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Abstract 13 

1. Species distribution models (SDMs) are commonly used to model the spatial structure of 14 

species in the marine environment, however most fail to account for detectability of the 15 

target species. This can result in underestimates of occupancy, where non-detection is 16 

conflated with absence. The site occupancy model (SOM) overcomes this failure by treating 17 

occupancy as a latent variable of the model, and incorporates a detection sub-model to 18 

account for variability in detection rates. These have rarely been applied in the context of 19 

marine fish, and never for the multi-season dynamic occupancy model (DOM). 20 

2. In this study, a DOM is developed for a designated species of concern, cusk (Brosme 21 

brosme), over a four season period. Making novel use of a high-resolution 3-dimensional 22 

hydrodynamic model, detectability of cusk is considered as a function of current speed and 23 

algae cover. Algal cover on the seabed is measured from video surveys to divide the study 24 

area into two distinct regions; those with canopy forming species of algae and those without 25 

(henceforth bottom types).  26 

3. Modelled estimates of the proportion of sites occupied in each season are 0.88, 0.45, 0.74 27 

and 0.83. These are significantly greater than the proportion of occupied sites measured 28 

from underwater video observations which are 0.57, 0.28, 0.43 and 0.57. Individual fish are 29 

detected more frequently with increasing current speed in areas lacking canopy, and less 30 

frequently with increasing current speed in areas with canopy. 31 

4. The results indicate that, where possible, SDM studies for all marine species should take 32 

account of detectability to avoid underestimating the proportion of sites occupied at a given 33 

study area. Sampling closed areas or areas of conservation often requires the use of non-34 

physical, low impact sampling methods like camera surveys. These methods inherently result 35 

in detection probabilities less than one, an issue compounded by time-varying features of 36 

the environment that are rarely accounted for in marine studies. This work highlights the use 37 

of modelled hydrodynamics as a tool to correct some of this imbalance.  38 
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 41 

1 Introduction 42 

The use of species distribution modelling as a tool for scientists and environmental managers has 43 

seen a substantial increase in the last three decades, driven by a growing demand for knowledge of 44 

species’ ranges and facilitated by increasingly powerful computing resources (Barbosa & Schneck 45 

2015). Species distribution models (SDMs) mathematically represent the relationship between 46 

species records and features of the environment, often with the intention of predicting suitable 47 

ranges for the target species (Franklin 2010). Depending on the aims of an investigation and the type 48 

of data collected, several approaches are available to researchers. For many applications where 49 

surveys have been planned in advance of statistical analysis, standard methods such as generalized 50 

linear models, generalized additive models and random forest are frequently used to model 51 

occurrence and abundance data (Elith et al. 2011). 52 

However given the time and cost of performing a systematic survey, especially in the marine 53 

environment, researchers often use archived datasets to perform modelling investigations (Araújo & 54 

Guisan 2006). In many cases, these datasets only contain records on species presence, resulting in a 55 

situation where no absence data are available (Elith et al. 2011). For this reason, presence-only 56 

models such as MaxEnt (Phillips et al. 2006) have been developed that do not require absence data, 57 

but rather generate a large number of pseudo-absences from the study area (Phillips, Anderson & 58 

Schapire 2006).  59 

While each approach outlined above has advantages, both fail to address the issue of detectability 60 

(Monk 2014). Both approaches assume that detection probability is invariant, i.e. that the target 61 

species is perfectly observed whenever it is present (Yackulic et al. 2013). This is often not the case 62 



when studying cryptic species, and is an important consideration in the marine environment when 63 

sampling methods often do not result in direct observation of the study environment, for example 64 

when using trawl or camera surveys (Monk 2014). In a review of 108 articles that used MaxEnt, 65 

Yackulic et al. (2013) found that only 14% mentioned detection probability. This failure to address 66 

detectability introduces error to estimates of occurrence for the species being modelled and can 67 

result in erroneous reporting of covariate effects (Guillera-Arroita et al. 2014).  68 

Site occupancy modelling (SOM) allows occupancy and detectability to be analysed hierarchically as 69 

two separate processes, accounting for the problem of imperfect detection (MacKenzie et al. 2002).  70 

Monk (2014) provides a good overview of the need to adopt this class of model in the marine 71 

environment; while available for a similar period as MaxEnt, the SOM has received much less 72 

attention (e.g., Coggins et al. 2014) in marine ecology investigations. The multi-season occupancy 73 

model (or dynamic occupancy model for its Bayesian counterpart (DOM)) allows occupancy, 74 

detection, local colonisation and extinction to be accounted for across several sampling seasons 75 

(MacKenzie et al. 2003). Seasons refer to primary sampling periods within which the population is 76 

assumed closed but between which the population can be subject to local extinction and 77 

colonisation. The model assumes that at least one site has been visited more than once within a 78 

sampling period and that the true occupancy state is imperfectly observed, i.e., it is a latent variable 79 

of the model. As such, the model can be thought of as a non-standard GLMM with a binary random 80 

effect equal to 1 where the site is occupied by the target species and 0 where it is not (Kéry 2010). 81 

