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Abstract

Machine learning can be used to automatically process sensor data and create data-driven models for prediction and
classification. However, in applications such as fault diagnosis, faults are rare events and learning models for fault
classification is complicated because of lack of relevant training data. A hybrid diagnosis system design is proposed
which combines model-based residuals with incremental anomaly classifiers. The proposed method is able to identify
unknown faults and also classify multiple-faults using only single-fault training data. A physical model and data
collected from an internal combustion engine are used to verify the proposed method.
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1. Introduction

Fault detection and isolation are important tasks in
fault diagnosis systems to identify the root cause when
faults occur in the system. This is complicated by the
fact that there are often many possible diagnosis can-
didates (fault hypotheses) that can explain the system
state. In a workshop, this can result in a mechanic hav-
ing to troubleshoot several components in a system be-
fore identifying the true fault, which can be both costly
and time-consuming [1].

Two common approaches in fault diagnosis are
model-based [2] and data-driven [3]. Data-driven di-
agnosis, in general, isolates faults by using classifiers
learned from training data using nominal data and data
from different faults, see for example [4]. However, in
many industrial applications, faults are rare events and
available training data from faulty conditions is usually
limited [5, 6]. Collecting a sufficient amount of data
from relevant fault scenarios is a time-consuming and
expensive process. Also, if there are faults that do not
occur before several years of system operation time,
they might not be considered during system develop-
ment. Therefore, it is desirable that a diagnosis system
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is not only able to identify and localize known faults as
they occur, but it should also be able to identify new
types of faults and improve fault classification perfor-
mance over time as new data are collected.

One solution to limited training data from different
fault scenarios is the use of physical models. In model-
based diagnosis, fault isolation is mainly performed by
matching the set of triggered residual generators with
the different fault signatures to compute diagnosis can-
didates [7]. An advantage of model-based methods,
with respect to data-driven methods, is that fault isola-
tion performance can be achieved without training data
from different faults. Even though the fault has not been
observed before, it is possible to point out likely fault lo-
cations based on residual information and model analy-
sis [8]. However, there are often many diagnosis candi-
dates that can explain the triggered residuals, meaning
that it can still be difficult to identify the actual fault.

1.1. Problem motivation

A combined diagnosis system design has the po-
tential of both model-based and data-driven diagnosis
methodologies [9]. The objective of such a hybrid diag-
nosis system design is to improve fault isolation perfor-
mance by utilizing both physical models and data col-
lected from previous fault occurrences. Another advan-
tage is that performance can improve over time by incre-
mentally retrain the data-driven classifiers over time as
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new data are collected. This is relevant for example in
the automotive industry where fleet data from connected
vehicles can identify anomalies and help diagnose each
individual vehicle. The idea is to first compute diagno-
sis candidates (fault hypotheses) that can explain the set
of triggering residual generators and then rank the dif-
ferent candidates which is most likely using data-diven
classifiers where each classifier models a different fault
hypothesis. The proposed diagnosis system structure is
illustrated in Figure 1. The purpose of the data-driven
classifiers is not to reject any of the diagnosis candidates
but to rank which of the computed candidates are more
likely.
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Figure 1: A schematic of the diagnosis system design. The data-driven
fault isolation is used to rank diagnosis candidates computed by the
consistency-based fault isolation.

This paper extends on the analysis and results of the
proposed hybrid diagnosis system design presented in
[10]. A framework is formulated for combining model-
based and data-driven fault isolation. Also, with respect
to the previous work, the performance and robustness of
the proposed hybrid diagnosis system design are evalu-
ated using a model of an internal combustion engine and
collected data from a test bench.

1.2. Related research

Discussions regarding model-based and data-driven
fault diagnosis methods can be found in, for example,
[2], [11], and [12]. A survey of previous works combin-
ing model-based and data-driven fault diagnosis tech-
niques is presented in [9], which also points out that
there are potential advantages of applying a framework
to integrate the model-based and data-driven method-
ologies. A hybrid framework is proposed in [13] where
residuals, designed using bond graphs, and sensor data
are combined using a Bayesian Network. In [14] and
[15], different sets of test quantities are designed us-
ing model-based and data-driven methods. In [16], a
model is estimated using data from a thermal power

plant and a data-driven classifier is then used for fault
isolation. Model-based residual selection is combined
with training data in [17] to automatically identify im-
portant residuals and design test quantities, and in [18]
residual detection performance is improved using ma-
chine learning to compensate for model uncertainties.
In [19], a brief comparison is made between different
hybrid approaches applied to monitor a wind turbine.
Combined methods have also been proposed for prog-
nostics and condition-based maintenance [20, 21]. With
respect to previous works, this paper proposes a hy-
brid fault isolation strategy which takes advantage of
both methodologies to improve fault isolation without
increasing the risk of rejecting the true diagnosis.

2. Fault isolation and model-based diagnosis

The first step of the diagnosis system in Figure 1 fol-
lows a general model-based architecture where resid-
uals are used to detect inconsistencies between model
predictions and sensor data. In this section, it is sum-
marized how the diagnosis candidates are computed as
a set of fault hypotheses that can explain the set of trig-
gered residuals.

