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Abstract—Advances in healthcare and improvements in lifestyle 

have contributed to a rising population of an aging society. 

Within the social care profession, this causes concern as 

resources are continually spread thin resulting in increased stress 

for individual workers and increased financial implications for 

established healthcare providers. One possible solution to 

alleviate stress and free up resources is to employ the use of 

computational intelligence within a home environment to 

determine important risk factors which should allow health- and 

social-care professionals to put preventative measures in place to 

protect elderly people from harm thereby reducing the financial 

implications of hospital care. A major limitation of 

computational risk models can that they can be quite complex 

and cumbersome due to the richness of data used to derive the 

model, not all of which is particularly useful for determining 

associated risk. In this paper, a transparent risk modelling 

method is presented which as well as computing an overall risk 

level, also reduces model complexity by determining which data 

are relevant. The transparent nature of the model allows users to 

understand the model structure used to compute the risk level 

which is important if health care professional are expected to use 

such algorithms in the future. 

Keywords—risk-analysis, computational modelling. 

I. INTRODUCTION 

Potential risks related to the ageing population are major 
concerns within the health and social care profession. Risks 
can be viewed as either positive or negative. For example, 
families of adults with dementia are familiar with the results of 
negative risks like falling [1], burns [2], driving, wandering and 
mismanagement of medication. Positive risks, on the other 
hand, can be viewed as opportunities to improve; this may 
include, for example, people who suffer from isolation risk 
stepping outside their comfort zone by venturing out to meet 
new people. In general, four classes of risks to elderly people 
have been identified (See Figure 1 for examples): behavioural 
(such as isolation, self-esteem, paranoia, etc); personal safety 
(such as road safety, wandering, personal injury etc.); health 
style (including, for example, nutrition, heating and hygiene) 

and financial (including managing bill, money management 
and financial exploitation). 

 

Figure 1: Examples of types of risks linked with an ageing 

population 

 
Estimating the likelihood of possible harm and working 

with the individual and family members to manage these risks 
is an everyday task facing health and social care professionals, 
particularly social workers. One way of alleviating this burden, 
especially in times where a growing ageing society is 
becoming a reality [3], is to utilise computational intelligence 
to model risk level and thus enable health care professionals to 
prevent, rather than react to, harmful events. Computational 
intelligence is a key aspect of computer science, and has 
received much interest in the recent manipulation of Big Data, 
which has found application in many research areas, 
significantly in healthcare. In one case, computational 
intelligence was used in the diagnosis of breast cancer [4] 
where a support vector machine (SVM) has been implemented 
to separate tumours and accurately classify tumour types. This 
approach has been shown to reduce the diagnosis time without 
loss of accuracy. 

 Applying computational intelligence to risk assessment for 
ageing-in-place would reduce the time and resources required 
by individual care workers thereby allowing more personal 
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attention to be focused where required. To enable this, a 
process known as activity monitoring [5] can be employed 
which utilises many discreet sensors within the home such as 
PIR sensors, pressure mat sensors for under seats, mattress 
sensors and sensors for environmental aspects such as light and 
humidity. With these types of sensors fitted around the home, 
data can be collected that may be interpreted as different events 
such as cooking, eating, sleeping or simply watching TV [6]. 
As an example, the activity ‘sleeping’ would involve a pressure 
sensor beneath the mattress being activated in combination 
with all PIR sensors outside the room being inactive for an 
individual dweller.  

While events can easily be derived from the activation state 
of the various sensors, modelling personal safety or 
behavioural risks can be unnecessarily complex due to the vast 
amount of data available containing numerous attributes that 
may or may not be relevant. For this reason, the use of 
transparent models for this application is vital as it enables 
visualisation of the algorithmic decision making and therefore 
illuminates human understanding of the model output. It 
facilitates the ability to reduce the complexity of the model and 
thus improves the scalability of the approach by allowing the 
removal of attributes or variables which are not required to 
make a decision. Furthermore, in order for professions such as 
health and social care to accept and understand decisions made 
by algorithms, such algorithms need to be debuggable and 
transparent, and therefore offer ‘algorithmic accountability’. 