Each of the four probabilities within the DOM (initial occupancy, colonisation, extinction and 82 

detection) can be modelled as a function of a set of covariate data, or set as constant across sites 83 

within a given sample period (MacKenzie et al. 2003; Royle & Kéry 2007). Where covariates are used 84 

to model probabilities, these must represent variability in the environment along temporal scales 85 

relevant to the phenomenon under study. Extinction and colonisation effects, for example, require 86 

seasonally varying covariates. By contrast, detection effects require covariates that vary over much 87 

shorter temporal scales, allowing differences in detectability to be discerned within relatively short 88 



sampling periods. One possible reason why these models have not received as much attention in the 89 

marine environment as they have for terrestrial studies is the prohibitive cost of marine sampling. In 90 

order to satisfy the assumptions of the dynamic occupancy model, repeat visits are required within 91 

each of a number of seasons to collect both response and environmental data.   92 

Covariates used for modelling that have been collected in-situ at the time of making species 93 

observations are often assumed to better describe observed patterns in species distributions 94 

(Franklin 2010). Recent research has shown however that this is not always the case, and that 95 

modelling studies can benefit from a combination of in-situ sampling and remote sensing data 96 

(Niedballa et al. 2015). Moreover, Newton-Cross et al. (2007) demonstrated that remotely sensed or 97 

computer generated data can be more effective than data collected in-situ for accurately predicting 98 

the occurrence of some terrestrial based species. Again, this is important in the marine environment 99 

where sampling is often expensive and time consuming compared to terrestrial studies. As such, 100 

marine researchers often have to rely on remote sensing (Brown, Sameoto & Smith 2012) and 101 

modelled data (Rattray, Ierodiaconou & Womersley 2015) to supplement in-situ sampling. These 102 

latter datasets often come in the form of hydrodynamic models that mathematically represent tidal 103 

and wave forcing of the marine environment (Gunn & Stock-Williams 2013). While widely used in 104 

engineering and physical oceanography (e.g., McMillan & Lickley 2008; Chen et al. 2011), their use in 105 

marine ecological investigations has been limited. This is likely due to the expense, in terms of time 106 

and computational power, of setting up a hydrodynamic model that accurately reflects conditions at 107 

spatial and temporal scales relevant to ecological processes and organism behaviour. 108 

This investigation aims, for the first time, to create a dynamic occupancy model to demonstrate the 109 

effectiveness of such an approach for a temperate marine fish species in a closed fishing area. The 110 

study generates true, unbiased estimates of occupancy and compares these to occupancy estimates 111 

obtained by survey methods alone. Inputs to the dynamic occupancy model comprise observed, 112 

derived and simulated data. Observed data include observations of the target species, algae cover 113 



and geomorphological complexity from video-surveys; derived data include depth measured using 114 

multibeam echosounder (MBES) data, and terrain attributes derived from the MBES depth data. 115 

Additionally, the study makes novel use of current velocities simulated using a high-resolution 116 

hydrodynamic model to demonstrate the utility of including these data in fisheries monitoring 117 

investigations. 118 

2 Methods 119 

2.1 Analysis overview 120 

This study takes a multifaceted approach to producing a dynamic occupancy model (DOM) for a 121 

species of temperate marine fish at a remote rocky outcrop in the central Gulf of Maine. The model 122 

was specified in a Bayesian framework to account for a small amount of separation in the detection 123 

data and to allow the use of a finite sample estimator that generates more accurate estimates of 124 

occupancy for a small sample size (Royle & Kéry 2007). The analysis used data observed or derived 125 

from two primary datasets; a series of non-invasive underwater video surveys collected over four 126 

sampling seasons, and a MBES survey conducted for the Gulf of Maine mapping initiative (SAIC, 127 

2005). Observations of the response variable (cusk) were recorded from the video footage. During 128 

each video survey detections of cusk were recorded along with the time of the observation. 129 

Simultaneous observations of algae cover and morphological complexity were made from the video 130 

footage, to be later used as explanatory variables. Separately, the digital elevation model extracted 131 

from the MBES data was used for three purposes; 1) to derive terrain attributes to assess 132 

morphological complexity over the study site; 2) to create a surface of algae cover over the study 133 

site based on empirical extinction depths and; 3) as an input to a standalone hydrodynamic model. 134 

The hydrodynamic model was used to estimate bottom current conditions at the study site, from 135 

which two outputs were generated; 1) point estimates of time-varying bottom current speed at each 136 

of the video locations surveyed for cusk and; 2) time-varying surfaces of current speed for the entire 137 

study area. Once all primary data had been processed, the DOM was created. Model coefficients for 138 



the significant terms in the detection sub-model of the DOM (observed algae cover and bottom 139 

current point estimates) were obtained and used to generate the final outputs. This was achieved by 140 

predicting the model coefficients over the algae cover surface and bottom current surfaces created 141 

above, creating spatio-temporally varying predictions of detection probability for the study area. 142 