In industrial systems, there are usually many potential
faults that can occur that will have varying impact on the
system and its performance. Let F = { f1, f2, . . . , fn f }

denote a set of n f known types of faults to be moni-
tored by a diagnosis system. However, note that the set
F ⊆ F ∗ only represents the known subset of all pos-
sible faults F ∗ that can occur in the system. Thus, the
set F can increase over time as new types of faults are
identified.

In many systems, it is possible that multiple faults can
be present in the system at the same time. Therefore, to
describe the system state the term fault mode is used
which is defined as follows.

Definition 1 (Fault mode). A fault mode F ⊆ F is a set
of faults that is present in the system.

The nominal system state F = ∅, i.e. when the system
is fault-free, is denoted the No Fault (NF) case.

2.1. Fault detection

In order to detect if a fault is present in the system,
a set of residual generators R = {r1, r2, . . . , rnr } is com-
puted. A residual generator is a function of sensor and
actuator data which ideally is zero in the fault-free case
[22]. A residual generator is said to be sensitive to a
fault fi if that fault implies that the residual is non-zero,
ideally. If a residual generator is not sensitive to fault fi,
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Table 1: Fault signature matrix.
Residual fWa f fpim fpic fTic

r1 X X
r2 X X
r3 X X
r4 X X
r5 X
r6 X

is is also said that the fault is decoupled in that residual
generator.

Note that the definitions of residual generators and
fault sensitivity describe the ideal case. However, fault
detection performance is complicated by model uncer-
tainties and measurement noise. Therefore, a change in
the residual output is usually determined by threshold-
ing the residual. A function that evaluates if there is a
change in a residual output or not is called a test quan-
tity.

The different residual generators are designed to
monitor different parts of the monitored system, i.e., to
be sensitive to different subset of faults. The following
definition of fault detectability for a given set of residual
generators R is used [17].

Definition 2 (Fault mode detectability). A fault mode
Fi ⊆ F is structurally detectable if there exists a resid-
ual generator rk ∈ R that is sensitive to at least one fault
f ∈ Fi.

The relation between which residual generators are
sensitive to which faults can be summarized in a Fault
Signature Matrix (FSM). An example is shown in Ta-
ble 1 where a mark at location (k, l) in the FSM indicates
that residual rk is sensitive to fault fl. As an example,
residual r1 is sensitive to the faults fWa f and fpim, but
not to fpic and fTic.

2.2. Fault isolation
After a fault has been detected, i.e. when one or more

residuals have triggered, the next step is to perform fault
isolation. Fault isolation consists of computing diagno-
sis candidates, that can explain the set of triggered resid-
ual generators. There are different proposed methods
for fault isolation, for example column matching [7],
and consistency-based diagnosis [23]. The set of com-
puted diagnoses can differ between different fault iso-
lation algorithms. One reason is that the fault isolation
algorithms are designed based on some fundamental as-
sumptions on fault behavior [19]. Here, consistency-
based diagnosis is used since it will not reject the true
diagnosis candidate, as long as there are no false alarms.

Fault isolability between fault modes is defined for a
set of residual generators R as follows [17].

Definition 3 (Fault mode isolability). A fault mode Fi ⊆

F is structurally isolable from another fault mode F j ⊆

F if there exists a residual generator rk ∈ R that is
sensitive to at least one fault f ∈ Fi but no fault f ∈ F j.

From this definition, the principles of consistency-
based diagnosis for fault isolation can be summarized
as follows. Initially, before any residuals have triggered,
the set of possible diagnosis candidates D includes all
possible subsets of F , including the empty set repre-
senting that the system is fault-free. Since no diagnosis
candidate d ∈ D has been rejected, they can all explain
the current system state. When a residual triggers, diag-
nosis candidates that cannot explain the triggered resid-
ual are rejected, reducing the set of feasible candidates.
All diagnosis candidates, where no subset of faults is a
feasible candidate, are referred to as minimal diagno-
sis candidates. Since faults usually are rare events, the
minimal diagnosis candidates represent the simplest but
also the most likely explanations. Note that before any
residual has triggered, the minimal diagnosis candidate
is the fault-free case. As an example, consider the FSM
in Table 1. Assume that residuals r1 and r2 have trig-
gered alarms. Then, { fWaf} and { fpim, fpic} are minimal
diagnosis candidates. Note that, for example, { fWaf, fTic}

is also a diagnosis candidate but it is not minimal since
the subset { fWaf} is also a diagnosis candidate.

3. Fault classification using anomaly detection

Data-driven classifiers try to model data and find de-
cision boundaries that best distinguish between differ-
ent classes of data [24]. The different types of classi-
fiers can broadly be divided based on how many classes
of data that are used to train the classifier. Binary and
multi-class classifiers are trained using data from mul-
tiple classes to determine decision boundaries that sep-
arate each class. Multi-class classifiers commonly ex-
trapolate the decision boundaries to areas not repre-
sented by training data. If training data do not repre-
sent the different faulty scenarios, this can result in an
unnecessary large set of mis-classifications.