Although there are many computational intelligence 
approaches that could be applied to risk analysis and 
modelling, this paper will focus on the ability to reduce model 
complexity and provide a transparent model. In particular the 
Non-linear AutoRegressive Moving Average with exogenous 
inputs (NARMAX) approach will be investigated as this 
enables us to analyse and validate an input-output coupling 
using sensitivity analysis and potentially determine decision 
robustness when faced with incomplete knowledge.  

The remainder of this paper is organised as follows. Section 
II describes the dataset considered to demonstrate this 
approach whilst Section III gives an overview of the 
NARMAX modelling process. In Section IV, results are 
presented which demonstrate the benefits of transparent 
modelling with a concluding summary presented in Section V. 

II. RISK SCENARIO 

 As a feasibility study, we demonstrate the approach in 
terms of a determined risk level classification output as a 
function of inputted attributes. The data used within this paper 
originates from the financial sector due to its directness in risk-
associated decision-making. The dataset connects a decision of 
credit suitability as part of a loan application process. The 
reasoning behind choosing this risk related dataset is that is 
pertains to a process that most people can associate themselves 
with, thus they should be able to intuitively rationalise which 
attributes are important and cross-reference this with the output 
of the model in terms of the retained attributes. Modelling the 
process in this way will provide evidence that the particular 

approach would also operate efficiently when considering data 
variables which are seemingly irrelevant or unintelligible when 
applied to the healthcare field. 

Data within this set were originally collected for 1000 
credit applications and organised into a combination of 20 
qualitative and numerical attributes [7], each with a number of 
subcategories, the result being classified into a good (+1) or 
bad (-1) category. For modelling purposes, the qualitative 
attributes were converted to numerical representations with 
subcategories being expanded into individual variables where 
required. This resulted in 24 variables which are presented in 
Table 1.  

Table 1: Financial Data Risk Attributes 

1 Checking 

Account 

Balance 

9 Property 

Owned 

17 Loan 

Purpose: 

Used Car? 

2 Loan 

Duration 

(Months) 

10 Age (Years) 18 Other 

Debtors/ 

Guarantors  

3 Credit 

History 

11 Other Credit 19 Other Debt  

4 Credit 

Amount 

12 Other Credit 

with this Bank 

20 House: 

Rented/Free 

5 Savings 

Balance 

13 No. 

Dependents  

21 House: 

Owned/Free 

6 Time 

Employed 

14 Telephone? 22 Unemployed/ 

Management  

7 Personal 

Status and 

Gender 

15 Foreign 

Worker? 

23 Unskilled 

Job/ 

Management 

8 Time in 

Present 

Residence 

16 Loan Purpose: 

New Car? 

24 Skilled Job/ 

Management 

  

 Each attribute forms part of an overall intuitive 
consideration carried out by a financial institution in order to 
categorise applicants as having either good or bad credit risk. 
Although each of the attributes listed may seem logical and 
relevant, not all of them may be important from a modelling 
perspective. These attributes can be considered as variables, or 
dimensions from a modelling perspective, which can be 
assessed for importance and where necessary, can be 
disregarded, reducing the complexity of the risk model, which 
provides benefits in terms of speed and scalability when 
considering larger datasets. To do this, transparent modelling 
in the form of NARMAX can be utilised to reveal the 
underlying characteristics of the system. For this purpose, the 
1000 applications were split 50/50 into Training/Testing 
datasets. 



III. TRANSPARENT MODELLING 

The NARMAX approach is a popular system identification 
technique with two fundamental aims. The first is to develop a 
good approximator of input data such that predictions can be 
made with high accuracy and minimal error. The second key 
aim, which is important for this approach, and why the 
NARMAX philosophy was developed [8], is to find the least 
computationally expensive model and provide insight into the 
underlying characteristics. This allows one to analyse and 
understand the rules that represent the underlying system. In 
doing so, models may be understood by experts and non-
experts alike which is of great importance to healthcare 
professionals when reviewing why an algorithm has made a 
particular decision (algorithmic accountability). 

The NARMAX model, which is a natural extension of the 
linear ARMAX model [9] can be defined by: 

 

 

 
(1) 

 

which accounts for the combined effects of noise, modelling 

errors and unmeasured disturbances concerning the inputs and 

outputs. Here,  is an input vector,  is an output vector, 

where  is the maximum lag on the output vector;  is 

system noise which is considered bounded and cannot be 

measured directly and  is the max lag on the input vector. 