Each step of the analysis is described in full in the following sections. 143 

2.2 Candidate species and area 144 

The candidate species for this investigation is cusk (Brosme brosme, Lotidae); a cryptic, bottom 145 

dwelling species found in the Eastern and Western Atlantic Ocean, and designated a species of 146 

concern by the National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries 147 

Service (NOAA 2009). In the Western Atlantic cusk are found from Nova Scotia in Canada to New 148 

Jersey in the USA, and typically stay in deeper waters (>100 m) in these areas. Within the Gulf of 149 

Maine, however, they are typically found in shallower water owing to the relatively shallow depths 150 

of the internal Gulf (Bigelow & Schroeder 1953).  While relatively little is known about their specific 151 

life history and ecology (Davies & Jonsen 2011), it has been noted that cusk prefer structured habitat 152 

and use kelp forests, boulder piles and rock crevices as refugia (Auster & Lindholm 2005; Hare et al. 153 

2012). In addition they are considered to be weak swimmers (Bigelow & Schroeder 1953), so make 154 

an ideal species for study on how their behaviour is affected by variability in movements of the 155 

water column. The species also has a small home range (Dultz 2013), making it suited to the 156 

assumptions of the dynamic occupancy model. 157 

Data for the investigation were collected at Cashes Ledge in the central Gulf of Maine, approximately 158 

170 km northeast of Boston (Figure 2a). The Ledge has been closed to bottom tending fishing gears 159 

since 2002 (Sherwood & Grabowski 2016) and supports large resident populations of several 160 

commercially important fish species (Grabowski, McGonigle & Brown 2010). The site displays a 161 

tripartite zonation of macroalgae around the summit with each of the three zones reaching record 162 

depths for boreal-subarctic waters; leathery macrophytes to 40 m, foliose red algae to 50 m and 163 



crustose algae to 63 m (Vadas & Steneck 1988). The Ledge comprises morphologically complex 164 

granite shoaling at 10 m water depth, with sand and gravel deposits appearing around 60 m and silt 165 

dominated habitats below 80 m. To the east and west, the site is flanked by relatively deep basins (< 166 

220 m) dominated by sands, fine silt and clay (Uchupi & Bolmer 2008). 167 

2.3 Data collection and covariate generation. 168 

Underwater video surveys were conducted at 14 sites on Cashes Ledge by the Gulf of Maine 169 

Research Institute using a drop camera in summer 2006 and spring, summer and autumn 2007. Sites 170 

are defined here as compact geographical areas wherein samples are less than 30 m apart and 171 

features of the abiotic environment are homogenous. Sampling was stratified by depth to include 172 

two shallow sites (< 20 m), six intermediate sites (20 – 40 m) and six deep sites (> 40 m). During each 173 

sampling season a maximum of three replicate surveys were conducted at each site, with an average 174 

of two. Camera units were deployed and left in-situ for up to 1.5 hours during each survey, recording 175 

the time in and position of the camera. The camera was mounted on the sampling equipment such 176 

that the field of view was parallel to the seabed; no directional controls were in place, so the 177 

azimuthal direction varied between samples. For full camera set up see Grabowski et al. (2010). Any 178 

samples where the camera equipment landed with the camera facing into the water column and 179 

therefore unable to view the seabed were discarded and not used in any further analyses. After 180 

checking each sample for positional accuracy, videos were examined noting the time on the video 181 

any cusk were observed. For videos where cusk were present, the video time was combined with the 182 

survey start time to obtain the exact time of the observation. Where cusk were absent in a video, a 183 

time was randomly sampled from the length of the video to obtain a time for the null observation. 184 

In addition to the observations of cusk, the videos were used to qualitatively assess fine scale 185 

morphological complexity (high, moderate, low) and algae density. Algae density was used to classify 186 

the study area into areas of two different bottom types according to algae cover, henceforth bottom 187 

type; areas with canopy forming species, and areas with no canopy forming species . Sampling effort 188 



was defined simply as the length of bottom time in each video. Depth for each observation was 189 

obtained from 5 m resolution MBES data collected for the Gulf of Maine Mapping Initiative (SAIC 190 

2005). Morphological complexity was derived from the MBES data using the relative deviation from 191 

the mean value (RDMV) as recommended by Lecours et al. (2017) in a 3 x 3 cell moving window. A 192 

breakdown of the mean, minimum and maximum values for each of the depth strata sampled is in 193 

table 1. 194 

2.4 Hydrodynamic model 195 

Hydrodynamics were assessed using a coupled wave-current model produced using MIKE by DHI 196 

(Danish Hydraulic Institute, 2014). The current model solves the three-dimensional incompressible 197 

Reynolds averaged Navier-Stokes equations, while the wave model solves a fully spectral wind-swell 198 

formulation. The models are coupled to include wave-current interactions and are solved using a 199 

finite volume method over a flexible mesh that allows higher resolution in areas of interest (Danish 200 