One-class classifiers, usually referred to as anomaly
classifiers [25], use data from only one class to identify
if new data patterns belong to that class or not. There are
many different types of data-driven anomaly classifiers
proposed, for example, Principal Component Analysis
(PCA), Partial Least Squares (PLS), k-means, Gaussian
Mixture Models (GMM), and one-class Support Vector
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Figure 2: A comparison between a binary SVM classifier (left fig-
ure) trained using data from both class 1 and class 2, and two 1-SVM
classifiers (right figure) trained for each class of data.

Machines (1-SVM) [24]. One-class classifiers are in-
teresting alternatives to multi-class classifiers, both for
fault detection and isolation since each fault mode can
be modeled independently of each other. This is illus-
trated in Figure 2 where a binary Support Vector Ma-
chines (SVM) classifier and two 1-SVM classifiers are
trained using two-dimensional data from two different
classes [24]. The decision boundaries of the different
classifiers are shown in the figures. When evaluated
with new data, the binary SVM classifies the data as
belonging to Class 2 while the two 1-SVM classifiers
states that the new data does not belong to any of these
classes. This can be used to identify unknown faults, i.e.
new faults that have not been observed before.

3.1. Support Vector Data Description

The 1-SVM do not directly try to model the data dis-
tribution but its support. Two similar methods of 1-
SVM are proposed in [26] and [27], respectively, re-
ferred to as ν-SVM and Support Vector Data Descrip-
tion (SVDD). The two methods utilize the kernel trick
where ν-SVN uses a hyper-plane and SVDD a hyper-
sphere to enclose the training data.

In order to handle large sets of data, incremental
learning algorithms are necessary to reduce computa-
tional cost of updating the data-driven classifiers as new
data is collected. In this paper, the incremental SVDD
algorithm presented in [28] is used.

4. Merging information from model-based and
data-driven fault isolation

When combining different algorithms for fault isola-
tion, it is important to avoid contradictory conclusions,
i.e. when diagnosis statements from the different algo-
rithms are inconsistent. In [13] a Bayesian Network
is used to merge information from different sources,
which could contain contradictions, to determine the

most likely diagnosis. The solution in this work is that
consistency-based diagnosis is used to compute diagno-
sis candidates while a set of SVDD classifiers are used
to evaluate how likely each diagnosis candidate is. Note
that the data-driven classifiers are not used to reject any
diagnosis candidate. To motivate the diagnosis system
design in Figure 1, combining both consistency-based
diagnosis and SVDD classifiers, the relation between
the two fault isolation approaches is analyzed using the
methodology in [19].

4.1. Modeling fault modes in consistency-based fault
isolation

Different fault magnitudes and realizations of each set
of faults will have different effects on the residual out-
puts. By assuming bounded residual uncertainties, the
set of residual outputs that can be explained by a certain
fault mode Fl ⊆ F is defined by a set Φ∗(Fl) ⊆ Rnr .
Different fault modes Fl can explain different sets of
residual outputs Φ∗(Fl). Note that some residual out-
puts can be explained by multiple fault modes, i.e.
Φ∗(Fl1) ∩ Φ∗(Fl2) , ∅ is true for some Fl1 and Fl2.

If the sets Φ∗(Fl) for all Fl ⊆ F are perfectly known,
it is possible to avoid rejecting the true diagnosis candi-
date. However, this is rarely the case and different fault
isolation algorithms try to approximate the sets Φ∗(Fl)
to perform fault isolation. By comparing how each fault
isolation algorithm approximates the different residual
output sets Φ∗(Fl) gives information how to combine
the different fault isolation methodologies to avoid in-
consistencies and to improve isolation performance.

The approximation of each Φ∗(Fl) based on
consistency-based diagnosis is denoted by Φcb(Fl) and
is defined as follows: Let Ji be a threshold such that a
residual ri is said to have triggered if |ri| > Ji. Then,
the set Φ∗(Fl) is approximated as Φcb(Fl) = W1 ×W2 ×

. . . ×Wi × . . . ×Wnr where

Wi =

{
R if ri is sensitive to any fault f j ∈ Fl

[−Ji, Ji] otherwise.

Note that if Fl1 ⊆ Fl2, then Φcb(Fl1) ⊆ Φcb(Fl2) [19].
This means that if fault mode Fl2 is rejected, then all
fault modes representing all subsets of faults are also
rejected.

4.2. Comparison of fault isolation approaches

Let the set ΦFIA(Fl) be an approximation of Φ∗(Fl)
defined given a specific fault isolation algorithm FIA.
Then, fault isolability based on the sets ΦFIA(Fl) can be
formulated as follows.
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Definition 4 (Fault isolability given FIA). A fault mode
Fl1 is said to be isolable from another fault mode Fl2
given a fault isolation algorithm FIA if

ΦFIA(Fl1) * ΦFIA(Fl2). (1)

Some fault isolation algorithms are consequently
over-estimating or under-estimating the true set Φ∗(Fl).
The following definitions will be used to describe these
two cases.