, which is an unknown nonlinear function, is typically 

taken to be a polynomial expansion of the arguments and d is 

a time delay which is typically set to d = 1.  

When developing the NARMAX model, the following 

steps are adhered to [8]: 1) Structure Detection: the 

determination of the terms within the model; 2) Model Fitting: 

tune the coefficients; 3) Validation:  validating the model with 

attention to model overfitting and 4) Prediction: output at a 

future point in time. 5) Analysis: determination of the 

underlying dynamics of the system.  

Determining the structure of the system forms one of the 

most important parts of this approach. As the structure is 

typically unknown prior to implementation [10], a number of 

options exist to approximate the function which include 

polynomial, rational and various artificial neural network 

implementations [9]. In terms of revealing and analysing the 

underlying properties of the system, the polynomial models 

offer the most attractive implementation for this work as they 

provide a compact mathematical model enabling real time 

transparent decision making.    

The method utilised for model reduction is based on the 

orthogonal least squares approach outlined in [11] which 

computes the contribution that each potential model term 

makes to the system output. This is known as the Error 

Reduction Ratio (ERR) and provides an indication of which 

terms can be ignored due to their comparatively minor 

reduction to the mean squared error. Building the system this 

way, term by term, exposes the significance of each new term 

added and avoids model overfitting due to an excessive use of 

time lags or nonlinear function approximations [9] whilst 

ensuring that the model is as simple as possible and contains 

good generalisation properties. Model validation then 

determines if the model is adequate for the task using the 

approach outlined in [12] which carries out a correlation based 

model validation.  

The NARMAX approach simulates investigative 

modelling techniques where the important model terms are 

weighted and then the model is refined by removing less 

significant terms [11]. The only difference is that in the 

NARMAX method, the model terms can be identified directly 

from the data set. The unknown parameters and system noise 

can then be estimated and accommodated within the model. 

These procedures are now well established and have been 

used in many modelling domains [13]. 

IV. NARMAX MODELS AND RESULTS 

Deriving a NARMAX model is an iterative process where 
the least significant model terms are removed. As described 
earlier, the inputs to the model consists of 24 variables relating 
to the status and holdings of individuals applying for credit and 
the output pertains to the credit risk being classified as either 

good (1) or bad (-1). The maximum lag considered for   and 

 is set at 0 whilst the threshold value for the error reduction 
ratio (ERR) is set at 0.05. Convergence of the algorithm is 
detected by monitoring the change within the estimated 
parameters which is set at 1e-5 and is typically achieved in ten 
iterations [11]. The modelling process for this particular dataset 
took four iterations to complete, removing four model terms 
within the first iteration and an additional term in the second 
needing two further iterations to reach convergence. In total, 
five variables considered unimportant for model accuracy were 
removed. In this section, results are outlined with particular 
focus on the derived terms of the model.  

A. Linear ARMAX model 

An ARMAX model was constructed using the procedure 
outlined in Section III containing 19 terms, presented in 
Equation (2): 

y(t) =  +0.05016324092698829600...  

 -0.20333075198127554000 * u(n, 1)...  

 +0.01278538092886852300  * u(n, 2)...  

 -0.07187081143753938600  * u(n, 3)...  

 +0.00163405763866556740  * u(n, 4)...  

 -0.04484439999448588300  * u(n, 5)...  

 -0.05466350645990122900  * u(n, 6)...  

 -0.08059488973512765600  * u(n, 7)...  

 -0.02687493345156190300  * u(n, 8)...  

 +0.05542928071542430100  * u(n, 9)...  



 -0.05156063888268464700  * u(n, 11)...  

  +0.10614968289695714000  * u(n, 12)...  

 +0.12143171358846845000  * u(n, 13)...  

 -0.17261043514460983000  * u(n, 15)...  

 +0.04581383514072093200  * u(n, 16)...  

 -0.32227114579413074000  * u(n, 17)...  

 +0.45909019241924703000  * u(n, 18)...  

 +0.62276116319950758000  * u(n, 19)...  