Hydraulic Institute, 2014). 201 

The domain for the model (Figure 2b) incorporated the Gulf of Maine from Tor Bay to Rhode Island, 202 

and extends seaward off the continental shelf to allow the Gulf to respond freely to tidal forcing 203 

(McMillan and Lickley, 2008).  Forcing was supplied to the model as spatially and temporally varying 204 

surface elevation from the DTU10 0.125° global tidal model (Cheng & Andersen 2010). Calibration of 205 

the model was achieved by adjusting the value of bed resistance over a series of 13 month 206 

simulations (one month warmup, 12 month usable data). After each calibration simulation, harmonic 207 

analysis was conducted for 67 sites within the Gulf of Maine for comparison against empirical data 208 

from Moody et al. (1984). Where disagreement between known and modelled data was 209 

unacceptably large, values of bed resistance were iteratively adjusted to fine-tune the harmonics.  210 

Once the model harmonics were calibrated to maximally correspond to empirical data, the 211 

computational mesh was refined to increase resolution at Cashes Ledge. Here, the maximum 212 



horizontal resolution was 135 m with an average horizontal resolution of 220 m. In addition to 213 

refining the model mesh, atmospheric forcing was introduced to the model using the National 214 

Centres for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CSFR) 6-hourly, 215 

0.5° global weather model (Saha et al., 2010; 2011). Model validation was subsequently conducted 216 

on the refined mesh model by hindcasting periods of time not included in the calibration models. 217 

Validation included the assessment of model outputs against measured wind, wave and current 218 

data. The model was considered validated when outputs were minimally different to measured data. 219 

All model runs were performed with a time step of 20 minutes to allow validation against measured 220 

data.  221 

Full details of the model setup, calibration and validation can be found in the supplementary 222 

materials (S.1). Once the model had been validated, current speeds were extracted from the water-223 

seabed interface layer to capture current variations on the bottom. Times for the observations of 224 

cusk were then matched to the temporally closest value of current speed. Visualisation of temporal 225 

variability in current magnitude and direction was achieved using a tidal ellipse created using 226 

MATLAB (Xu 2002). The ellipse was derived for a point in open water 100 m from the summit in 227 

order to capture the movement of water without influence from local topography.  228 

 229 

2.5 Dynamic occupancy model 230 

The model was specified using notation from Royle and Kéry (2007) where ψt is the probability of 231 

initial occupancy at time period t, φt is the probability that a site remains occupied between t and t + 232 

1, γt is the probability that a site is colonised between t and t + 1 and p is the probability of 233 

detection. During data exploration boxplots revealed a high degree of collinearity between RDMV 234 

and fine scale complexity observed in the video data. Fine scale complexity was excluded from 235 

further analyses; it is a categorical variable so including it would require estimation of more model 236 



parameters. Covariates tested for ψt were depth, fine-scale morphological complexity, RDMV, 237 

maximum current speed throughout the sampling season (CurMax) and CurMax2. Depth, fine scale 238 

complexity and RDMV as several studies have shown the importance of depth and seabed roughness 239 

for cusk habitat selection (Knutsen et al. 2009; Davies & Jonsen 2011; Hare et al. 2012); CurMax and 240 

CurMax2 to test for any limiting effect of hydrodynamic forcing on cusk habitat selection. Covariate 241 

effects were not included for φt or γt and were therefore assumed to be the same for all sites within 242 

each sampling period (MacKenzie et al. 2003; Royle & Kéry 2007). Covariates included for p in the 243 

detection sub-model were current speed, sampling effort and bottom type. Current speed as cusk 244 

are weak swimmers whose movement is likely to be affected by movements of the water column; 245 

sampling effort as the longer the camera is in the water, the more likely it is that a fish will be 246 

observed in any given sample; bottom type as canopy forming species are likely to obscure vision 247 

and therefore affect detectability of cusk. 248 

Covariate effects for each sub-model were transformed using a logit link function and all continuous 249 

covariates were standardised before analysis. In order to simplify model specification two models 250 

were assessed, one without (A) and one with (B) covariates for ψ, both of which included covariates 251 

for p. 252 

Specification for ψ in model B:  253 

logit(ψ) = β1 + β2⋅Depth + β3⋅RDMV + β4⋅Current Max + β5⋅Current Max2 254 

where β i are the regression coefficients, RDMV is the relative deviation from the mean value and 255 

current max is the maximum current speed at the site in any of the sampling seasons. 256 

Specification for p in models A and B: 257 

logit(p) = α1 + α2⋅Current + α3⋅none + α4⋅Current|none 258 



where current is the current speed at the time of sampling for cusk, none is the bottom type with no 259 

canopy forming algae and Current|none is the interaction between current speed and the bottom 260 

type with no canopy forming algae. 261 

2.6 Model validation and outputs 262 

Goodness of fit (GOF) for each model was assessed using Bayesian p-values; for each draw of the 263 