Definition 5. A fault isolation algorithm FIA is called
conservative if Φ∗(Fl) ⊆ ΦFIA(Fl) for all Fl ⊆ F .

Definition 6. A fault isolation algorithm FIA is called
optimistic if ΦFIA(Fl) ⊆ Φ∗(Fl) for all Fl ⊆ F .

To illustrate the difference between conservative and
optimistic fault isolation algorithms consider the right
plot in Figure 2. Assume that the two one-class classi-
fiers are conservative, then the new data cannot belong
to any of Class 1 or Class 2. However, if the one-class
classifier for Class 1 is optimistic, the new data could
belong to Class 1.

Note that if the test quantity for each residual in
R ⊆ R is tuned such that false alarms can be neglected,
consistency-based diagnosis is conservative. This is im-
portant since it implies that no diagnosis candidates, in-
cluding the correct diagnosis candidate, are falsely re-
jected. However, this can result in unnecessary poor
fault isolation performance since the number of com-
puted diagnosis candidates might be larger than ideal.

On the other hand, data-driven fault isolation can be
too optimistic if training data is not representative of all
fault realizations, meaning that the true diagnosis can-
didate could be falsely rejected. Let the approximation
of the set Φ∗(Fl) using SVDD be denoted Φsvdd(Fl).
Then, the relation between the consistency-based diag-
nosis and a SVDD classifier for fault mode Fl ⊆ F is
given by

Φsvdd(Fl) ⊂∼ Φ∗(Fl) ⊆ Φcb(Fl) (2)

The set Φsvdd(F) is an approximate subset of Φ∗(F) be-
cause it depends on how tight the boundaries of the clas-
sifier are selected with respect to the training data.

If a SVDD classifier is trained for each fault mode,
it can be used to count how many residual samples that
belongs to that diagnosis candidate. By doing this for
all diagnosis candidates, the candidates that have a high
percentage of samples classified positive, i.e. belonging
to that fault mode, are more likely compared to candi-
dates where most samples are classified to not belong
to that mode. Thus, the computed diagnosis candidates

are not rejected by the SVDD classifiers but only ranked
based on how many samples belongs to that mode, i.e. a
higher rank corresponds to a more likely diagnosis can-
didate. Note that for such an approach, if more data are
collected from mode Fl, the corresponding SVDD clas-
sifier can be updated meaning that Φsvdd(Fl) better ap-
proximates Φ∗(Fl), and thus better classifies data from
that fault mode.

5. A combined model-based and data-driven fault
isolation algorithm

To improve the fault isolation performance, the pro-
posed hybrid diagnosis system design, illustrated in
Figure 1 uses a set of SVDD classifiers to rank the
computed diagnosis candidates by counting the residual
samples belonging to that fault mode.

5.1. Ranking diagnosis candidates using SVDD

Each fault mode Fl is modeled as an SVDD classifier

CR
Fl

: R|R| → {0, 1}

where R ⊆ R is the set of residuals used by the classi-
fier. Note that R can be a subset of the available residu-
als, however, for single-fault classification R = R. Since
SVDD models the data support and not the distribution,
the minimal diagnosis candidates are ranked based on
how many of the residual samples when a fault is de-
tected are classified by each corresponding CR

Fl
. Let

r1, r2, . . . , rN , be N samples of the residuals when a fault
is detected. If Fl ∈ Dmin is a minimal diagnosis candi-
date, its rank is computed as

rank(Fl) =
1
N

N∑
k=1

CR
Fl

(rk), (3)

i.e. the percentage of the samples that belongs to Fl. A
higher rank(Fl) means that the diagnosis candidate Fl is
ranked higher.

The use of SVDD classifiers to rank the minimal di-
agnosis candidates can be interpreted as evaluating new
residual outputs using experience from previous faults.
Some minimal diagnosis candidates should be priori-
tized if the residual data resembles previous observa-
tions of the fault mode. Note that even though available
faulty data are limited initially, the performance of the
SVDD classifiers can be improved over time as new data
are collected.
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5.2. Identifying unknown faults

It is also necessary to identify the likelihood that an
unknown fault has occurred whereby if the residual out-
put has not been observed before, then it does not be-
long to any existing fault mode. Let Dmin denote the
set of minimal diagnosis candidates, excluding the un-
known fault case. Then, the ranking of an unknown fault
Fx = { fx} is performed as

rank(Fx) =
1
N

N∑
k=1

1 − ∧
∀Fl∈Dmin

CR
Fl

(rk)

 , (4)

i.e. the rate of the samples that do not belong to any
known fault mode. If an unknown fault has a high rank,
possible locations of the fault can be identified by ana-
lyzing the model support of the triggered residuals.

5.3. Classifying multiple-faults using single-fault data

Training SVDD classifiers for all possible fault
modes would require data from all combinations of dif-
ferent multiple-fault cases. However, since faulty data is
rare, collecting data from all combinations of multiple-
faults is not feasible. By using the information about
fault sensitivity of the different residuals it is possible
to train sets of SVDD classifiers for some multiple-fault
modes using only single-fault training data.