 -0.14077815495543183000  * u(n, 23)...  

 -0.09431997066080444200  * u(n, 24)... (2) 

According to Table 1, the terms removed relate to attributes 
(10, 14, 20 - 22) which define the age of the applicant, whether 
they have a telephone or not, whether they own or rent their 
current residence and if they hold a management position 
within employment. When reviewing each of the terms 
removed, one can identify the intuitive reasoning for variables 
which would be disregarded in the determination of a loan 
decision. The model may also be rewritten in a simpler format 
to that of Equation (1) as: 

 

y(t) =  ϴ1u1(t) + ϴ2u2(t) + ϴ3u3(t) + … +  ϴnun(t) + e(t)  (3) 

 

where ϴx describes the estimated parameter, ux(t) is the input 
variable and e(t) is the system noise. The additional benefits 
that this (ARMAX model) provides is an ease of understanding 
for non-experts such as healthcare professionals. 

 Computing the accuracy of the model involved using a 
threshold of zero and classifying the ARMAX model outputs 
into either 1 or -1 accordingly. This is illustrated in a scatter 
plot presented in Figure 2. As can be observed from the 
clustering around the threshold, there is further scope for 
investigation the effect of a variable threshold which will form 
part of our future work. In terms of classification accuracy, the 
model achieves 73.2% for correct decisions which is an 
adequate approximation to the input data. 

 

Figure 2: Scatter plot of the linear ARMAX model output. 
 

 Removing the indicated variables from the input dataset 
and repeating the model yielded the same results (73.2% 
accuracy), confirming the limited effect of the removed 
variables. The sole difference in model construction was that 
only two iterations were needed to reach model convergence. 
Further investigation into the model terms suggested that 
additional variables could be deleted.  Therefore the error 
reduction ratio (ERR), described in [8] was calculated for each 
variable to determine which, if any, could be removed to 
simplify the model further. This ratio provides a simple but 
effective method of determining a specific terms overall 
contribution to the models output. Table 2 presents a ranked 
list of variables according to their relative contribution in 
reducing the error.  

Table 2: Ranked terms according to their ERR values 

 ERR Term  

 0.000000 +0.0501632409  

 11.283843 -0.2033307520   * u1(n)  

 4.806388 +0.0127853809   * u2(n)  

 1.112524 +0.6227611632   * u19(n)  

 0.97182 -0.3222711458   * u17(n)  

 0.857027 -0.0448444000   * u5(n)  

 0.683666 +0.0554292807   * u9(n)  

 0.642018 -0.0805948897   * u7(n)  

 0.600805 -0.0718708114   * u3(n)  

 0.532341 +0.0016340576   * u4(n)  

 0.50663 -0.0546635065   * u6(n)  

 0.424305 +0.1061496829   * u12(n)  

 0.331584 +0.4590901924   * u18(n)  

 0.274131 -0.0515606389   * u11(n)  

 0.217886 +0.0458138351   * u16(n)  

 0.135846 -0.0943199707   * u24(n)  

 0.118993 -0.1726104351   * u15(n)  

 0.073583 -0.1407781550   * u23(n)  

 0.061533 +0.1214317136   * u13(n)  

 0.057918 -0.0268749335   * u8(n)  

 From the table, three variables with the least contribution 
relate to an applicant’s ‘time in present residence’ (Table 1, 8), 
‘no. of dependents’ (Table 1, 13) and job type (Table 1, 23). 
Also evident is that high importance is attributed to variables 
reflecting one’s current banking balance, the duration of the 
loan and whether or not there is other debt to consider, which is 
intuitively logical. Using this logical approach, further removal 
of the three least important variables using an ERR threshold 
of 0.1 results in an increased accuracy to 74.8% for the linear 
model, meaning that some variables do in fact negatively 
impact on a model’s performance. This demonstrates how the 
transparent modelling can be utilised in interpreting what is not 
important and what variables are deemed most important for a 
particular model to be used in making a decision. To 
demonstrate the trade-off between model complexity and 



accuracy, Figure 3 shows the accuracy of the model when 
plotted against a variable ERR threshold whilst Figure 4 shows 
the reduction in terms. 