MCMC algorithm, new data were simulated given the set of parameters estimated by the model, 264 

and Pearson residuals were calculated for each observed and simulated data point. The Bayesian p-265 

value is the proportion of times the simulated residual is greater than the observed residual, with 266 

values closer to 0.5 indicating better fit (Kéry 2010). 267 

For the k covariates in each model, importance was tested using binary inclusion variables wk ~ 268 

Bernoulli(0.5). Averaging over the posterior distribution of wk gives the probability that term k 269 

belongs in the model, with values closer to 1 indicating a higher inclusion probability. The inclusion 270 

variable for interaction terms was defined as the product of itself and the component inclusion 271 

variables as recommended by Kruschke (2014), ensuring the interaction was only assessed when the 272 

lower order terms were included. Covariates and interactions were kept in the model when their 273 

inclusion variable had a posterior mean greater than 0.5 (Coggins, Bacheler & Gwinn 2014). 274 

All logit scale coefficients were given weakly informative t-distribution priors (µ = 0, σ = 1.566, v = 275 

7.763) as recommended by (Dorazio et al. 2011), while all non-varying probabilities (φ, γ) were given 276 

uniform priors from 0 to 1. Sensitivity of the posterior distribution of parameter estimates was 277 

assessed following Dorazio et al. (2011) using three prior distributions recommended for logistic 278 

regression; Jeffreys prior (Firth 1993), t-distribution with µ = 0, σ = 2.5, v = 7; those of Gelman et al. 279 

(2008), t-distribution with µ = 0, σ = 2.5, v = 1; and those of Dorazio et al. (2011), as detailed above. 280 

Identifiability of parameter estimates was assessed by plotting and calculating the amount of 281 

overlap between the prior and posterior distributions. These were considered identifiable if the 282 



overlap was below 35% (Garrett & Zeger 2000; Gimenez, Morgan & Brooks 2009). The MCMC 283 

algorithm was set up with 5 chains, each sampling 50 000 draws. The first 10 000 draws discarded as 284 

a burn-in period and every tenth sample was stored for analysis. Chains were assessed visually for 285 

mixing and autocorrelation, and convergence was assessed using the Gelman-Ruben diagnostic 286 

(Gelman & Rubin 1992) with values less than 1.1 considered converged. Occupancy was determined 287 

using a finite sample estimator that is recommended for a small number of non-randomly selected 288 

sites (Royle & Kéry 2007). This estimator allows a distinction to be made between estimates derived 289 

for parameters of the population, and those derived for sites in the actual sample. The finite sample 290 

estimator reduces the variance of the point estimates generated for the sampled sites, and is an 291 

additional benefit of fitting the model in a Bayesian framework (Royle & Kéry 2007). 292 

Continuous surfaces of modelled current speed were generated from the validated hydrodynamic 293 

model to visualise spatio-temporal variability of current speed along a tidal cycle at Cashes Ledge. 294 

Predictions of bottom type were made based on the extinction depths of various algae previously 295 

reported at the Ledge (Vadas & Steneck 1988). Surfaces of detection probability were then 296 

generated for the entire Ledge for the tidal cycle by predicting the occupancy model coefficients 297 

over the current speed and bottom type surfaces.  298 

All statistical analyses and predictive mapping were carried out in the R environment (R Core Team 299 

2015), and Bayesian inference was conducted in JAGS (Plummer 2009). 300 

 301 

3 Results 302 

3.1 Cusk observations and data exploration 303 

Of 112 replicate surveys analysed, 39 contained cusk and 73 did not. These correspond to 21 shallow 304 

samples, 46 intermediate samples and 45 deep samples representing average depths of 17 m, 33 m 305 



and 49 m respectively. Analysis showed 57 video surveys were conducted in the canopy forming 306 

region and 55 in the non-canopy forming region.  307 

Harmonic analysis of the hydrodynamic model reveals accuracy of 3.8 cm mean absolute deviation in 308 

amplitude, and 4.6° in Greenwich phase lag for the M2 tidal constituent. Bottom-current speeds at 309 

Cashes Ledge range from 0.01 ms-1 to 0.31 ms-1 throughout the four sampling periods, with a 310 

maximum of 0.21 ms-1 while the camera equipment was deployed. The tidal ellipse and current rose 311 

show that maximum flow occurs in a North-South orientation along the semi-major axis of the 312 

ellipse (Figure 3). A short time lag of around 1 hour is observed in the arrival time of the tidal signal 313 

between the north and south of the Ledge (Figure 4).  314 

3.2 Model validation and outputs 315 

Bayesian p-values were 0.58 for model A (Table 2, top), and 0.62 for model B (Table 2, bottom). 316 