The key observation is that a residual where a fault
is decoupled will not change from its nominal behav-
ior when that fault occurs. To evaluate if residual data
belongs to a multiple-fault mode Fl ⊆ F , a set of |Fl|

different residual sets, where all but one of the faults in
Fl are decoupled, are utilized to train separate classi-
fiers. Let RFl\{ fi} ⊆ R denote the set of residuals where
all faults Fl \ { fi} are decoupled, and at least one resid-
ual in the set is sensitive to fi. Then, the multiple-fault
mode is ranked by classifying each single-fault individ-
ually, and counting the number of samples belonging to
all residual subset classifiers, as

rank(Fl) =
1
N

N∑
k=1

 ∏
∀ fi∈Fl

C
RFl\{ fi }

fi
(rk)

 (5)

Note that each classifier C
RFl\{ fi }

fi
(rk) only uses the subset

of residuals rk belonging to RFl\{ fi}. The ability to clas-
sify multiple-faults, thus, depends on the fault sensitivi-
ties of the residuals in R. It requires that the residual set
can isolate each fault in the fault mode from the other
faults.

5.4. Hybrid fault isolation summary

The diagnosis system algorithm presented in Figure 1
with the proposed hybrid fault isolation algorithm can
be summarized as follows.

1. Based on the set of triggered residuals, com-
pute a set of minimal diagnosis candidates using
consistency-based diagnosis.

2. Rank each minimal diagnosis candidate by evalu-
ating the residual outputs using an SVDD classifier
trained with data from that fault mode.

(a) If the minimal diagnosis candidate is
multiple-faults, use a set of SVDD classifiers
on the subset of residuals where each fault
in the minimal diagnosis is decoupled and
count the number of samples belonging to all
SVDD classifiers.

3. Rank the unknown fault case by counting the sam-
ples not classified to any of the minimal diagnosis
candidates.

6. Case study

To evaluate the hybrid diagnosis system design, a set
of residuals are generated to monitor a four cylinder
turbo charged internal combustion engine. The engine is
mounted in a test bench, as can be seen in Fig. 3 and the
available measurements represent a standard setup in a
production vehicle including the following eight sensor
signals: pressure before throttle ypic, pressure in intake
manifold ypim, ambient pressure ypamb, temperature be-
fore throttle yTic, ambient temperature yTamb, air mass
flow after air filter yWa f , engine speed yω, and throttle
position yxpos, and the two actuator signals: wastegate
actuator uwg, and injected fuel mass into the cylinders
um f [17]. A mathematical model describing the air flow
through the engine is used with a similar model struc-
ture as described in [29]. The right plot in Figure 3
shows a schematic illustration of the model. A set of
six residual generators is selected and designed as de-
scribed in [17]. The residuals are automatically gen-
erated based on a model of the engine using the Fault
Diagnosis Toolbox [30].

6.1. Data collection

In this case study, data from four sensor faults have
been collected: A fault in the sensor measuring the air
mass flow fWa f , the pressures at the intercooler fpic and
the intake manifold fpim, and the temperature at the in-
tercooler fTic. The FSM of the six residual generators
with respect to these faults is shown in Table 1.
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Fig. 1. Overview of the engine. The model consists
of six receivers for each of which the pressure
variable is shown.

speed at its highest possible level, which provides
a fast transient response, or to lower the back
pressure, which ensures good fuel economy. This
leads to two different control strategies that will
be described in section 6.

Matching up a compressor, a turbine, and an
engine is a complex task that involves several
steps. The following procedure is a simplification,
but it illustrates the key steps: 1) Determine
engine displacement and maximum engine power,
which results in data on the boost level and on
the maximum air mass flow. 2) Determine the
compressors that fulfill those requirements and
that reach the desired boost pressure without
surging at the lowest flows possible. 3) Determine
the turbines that drive the compressors as closely
to the surge line as possible without generating
too high a back pressure. Based on this procedure,
simulations and experiments are done to find the
compressor and the turbine that best match a set
of given performance criteria.

Three-way catalytic converters are typically used
to reduce emissions by requiring the engine to
operate at stoichiometric conditions, i.e., λ =
1. We thus focus our investigation on engines
operating at λ = 1, thus ignoring the problem
that current turbine materials cannot withstand
temperatures above 1300 K. Current practice is to
protect the turbine at high air mass flows by fuel
enrichment, which significantly raises the levels of
pollutants and the fuel consumption.

3. OPTIMAL FUEL ECONOMY:
FORMULATION OF THE PROBLEM

The brake-specific fuel consumption BSFC is de-

fined as the fuel mass flow
∗
mf divided by the

generated power P

BSFC !
∗
mf

P
=

∗
mf

Tq 2π N

where N is the engine speed in revolutions per
second. One problem with the definition of BSFC
is that there is a singularity at zero torque.
Therefore it is advantageous to look at 1

BSFC =

Tq 2π N/
∗
mf which then has to be maximized

for best fuel efficiency. Optimizing the cruising
scenario with constant speed for the best fuel

economy is thus the same as maximizing Tq/
∗
mf .