 

Figure 3: Accuracy vs. variable ERR value 

 

 

Figure 4: No. Terms vs. variable ERR value 
  

It is also important to note that whilst the ERR values and 
parameter values do change slightly when computing models 
with fewer terms, the order of importance does not, therefore 
Table 2 may be referred to ascertain which terms still remain 
within the model. When reviewing each of these figures it is 
evident that using only the current banking balance (Table 1, 
1), results in an ERR threshold value of 5.0, achieving a 
classification accuracy of 67.2% which confirms the 
importance of this attribute as it is ranked top when referring to 
its ERR value in Table 2. This is also intuitively logical. 
Another important observation is that an ERR threshold value 
of 0.1 yields the best accuracy of the model at 74.8% which 
results from the contribution of 14 model terms. These results 
demonstrate that one may compromise between accuracy and 
complexity, choosing a model which best fits their current 
application. Given the model has now gone through iterations 
which computes the accuracy from inclusion of all the terms 
down to only the most significant term, the next step is to 
increase the model complexity by observing what 
contributions, if any, that combinations of terms may provide. 

This is achieved by computing a quadratic NARMAX model. 

B. Quadratic NARMAX model 

Using the same procedures outlined in Section III, a 

quadratic NARMAX model was constructed consisting 

initially of 324 terms which was reduced iteratively to 57 

model terms over six iterations using an ERR threshold value 

of 0.05. Rather than displaying all 57 terms, only the 

combinations of terms are listed, and ranked, according to 

their computed ERR values in Table 3. The linear terms 

omitted remain the same as those listed in Table 2. 

 

Table 3: Ranked terms according to their ERR values 

ERR Term 

2.334253 -0.0003625370  * u2(n)  * u4(n) 

1.75549 +0.0001874462  * u4(n)2 

1.060208 +0.0065485778  * u1(n)  * u4(n) 

0.938766 -0.0356447390  * u2(n)  * u22(n) 

0.882754 -0.4185611808  * u11(n)2 

0.862158 -0.1162594939  * u1(n)  * u11(n) 

0.684981 +0.1063418423  * u7(n)2 

0.62634 -0.1283770267  * u3(n)  * u12(n) 

0.54548 -0.0024397634  * u4(n)  * u5(n) 

0.54291 -3.4891588945  * u15(n)  * u22(n) 

0.493778 -0.0251093545  * u10(n)  * u19(n) 

0.486379 -0.0514096160  * u8(n)2 

0.433883 +0.0002559988  * u2(n)  * u5(n) 

0.397097 +1.4766599296  * u6(n)  * u22(n) 

0.380552 +0.1627159201  * u1(n)  * u17(n) 

0.372915 -0.0342099249  * u3(n)  * u9(n) 

0.357986 -0.0064182959  * u4(n)  * u23(n) 

0.354087 +0.0268898278  * u1(n)  * u3(n) 

0.353537 -0.1995842341  * u21(n)  * u24(n) 

0.343571 -0.0119568312  * u1(n)  * u2(n) 

0.337942 +0.0479453111  * u1(n)  * u7(n) 

0.332902 -0.2030112446  * u11(n)  * u23(n) 

0.326559 +0.0089398818  * u2(n)  * u12(n) 

0.284386 +0.2126598657  * u6(n)  * u15(n) 

0.248369 +0.0007892382  * u2(n)  * u20(n) 

0.244027 -0.1020125592  * u3(n)  * u17(n) 

0.242506 -0.0471591313  * u1(n)2 

0.217504 -0.0599102326  * u1(n)  * u9(n) 

0.184247 -0.3004021199  * u3(n)  * u22(n) 

0.183859 +0.0167266137  * u5(n)2 

0.181801 +0.0420011597  * u6(n)2 

0.142544 +0.6103347551  * u7(n)  * u22(n) 

0.135557 -0.0092313786  * u1(n)  * u6(n) 

0.120759 +0.0337691675  * u3(n)  * u23(n) 

0.113957 +0.0096301646  * u1(n)  * u5(n) 

0.108544 +1.3455838032  * u13(n)  * u22(n) 

0.098411 -0.0498758373  * u6(n)  * u24(n) 

0.080129 +0.0140050483  * u2(n)  * u23(n) 

 



What is interesting here is that model terms previously 

thought to have been of no relevance are included as 

combinational terms with other attributes. For instance, input 

u22 which represents whether one is employed in a 

management capacity is combined with u2 (loan duration) and 

is ranked (4th in Table 3) above some of the previous linear 

terms (Table 2) when comparing ERR values. Again, by 

increasing the ERR threshold, the effects of term reduction 

can be observed against computational accuracy. This is 

shown in Figure 5 and Figure 6 respectively. 