Sensitivity analysis showed no significant effect of choice of prior on posterior distributions for all 317 

parameters excluding those for the covariates for ψ in model B. The overlap of the posterior 318 

distributions of parameters in model A with their prior distributions ranged from 20% to 31%, with 319 

the highest amount of overlap for the estimate for sampling effort. All parameters for this model 320 

were therefore considered identifiable. Inclusion variables for model A indicated that current speed, 321 

bottom type and the interaction between current speed and bottom type should be included in the 322 

detection sub-model (Table 2). Inclusion variables for model B indicate less than or equal to 50% 323 

probability that any covariates belonged in the occupancy sub-model, and again that current speed, 324 

bottom type and the interaction term between current speed and bottom type should be included in 325 

the detection sub-model (Table 2).  326 

Results for model A show that with increasing current speed, detection rates in the two bottom 327 

types diverge; increasing in the non-canopy forming region and decreasing in the canopy forming 328 

region (Figure 5a). At low current speeds (≈ 1 cm s-1), the probability of detecting cusk is almost 329 



identical in both bottom types, and there is no credible difference in detection probability between 330 

0 cm s-1 and around 5 cm s-1 among bottom types (Figure 5b and inset).  331 

Predictions of detection probability reveal similar rates of detectability in both bottom types at low 332 

and high tide (Figures 5.t1 & 5.t39), while varying significantly between these times (Figures 5.10, 333 

5.20 & 5.30).  334 

Estimates of the proportion of sites occupied by the finite sample estimator are 0.88 (95% CI: 0.64 – 335 

1.0), 0.45 (95% CI: 0.29 – 0.79), 0.74 (95% CI: 0.50 – 1.0) and 0.83 (95% CI: 0.64 – 1.0) for seasons 1, 336 

2, 3 and 4 respectively. This compares to observed proportions of 0.57, 0.28, 0.43 and 0.57 for 337 

season 1, 2, 3 and 4 respectively (Figure 7). Colonisation probabilities for all sites are 0.52, 0.77 and 338 

0.55 for colonisation between seasons 1-2, 2-3 and 3-4 respectively. Extinction probabilities are 0.56, 339 

0.44 and 0.15 for extinction between seasons 1-2, 2-3 and 3-4 respectively; these probabilities are 340 

the compliment of φ in the parametrisation described in the methods. Population growth is 341 

estimated at 0.56 between season 1 and 2, 1.74 between season 2 and 3, and 1.15 between season 342 

3 and 4. This represents a decrease in the number of occupied sites from summer 2006 to spring 343 

2007, an increase from spring to summer 2007, and an increase from summer to autumn 2007. JAGS 344 

code for the final model is given in the supplementary information (S.2). 345 

4 Discussion 346 

The problem of bias introduced by failing to account for detectability of mobile fish species when 347 

estimating their occupancy was addressed in this study. Using a dynamic occupancy model and 348 

treating the true occupancy state as a latent variable of the model, occupancy estimates are 349 

significantly greater than occupancy assessed from observation alone. Taking account of imperfect 350 

detection, the difference in estimated and observed proportion of sites occupied by cusk range from 351 

0.17 to 0.31. This highlights the need to incorporate detectability of the target species into species 352 

distribution modelling efforts (Rota et al. 2011). 353 



4.1 Cusk behaviour 354 

Cusk are slow moving weak swimmers (Bigelow & Schroeder 1953; COSEWIC 2003) and it is 355 

therefore not unreasonable to expect them to be influenced by hydrodynamic conditions. Outputs 356 

of model A show that, indeed, cusk detectability is affected by changes in current speed along a tidal 357 

cycle. Within the non-canopy forming regions of Cashes Ledge, the increase in detectability with 358 

increasing current speed can be thought of as a proxy for increased activity of cusk. This increase in 359 

activity is interpreted in one of two ways, either as cusk searching for morphologically complex 360 

environments as refuge, or as cusk using the movement of water as an opportunity to forage for 361 

food. Cusk have been observed to prey on cunner (Tautogolabrus adspersus) (Auster & Lindholm 362 

2005), and cunner in turn have been observed to forage more on exposed surfaces near refugia with 363 

increasing current velocity (Auster 1988, 1989).  364 

Other than these prey, little is known about cusk diet in the Western Atlantic. In European waters 365 

however, stomach contents analysis shows that cusk will eat a range of crustaceans and molluscs, 366 

both of which have been found in abundance in the shallower kelp dominated regions at Cashes 367 

Ledge (Vadas & Steneck 1988; Witman & Sebens 1992). Within this canopy forming algae region, as 368 

current speed begins to increase, detection probability decreases quite rapidly. While marine fish 369 

have been shown to use kelp habitats as both refuge and foraging grounds (Holbrook et al. 1990; 370 

Uhl, Bartsch & Oppelt 2016), the presence of canopy forming species of algae will encumber 371 

detectability, especially in relatively high flows or with high energy wave conditions (Rattray, 372 

Ierodiaconou & Womersley 2015).  373 

In previous studies of cusk habitat usage, the species has been recorded at much greater depths 374 

than those observed in this study (Nye et al. 2009; Davies & Jonsen 2011; Hare et al. 2012). One 375 

explanation of the depths observed in this study is that the fish in this region are year round 376 

residents that have become accustomed to living at comparatively shallower depths. Bigelow and 377 