For cruising we now also consider the maximiza-
tion under limited resources, that is a desired fuel

flow
∗
mf,des, which now becomes

max Tq(uth, uwg,
∗
mf )

subject to
∗
mf (uth, uwg) =

∗
mf,des

A constant fuel flow corresponds to a constant
air flow, since we are restricting engine operation
to stoichiometric conditions. This leads to the
following formulation of the problem

max Tq(uth, uwg,
∗
ma)

subject to
∗
ma(uth, uwg) =

∗
ma,des

(1)

4. MODELING OF A TURBOCHARGED
ENGINE

The structure incorporates a number of control
volumes which are separated by flow restrictions
(see Figure 1). As a detailed explanation of the
complete model would exceed the scope of this
paper, only the components necessary for study-
ing the problem of fuel optimality are described
in the following paragraphs.

The formulation of the fuel-optimal operation of
turbocharged SI engines shows that models for
engine torque and engine air-mass flow are nec-
essary. Since the control inputs affect the intake
and exhaust manifold pressures, the models must
describe how these pressures influence the torque
levels and the air flow.

4.1 Engine Air Mass Flow

The air mass flow to the engine is modeled using
the volumetric efficiency ηvol which provides the
data necessary to calculate the amount of fresh

ypic

yTic
ypim

yWa f

yω

yxpos

ypamb
yTamb

uwg

um f

Figure 3: The left picture shows the engine test bench that is used for
data collection. The right picture shows a schematic of the model of
the air flow through the model. This figure is used with permission
from [31].
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Figure 4: Intake manifold pressure sensor data ypim with a highlighted
intermittent fault fpim.

Measurement data is generated when the engine is
controlled to follow the EPA Highway Fuel Economy
Test Cycle (HWFET) as a speed reference. Intermit-
tent sensor faults are injected one by one into the engine
control unit. The faults fWa f , fpic, and fpim, are injected
as multiplicative faults yi(t) = (1 + fi)xi(t) with a 20%
change in the measured value while the fault fTic is in-
duced as a sensor bias yTic(t) = xTic(t) + fTic of 20◦.
Figure 4 shows an example of sensor data measuring
the intake manifold pressure where a sensor fault fpim

occurs during the highlighted intervals.
Examples of the computed residual outputs are shown

in Figures 5 and 6 including engine data from intermit-
tent faults fWa f and fpim, respectively. The residuals that
are sensitive to each fault are highlighted in red and the
intervals when the fault is present are shaded in grey.
It is visible that the effects of model uncertainties and
measurement noise on the residual outputs cannot be
neglected.

6.2. Evaluation

The evaluation of the hybrid diagnosis system de-
sign is performed as three different analyses. The first
analysis considers a set of single-fault scenarios and
is used to illustrate the advantage of using the incre-
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Figure 5: Evaluation of residuals to data with fault fWa f . The grey ar-
eas represent intervals when the fault is present and residuals sensitive
to the fault are colored red.
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Figure 6: Evaluation of residuals to data with fault fpim.
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Figure 7: Residual data from r3 and r4 when evaluated for six fault
scenarios. The dashed lines represent the thresholds for each residual
used in the CUSUM tests. The colored areas represent the boundaries
of each SVDD classifier for each single-fault mode in each iteration.

mental SVDD classifiers to rank the computed diag-
nosis candidates. It is shown that unknown faults are
detected and the true diagnosis candidate is identified
(has the highest rank) even though there are multiple
minimal diagnosis candidates. The second analysis is a
Monte Carlo study to show that the fault mode classifi-
cation performance of the incremental SVDD improves
as more data are collected. Finally, the third analysis il-
lustrates how multiple-fault classification is performed
using only single-fault training data. If multiple data
sets are evaluated in sequence, it is assumed that the
true diagnosis candidate is identified by an expert, after
each fault scenario, and the logged data is used to up-
date the corresponding SVDD classifier modeling that
fault mode.

6.2.1. Fault isolation using incremental SVDD
To better visualize the advantage of the proposed hy-

brid fault isolation approach, two of the residual gen-
erators sensitive to three of the four faults in Table 1,
{r3, r4}, are plotted against each other in Fig. 7. The two
residuals also illustrates the case where all single-faults
are not isolable ( fpic and fTic are not isolable from fpim).

Initially, there are no trained SVDD classifiers. A se-
quence of different faulty data is evaluated, see Table 2,
and the SVDD classifiers for each fault mode are up-
dated as new data are collected. The decision boundary
for each classifier is shown in Fig. 7 as well.

As test quantity, a CUmulative SUM (CUSUM) test
is tuned for each residual using nominal data to reduce
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Figure 8: The left figure shows the absolute value of the residual.
The right figure shows the CUSUM test which is triggered when the
residual exceeds the threshold.

Table 2: Computed diagnosis candidates and their ranking after each
iteration. Faults that are not minimal diagnoses in each iteration are
marked with -.

