 83.91 96.54 76.00 84.39

Watch 95.79 97.56 90.63 92.32 80.00 84.46 91.29 65.71 82.83

Water plants 98.73 95.24 88.70 95.52 90.91 72.87 93.21 70.83 60.15

Phone 97.16 95.00 81.53 95.01 91.30 76.36 95.26 93.02 76.73

Prepare card 96.18 100.00 87.30 95.52 89.36 85.83 96.16 87.50 87.70

Cook 97.75 97.67 93.90 93.73 93.33 84.44 93.47 89.36 84.01

Clean 97.55 97.56 90.57 93.98 89.36 81.12 91.93 78.43 74.90

Choose outfit 98.63 100.00 86.79 97.18 100.00 80.70 96.93 97.56 80.95

Total 97.68 97.56 89.67 94.96 88.98 81.21 94.35 82.30 78.96

shared under Creative Commons Attribution 3.0 in the following repository 1.

4.4. Discussion

From the results previously described, we note the general improvement in terms of the

F1-score and F1-intersection of time intervals in real-time AR.

When considering the Ordoñez dataset, we particularly note the improvement in terms of F1-465

ii, which indicates that the temporal intervals predicted by LSTM are closer in terms of temporal

1http://serezade.ujaen.es:8054/lstm-ftw/
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Table 8: Metrics for real-time AR in CASAS Experiment B

FTW+LSTM Raw+Last+SVM Raw+Last+C4.5

∆t = 20s ∆t = 60s ∆t = 60s

Acc F1-

ii

F1-

sc

Acc F1-

ii

F1-

sc

Acc F1-

ii

F1-

sc

Phone 99.44 100 97.98 95.48 100 85.21 95.48 100 85.21

Wash 99.02 100 92.47 91.68 57.14 43.90 91.32 39.02 36.84

Cook 93.96 100 92.20 88.25 84.74 85.06 88.79 85.71 85.71

Eat 91.43 91.39 69.95 89.15 90.57 71.70 89.33 86.79 71.22

Clean 94.80 96.00 90.49 85.71 70.97 76.97 86.08 73.02 77.42

Total 95.73 97.48 88.62 90.05 80.68 72.57 90.20 76.91 71.29

distance to the ground truth. On the accuracy metric, previous works present a slightly better

performance due to LSTM discriminates sensor activations by more than one temporal window,

where F1-ii and F1-sc are higher. Moreover, LSTM analyzes more temporal features waiting for

the permanence of sensor activation within several temporal windows to overcome the certainty470

of an activity being developed. We note that accuracy has been shown not to be a representative

metric in AR (Ordónez et al., 2013).

Moreover, in Ordoñez Room A, we highlight the high performance of conflicting activities in

the kitchen: Lunch, Breakfast and Snack. This is due to the integration of long-mid temporal

information and the ad hoc balanced learning included for each classifier per activity. This475

impact is more prominent in the case of Dinner in dataset Ordoñez Room B, which represents

a scarce activity which is just presented for a few days, lasting a short time and with several

conflicting activities: Lunch, Breakfast and Snack. This case is so difficult to analyse that

raw+last+svm is not able to detect the dinner activity; however, FTW+LSTM has collected

the proper information from long-mid term to generate a notable increase of classification which480

duplicates its performance.

In the CASAS dataset, the performance of FTW+LSTM notably overcomes the performance

of the feature representation of raw and last activation for real-time AR. Here, the accuracy,

F1-ii and F1-sc are increased due to the sequence learning and temporal aggregation of sensor

activation developed by FTWs. Moreover, a relevant strength of our approach is the robust485

performance of the variation of the window size in time-slots segmenting the timeline. As in ∆t =

{5s, 20s, 30s} the methodology presents an encouraging recognition of activities, highlighting

F1-ii which represents the prediction within the temporal intervals of ground truth. So, unlike
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the previous works, our methodology is able to provide a response in real-time with a finer

granularity of time.490

Table 9 presents a comparison between relevant windowing methodologies, some of which

are lacking real-time capabilities. We note the performance measures of some methodologies

are not directly comparable; for example, in (Shahi et al., 2017) the segmentation is based on

events instead of time-slots, and the testing is only developed in 20% of the data. In (Espinilla

et al., 2018) the authors propose two learning layers under a windowing approach i) to evaluate495

the ending point of the activities without real-time AR, and ii) after a selection of the most

suitable window size. In these cases, although the performance measures of these methodologies

are not directly comparable, it is key that the time interval recognition of activities (F1-ii) in the

timeline from this work obtains a higher performance than accuracy in AR under the windowing

approach; notwithstanding that evaluating the ending point of the activities provides the most500

advantageous point of time in AR without offering real-time capabilities.