Schroeder (1953) note that cusk do not often move from bank to bank, and no seasonal spawning 378 



migrations have been noted for the species (COSEWIC 2003). The spawning season for cusk in the 379 

Gulf of Maine extends from April to July (Bigelow and Schroeder 1953), and this might explain the 380 

large growth rate in the number of sites occupied between Spring 2007 and Summer 2007 (sampling 381 

seasons 2 and 3 respectively) as fish become more active in search of a mating partner. These two 382 

time periods together take in portions of the spawning season for cusk; it is therefore possible that 383 

the later it is in the season, the more active the fish are in their search. 384 

An assumption of the dynamic occupancy model is that within a primary sampling season the 385 

population remains closed, but can be open to local extinction and colonisation between seasons 386 

(Kéry 2010). Cusk are described as a ‘station keeping bottom’ or ‘station keeping cover’ species 387 

(Auster & Lindholm 2005), and evidence suggests that the home range of cusk is small (Dultz 2013). 388 

Furthermore, cusk show strong affinity for complex habitats while avoiding substrata with no 389 

structure (Bigelow & Schroeder 1953; COSEWIC 2003). Cashes Ledge is surrounded on all sides by a 390 

number of deep basins, most notably Ammen Basin to the east and Cashes Basin to the west (Figure 391 

2), which consist of unconsolidated substrata (Uchupi 1966; Uchupi & Bolmer 2008). As such, the 392 

assumptions of the model are satisfied; cusk remain on station and are kept on Cashes Ledge by 393 

expanses of non-favourable habitat on all sides. 394 

Throughout the four sampling seasons within this study, the same camera setup was used. No 395 

variability in detection probability should therefore be expected due to gear differences. In 396 

investigations using camera surveys combined with fish traps to assess detectability using 397 

simultaneous data collection methods (Coggins, Bacheler & Gwinn 2014), the approach of adding 398 

cameras to other gear types has been recommended (Bacheler et al. 2014). In the current study, the 399 

camera system was used in isolation, and given the limited field of view and a lack of control over 400 

orientation once on the seabed, detection probabilities are expected to be and are less than one.  401 

No significant effects were observed for any of the covariates tested in the initial occupancy sub-402 

model of model B. While it is likely that some covariates are missing from this sub-model, due to the 403 



small sample size, it is not possible to add more terms without overfitting the model. The covariates 404 

that were included were of importance in two ways. First, they were important in terms of what has 405 

previously been reported as driving cusk habitat; depth and surface complexity (Hare et al., 2012). 406 

Secondly, maximum current speed and maximum current speed squared were included to test 407 

whether hydrodynamics play a role not only in determining cusk behaviour, but also in limiting cusk 408 

habitat choice. Nevertheless, the main purpose of this study is to give consideration to the 409 

detectability issue in marine fish occupancy modelling. Given that the dynamic occupancy model is 410 

able to handle constant initial occupancy probabilities across all sites in the study domain, this lack 411 

of fit for the initial occupancy state does not present problems for inference about detectability. 412 

4.2 Recommendations for future studies 413 

In this study, detection probability ranged from 0.59 to 0.88 in the non-canopy forming region, and 414 

from 0.03 to 0.64 in the canopy forming algae region. These results are broadly comparable to 415 

detection probabilities from  other studies using camera surveys with other modelling approaches to 416 

detect marine fish (Bacheler et al. 2014; Coggins, Bacheler & Gwinn 2014). These detection 417 

probabilities are conditional on cusk being present at the site being observed, and also need to be 418 

considered in light of the fact that bottom time for the camera was relatively high in this 419 

investigation. It should also be noted that, for some species of fish, the presence of camera 420 

equipment on the seabed may encourage more curious individuals to investigate so may introduce 421 

some bias to the results (Stoner et al. 2008). In both models assessed in this study, the relationship 422 

between sampling effort and cusk detection was found to be insignificant. The term was left in the 423 

models however due to its theoretical importance; one of the most important factors affecting the 424 

detection of any organism is the amount of effort put into trying to detect it. Especially when dealing 425 

with small sample sizes, insignificant covariates should be left in models when they are theoretically 426 

important (Schuenemeyer & Drew 2010). 427 



While most of the spatial variability in detection probability can be explained by tidal phase, some 428 

small differences persist within each of the bottom types in Figure 6. These can be explained by local 429 

differences in current speed caused by water movement around topographic features on the 430 

seabed. Differences in detection probability created by these local variations in current speed in the 431 

deeper regions, and to a lesser extent in the shallow regions, are better understood when flow 432 

direction and topography are considered. Given that the strongest flows indicated by the tidal ellipse 433 

occur in a northerly and southerly direction (Figure 3) and that the orientation of the Ledge is 434 

approximately SE – NW (Figure 4c), it follows that different areas of the Ledge will experience 435 

maximal flow at different stages of the tidal cycle. Similarly, minimum flow occurs at different times 436 

throughout the 12.4 hour M2 tidal period (Figure 3). This has an effect on the arrival time of the 437 

increase in current speed at different locations throughout the study area (Figure 4b). Failing to take 438 

these local differences into consideration can have consequences when trying to plan similar surveys 439 

when the target species may be affected by flow rates. Such camera surveys are often the most 440 

suitable method for monitoring marine reserves and areas closed to mobile fishing gears as they are 441 

considered both cost effective and non-invasive (Bouchet & Meeuwig 2015; DeCelles et al. 2017). 442 