Iteration Injected fault fpim fpic fTic fx

1 fpim 0 - - 1
2 fpic 0 0 - 1
3 fpim 0.99 0 - 0.01
4 fTic 0 - 0 1
5 fpic 0 0.61 - 0.39
6 fTic 0 - 0.91 0.09

the risk of false alarms [32],

Tk(t) = max (Tk(t − 1) + |rk(t)| − Jk, 0) (6)

An example of the residual rk(t) and the test quantity
Tk(t) is shown in Fig. 8. The thresholds Jk for each of
the six residual are shown as dashed lines in Fig. 5 and
Fig. 6, respectively. The CUSUM tests are also used to
estimate the starting time when a fault occurs by storing
the last instance of time t when the test quantity T (t)
was equal to zero as illustrated in Fig. 8. When a fault
is detected, the estimated time of the fault occurrance is
used to determine the interval of the data set to rank the
difference minimal diagnosis candidates.

In each iteration of the analysis, the minimal diagno-
sis candidates are computed based on the residuals that
have triggered. Then, each minimal diagnosis candidate
is ranked using the corresponding SVDD classifier, if
available. Finally, after the true diagnosis candidate has
been identified, the faulty data are used to update the
corresponding SVDD classifier.

A summary of the fault isolation performance in each
iteration is tabulated in Table 2. Only single-fault mini-
mal diagnosis candidates are presented in the table. All
faults that are minimal diagnosis candidates, including
the unknown fault case, are ranked in the interval [0, 1]
representing the percentage of samples classified to be-
long to that fault mode. Single-faults that are not fea-
sible diagnosis candidates, i.e. have been rejected, are
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marked with an (-). The true diagnosis candidate in each
iteration is also highlighted. Note that in iteration 1,
the double-faults { fpic, fTic} is also a minimal diagnosis.
However, this is only the case in iteration 1 and there-
fore the mode is not included in the table.

In iterations 1, 2, and 4, i.e. the first time each fault
occurs, respectively, their corresponding minimal diag-
noses are ranked zero since there is no SVDD classifier
trained for the fault modes. Thus, in these cases the un-
known fault case is ranked highest. This is expected,
as the faults have not been observed before. When the
same type of fault occurs for the second time, the true
diagnosis candidate is ranked highest showing that the
SVDD classifiers improve on the fault isolation accu-
racy. Note that in iteration 3, when fpim occurs for the
second time, the fault magnitude is smaller than the first
time, causing only r4 to trigger, as shown in Fig. 7. The
residual value exceeds the threshold but the CUSUM
test for r3 has not deviated enough to trigger. Therefore,
both fpim and fpic are minimal diagnoses in iteration 3,
compared to only fpim in iteration 1. However, the cor-
rect diagnosis candidate received the highest rank which
means that the true fault is identified even though fewer
residuals have triggered.

6.2.2. Robustness analysis using Monte Carlo simula-
tion

A Monte Carlo study is performed to evaluate how
classification accuracy of the SVDD classifiers im-
proves as more data are collected from different faults.
Here, the computation of diagnosis candidates using
consistency-based diagnosis is omitted and all fault
modes are ranked in all scenarios. The evaluation is
performed such that the SVDD classifiers are initial-
ized without any training data. Then, the faults are se-
lected one at a time in a repeated random order. Then
for each fault, a data set including one realization of
the fault is selected randomly for evaluation. In this
analysis, all single-fault modes and the unknown fault
case are ranked during each iteration. Before data from
all four fault modes has been evaluated, only the faults
from available SVDD classifiers are evaluated.

A summary showing the improvement in fault clas-
sification accuracy over 100 Monte Carlo simulations is
shown in Fig. 9. Each row represents the true fault while
each column represents each of the four fault classi-
fiers and the unknown fault case. Each subfigure shows
the distribution of the fault ranking as a function of the
number of observed fault scenarios as box plots, where
‘+’ represents outliers. The results show that fault iso-
lation improves after each iteration. This is visible as
the ranking distribution of the true fault increases and
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Figure 9: Monte Carlo analysis showing that fault isolation accuracy
improves as more data from different fault modes is collected. There
are six fault scenarios from each fault mode that are evaluated in per-
muted order in each simulation. The updated SVDD classifiers im-
prove ranking of the true diagnosis candidate and decrease the rank of
the unknown fault case.

the unknown fault case decreases with each iteration, as
more data is collected. In some cases when fPim is the
true fault, the fault fWa f also has positive ranking. How-
ever, the true diagnosis candidate is still ranked higher
on average. This Monte Carlo study shows the robust-
ness of the proposed method and that fault isolation per-
formance improves as more faulty data is collected.

6.2.3. Classifying and ranking multiple-faults
To illustrate the multiple-fault classification approach

described in Section 5.3 two double-fault data sets
are generated for evaluation, { fWaf, fpim} and { fpim, fpic},
where the two faults are occurring simultaneously in
each data set.

The multi-variate residual data from each single-
fault and the two double-fault cases are visualized us-
ing a data-driven algorithm called t-Student Stochastic
Nearest Embedding (t-SNE) [33], see Figure 10. The
multiple-faults clearly deviate from single-fault data.
This means that unless there are training data from the
multiple faults, a diagnosis candidate will be ranked
zero since there is no classifier for that mode.