Table 9: Metrics, results and window approaches in evaluated datasets

Dataset Reference works Metric / Value Learning Features Window

CASAS B (Espinilla et al.,

2016)

Acc (96.67%) Prototype+KNN raw window from offline human la-

belled observation (explicit seg-

mentation)

CASAS B FTW+LSTM F1-ii (97.56%) LSTM FTW ∆t = 20s (real-time based on

time-slots)

CASAS B (Shahi et al., 2017) F1-sc(95.3%) Acc

(87.5%)

NB mutual information

+ time interval

dynamic window (real-time

based on events)

CASAS B FTW+LSTM F1-sc(88.6%) Acc

(95.7%)

LSTM FTW+time-slots

(20s)

FTW ∆t = 20s (real-time based

on time-slots)

Ordoñez A (Espinilla et al.,

2018)

Acc (89.1%) DT (C4.5) Dynamic window +

3 subwindows

Analysis at ending point of ac-

tivity (partial explicit segmenta-

tion)

Ordoñez A FTW+LSTM F1-ii (91.51%) LSTM FTW ∆t = 60s (real-time based on

time-slots)

Ordoñez B (Ordónez et al.,

2013)

F1-sc (64.19%) DT (C4.5) raw+last activation ∆t = 60s (real-time based on

time-slots)

Ordoñez B FTW+LSTM F1-sc (79.43%) LSTM FTW ∆t = 60s (real-time based on

time-slots)

The achievements of this work, which aggregates long-term information from binary sensors

by means of incremental FTW using the LSTM sequence classifier, have reduced the complexity

of i) fixing the window sizes for each activity, ii) selecting an optimal time interval to segment

the information of binary sensors and iii) defining human-defined features.505
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5. Conclusions and future works

In this work, we have presented a methodology to aggregate binary sensor activations using

Fuzzy Temporal Windows. This approach has been evaluated as a suitable representation using

a fuzzy temporal aggregation as described in a previous work (Medina et al., 2017c). In sum-

mary, defining multiple FTWs of incremental size from long-term to short-term has provided510

an adequate semantic to define a sequence of temporal features, which has been suitable for

learning using the LSTM sequence classifier.

In this work, LSTM has been demonstrated as a powerful classifier to understand the raw

activation between sensors and without requiring additional representations in the feature vector

based on external knowledge, such as the last sensor activation. Moreover, a metric to evaluate515

the temporal distance of predicted time intervals to ground truth has also been introduced.

In addition, the use of the ensemble of LSTM activity-based classifiers could provide a

straightforward adaptation to complex contexts, such as interleaved activities (Singla et al.,

2009).

Furthermore, as we have discussed, the mosaic of approaches in Activity Recognition is520

wide. Given the convergence of different technologies in Activity Recognition, in future work we

will include wearable devices to detect user interaction with daily objects by means of proximity

sensors (Medina et al., 2017a). This approach could include the advantage of privacy in addition

to facing multi-occupancy in real-time AR. In order to introduce the use of FTW in non-binary

sensors, such as wearable devices, we note that defining aggregated features represents a more525

complex problem than fuzzy temporal aggregation for binary sensors. In this way, several feature

selection methods would be necessary to extract long and mid temporal patterns within fuzzy

time intervals defined by the temporal windows. These open issues will be analyzed as the next

step of future works.
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San Mart́ın, L. Á., Peláez, V. M., González, R., Campos, A., & Lobato, V. (2010). Environmen-

tal user-preference learning for smart homes: An autonomous approach. Journal of Ambient

Intelligence and Smart Environments, 2 , 327–342.

Sanchez, W., Martinez, A., & Gonzalez, M. (2017). Towards job stress recognition based on670

behavior and physiological features. In International Conference on Ubiquitous Computing

and Ambient Intelligence (pp. 311–322). Springer.

Shahi, A., Woodford, B. J., & Lin, H. (2017). Dynamic real-time segmentation and recognition of

activities using a multi-feature windowing approach. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining (pp. 26–38). Springer.675

Shewell, C., Medina-Quero, J., Espinilla, M., Nugent, C., Donnelly, M., & Wang, H. (2017).

Comparison of fiducial marker detection and object interaction in activities of daily living

utilising a wearable vision sensor. International Journal of Communication Systems, 30 .

32



Singh, D., Merdivan, E., Hanke, S., Kropf, J., Geist, M., & Holzinger, A. (2017). Convolutional

and recurrent neural networks for activity recognition in smart environment. In Towards680

Integrative Machine Learning and Knowledge Extraction (pp. 194–205). Springer.

Singla, G., Cook, D. J., & Schmitter-Edgecombe, M. (2009). Tracking activities in complex set-

tings using smart environment technologies. International journal of biosciences, psychiatry,

and technology (IJBSPT), 1 , 25.

Sixsmith, A., & Johnson, N. (2004). A smart sensor to detect the falls of the elderly. IEEE685

Pervasive computing , 3 , 42–47.

Srivastava, N., Mansimov, E., & Salakhudinov, R. (2015). Unsupervised learning of video

representations using lstms. In International conference on machine learning (pp. 843–852).

Stikic, M., Huynh, T., Van Laerhoven, K., & Schiele, B. (2008). Adl recognition based on

the combination of rfid and accelerometer sensing. In Pervasive Computing Technologies for690

Healthcare, 2008. PervasiveHealth 2008. Second International Conference on (pp. 258–263).

IEEE.

Storf, H., Kleinberger, T., Becker, M., Schmitt, M., Bomarius, F., & Prueckner, S. (2009).

An event-driven approach to activity recognition in ambient assisted living. In European

Conference on Ambient Intelligence (pp. 123–132). Springer.695

Tapia, E. M., Intille, S. S., & Larson, K. (2004). Activity recognition in the home using simple

and ubiquitous sensors. In International conference on pervasive computing (pp. 158–175).

Springer.
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