 

 
Figure 5: Accuracy vs. variable ERR for the quadratic 

NARMAX model 

 
Figure 6: No. Terms vs. variable ERR value for the 

quadratic NARMAX model 

 

As shown in Figure 5, the accuracy for the quadratic model 

peaks at 75% which is only 0.2% of an improvement over the 

linear model. However, the linear model comprised of 14 

terms whereas the quadratic model contains one less at 13 due 

to its ability to combine various attributes. Furthermore, if the 

accuracy of the quadratic model is matched to that of the 

linear version to 74.8%, then only 9 terms are required thus 

reducing the complexity of the model further. On examination 

of these terms (shown in Table 4), it is evident this is a result 

of the combination of the loan duration (u2) and credit amount 

balance (u4) or savings balance (u5) which again is intuitively 

rational to a non-expert. 

Table 4: Ranked terms for 9 term quadratic model 

0 0.512251136 

11.28384 -0.1748131891    * u1(n) 

4.806388 +0.0413358875   * u2(n) 

2.031262 -0.0003439235    * u2(n) * u4(n) 

1.712236 +0.0001771754   * u4(n)2 

1.202952 -0.2950664922    * u17(n) 

0.857027 +0.0392170583   * u5(n) 

0.73606 -0.0039976715    * u2(n) * u5(n) 

0.642018 -0.6314677578    * u7(n) 

0.62426 +0.0917489879   * u9(n) 

0.600805 -0.0313954000    * u3(n) 

0.58818 +0.1034026864   * u7(n)2 

0.532341 -0.0098204761    * u4(n) 

0.50663 -0.0583405191    * u6(n) 

 

V. CONCLUSION 

Computational modelling results for specific risks 
regarding elderly people such as falling, hygiene and 
depression can be difficult for healthcare professionals to 
accept due to the delicate nature of the problem. In this paper, a 
method for transparent modelling has been presented that when 
utilised, provides ‘algorithmic accountability’ to professionals 
within the specific area. This would allow healthcare 
professionals, for example, to understand how a decision has 
been made by reviewing what data have contributed to the 
decision, which data variables are most important etc. 

The data selected to illustrate the approach originated from 
the financial sector, chosen for its directness in risk-associated 
decision-making and enabling of intuitive rationalisation. In 
selecting this particular dataset, one can see the underlying 
logic in the risk related decisions and gain an understanding of 
what is considered most important to the decision-based 
process. This would be equally transferrable to a healthcare 
related dataset for those in the healthcare field. 

To this end, the work carried out in this paper explores the 
application and feasibility of modelling specific risks using 
NARMAX as a method for transparent modelling. We show 
that by utilising the NARMAX approach, one can intuitively 
rationalise the terms and discover what the important 
contributions are in making the decision. In providing this 
transparency, healthcare professionals can devote more time to 
eliminating the associated risk factors within one of the 
associated risk classes which would contribute to prevention of 
certain risks occurring such as falling, wandering or isolation. 
If isolation, for example, was deemed an important risk factor 
that lead to depression, one would concentrate more on 
communicating with family members or social workers in an 
effort to eliminate it. 

In terms of the computational complexity, we show that the 
NARMAX model provides a simple approach to determine an 
efficient model through the ability to prune terms deemed not 



to contribute effectively. This is achieved primarily through 
moderation via the ERR value which quantitatively computes 
the individual contribution that each term affords. Computing 
the accuracy of such models in this way affords one the option 
of choosing a model based on the trade-off between complexity 
and accuracy. This may be particularly beneficial, for instance, 
for large scale datasets where the deployed model has to 
operate on limited hardware. Extending this approach to 
encompass larger datasets within the healthcare field will form 
the basis of our future work to further improve the efficiency of 
term selection. 
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