In addition to the set of SVDD classifiers for each
of the four single-faults used in the previous analyses,
two multiple-fault SVDD classifiers (5) for each of the
two new modes are trained using single-fault data as
discussed in Section 5.3. To classify the double-faults
{ fWaf, fpim}, two residual subsets are selected where each
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Figure 10: Visualization of residual data using t-SNE from all single-
faults and the two double-fault scenarios.

of the two faults are decoupled, respectively. The resid-
uals R fpim = {r2, r5, r6} are all insensitive to fpim while
the residuals R fWaf = {r3, r4, r6} are insensitive to fWaf,
see Table 1. Ranking of the multiple-faults { fWaf, fpim}

is performed given (5) using

rank({ fWaf, fpim}) =
1
N

N∑
k=1

(
C

R fpim

fWaf
(r̄k)C

R fWaf
fpim

(r̄k)
)

(7)

The t-SNE plots are shown in Fig. 11 for each resid-
ual subset and it is visible that the double-fault data
{ fWaf, fpim} are projected onto the corresponding single-
fault data since data samples are overlapping in each fig-
ure. Also, note that the decoupled fault is projected to
nominal data as expected. Thus, the double-fault case
can be identified by counting samples belonging both
single-fault modes for each corresponding residual sub-
set.

The results when evaluating the identification of each
double-fault scenario are summarized in Table 3. The
true multiple-fault mode is correctly ranked highest in
each case. The results illustrate that (5) can help to iden-
tify double-faults, using the fault sensitivity information
of the residual set, even when only single-fault training
data are available.

6.3. Discussion
The first analysis in Section 6.2.1 illustrates the ad-

vantage of the proposed hybrid diagnosis system com-
pared to more conventional model-based diagnosis sys-
tem design where the diagnosis candidate can be identi-
fied even though all residuals have not triggered as ex-
pected as illustrated in this analysis. Initially, before
any training data has been collected, the hybrid diag-
nosis system will give equal results as a conventional
model-based diagnosis system since all diagnosis can-
didates will be ranked equally likely. Isolation perfor-
mance will improve over time as more training data are
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Figure 11: Visualization using t-SNE of subset of residuals where
each fault fWaf and fpim is decoupled, respectively. It is visible that
double-fault data overlaps with respective single-fault case and the
decoupled fault data overlaps with nominal data.

collected from different faults as shown in the analysis
in Section 6.2.2.

A complicating factor of data-driven fault isolation
is that training data are needed from all fault modes
to be classified. By utilizing model information, as
shown in Section 6.2.3, it is possible to decouple the
effects of different faults in the classifiers which makes
it possible to classify multiple-fault modes without hav-
ing multiple-fault training data. Another advantage of
including physical-based models is that is possible to
identify likely locations of unknown faults. Data-driven
methods can detect and automatically cluster data, see

Table 3: Ranking of different fault modes when evaluating data with
multiple-faults. The true multiple-fault mode is identified in both test
cases.

Injected faults
Fault mode { fWa f , fpim} { fpim, fpic}

fWa f 0 0
fpim 0 0
fpic 0 0.01
fTic 0 0

{ fWa f , fpim} 0.63 0
{ fpim, fpic} 0 0.55

fx 0.37 0.43
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for example [6] but fault localization of unknown faults
is complicated without help from an expert. However,
model development can be time consuming and model
accuracy is important for model-based fault detection.
For the proposed hybrid diagnosis system, it is impor-
tant that the model is accurate enough to be able to
decouple faults when designing residual generators to
compute diagnosis candidates. For technical systems
where such models are available, the proposed hybrid
diagnosis system design can be used.

7. Conclusions

When introducing new industrial systems, the lim-
ited amount of training data restricts the application of
machine learning methods for fault diagnosis. Physical
models and model-based diagnosis can solve this prob-
lem and, as new data is collected, can be used to incre-
mentally improve classification performance over time.
The combined model-based and data-driven diagnosis
system design has shown to improve fault isolation ac-
curacy without increasing the risk of falsely rejecting
the true diagnosis candidate. It is also possible to cor-
rectly classify multiple-faults, even when training data
only contains single-fault scenarios. However, it is as-
sumed that the true fault mode is verified by an expert
before being used to update the data-driven classifiers
to assure that data is correctly labeled. The proposed
diagnosis system design can be implemented either on-
line as a whole, or as one part run on-line in the system
and the other part as a cloud-based system for data log-
ging and analysis. This is useful in industrial applica-
tions, such as troubleshooting or maintenance planning,
where fleet operational data is available.

7.1. Future works
For future works, it is relevant to investigate how to

select suitable residual generators for fault detection and
isolation when all types of faults are not known. The
proposed fault isolation method assumes there is an ex-
pert able to correctly label faulty data before training
each classifier. There is always a risk that the expert
misclassifies the data which will have negative impact
on classification performance. Thus, it is relevant to
evaluate different types of semi-supervised learning al-
gorithms to generate the one-class classifiers that can
handle both non-labelled and mislabelled data.
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