The need to consider detectability is therefore paramount to obtaining true, unbiased results. 443 

It is recognised that organisms living in marine environments exist in a multidimensional space, 444 

where even though they may live on the seabed, the constant flux of the water column plays an 445 

important role in shaping their distributions (Brown et al. 2011). While the same is true in the 446 

terrestrial environment (Jung et al. 2012), the data needed to describe the nature of the ocean are 447 

often harder to collect or generate. Broad scale covariates used in marine investigations, such as 448 

temperature, current speed and direction, often come from depth averaged or surface values of the 449 

covariate of concern. Additionally, if these covariates are not collected at the time of survey as is 450 

often the case, they need to be found as records elsewhere, or modelled using an appropriate 451 

method. Temperature, for example, is known to affect the metabolism and behaviour of marine fish 452 

(Biro, Beckmann & Stamps 2010; Remen et al. 2015), which can affect the detection probability. 453 



Including temperature in the hydrodynamic model used in the current study can only be achieved by 454 

specifying water densities as a function of temperature and salinity. This presents significant 455 

challenges in coastal environments where highly variable surface conditions due to fresh water 456 

inputs cause errors in modelled hydrodynamics. As a result, temperature data were available only as 457 

low resolution depth averaged values, providing information important only to seasonal variations in 458 

temperature. Any variability in cusk occupancy due to seasonal temperature variations would 459 

already have been captured in the occupancy model by the latent variables for gamma and phi. 460 

Nevertheless, the inclusion of temperature data in future studies could potentially provide more 461 

insight into variability in fish behaviour and detection as a result of thermal stresses. Hydrodynamic 462 

information in this investigation came from a 3-dimensional hindcast model of wave and current 463 

conditions at Cashes Ledge, and explained ecologically relevant phenomena that may otherwise 464 

have been overlooked. While forecasting these types of data may not be a viable option for many 465 

researchers planning future studies, it is a recommendation of this study that an effort be made to 466 

consider the fine scale variability of any feature of the environment that may impede detection of 467 

their target species.  468 

5 Conclusion 469 

This study demonstrates a novel, multifaceted approach to produce a dynamic occupancy model for 470 

a species of concern in a closed area.  It has generated estimates of occupancy that are considerably 471 

greater than occupancy measured from observation alone, for the first time using outputs from a 472 

high-resolution 3-dimensional hydrodynamic model in such a modelling framework. While the need 473 

for species distribution models to consider the 3-dimensional nature of the marine environment has 474 

been documented previously (Duffy & Chown 2017), this study reinforces it using modern statistical 475 

methods. Using the outputs, this investigation has shown how the behaviour of cusk changes in two 476 

different environments as a function of current speed. This behaviour has implications for the 477 

detectability of the species, which in turn has implications for the occupancy estimates. This 478 



imperative to consider detectability in marine SDM studies is true not only for cusk, but for all 479 

species surveyed using non-invasive sampling methods. It holds especially true for areas where 480 

managers must use these methods to monitor stocks. Failing to recognise the limitations of models 481 

that do not account for imperfect detection will impact future estimates of abundance, potentially 482 

for many species. It is imperative that practitioners of future marine SDM applications consider the 483 

detectability of the species under study. In order to do this, they must first understand the processes 484 

that govern the fine-scale, time-varying features of the environment that may affect detectability, 485 

not just for the species in question but also for the specific habitat type being observed (Bacheler et 486 

al. 2014) in order to obtain true, unbiased estimates of occupancy in the marine environment.  487 
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Table 1. Mean, maximum and minimum for each of the covariates falling within the depth strata sampled. Values for 
algae cover are reported as counts, as these are categorical variables. “-“ indicates no relevant data available. 

Covariate Stratum Min Mean Max Number 
Depth Shallow -23 -17 -11 - 

 Medium -43 -33 -25 - 

 Deep -57 -49 -39 - 

Current speed Shallow 0.05 0.11 0.17 - 

 Medium 0.03 0.09 0.19 - 

 Deep 0.01 0.09 0.2 - 

CurMax Shallow 0.21 0.22 0.24 - 

 Medium 0.16 0.19 0.23 - 

 Deep 0.16 0.19 0.22 - 

RDMV Shallow 0.14 0.56 1.39 - 

 Medium 0.06 0.31 0.36 - 

 Deep 0.08 0.25 0.67 - 

Algae cover: none Shallow - - - 0 

 Medium - - - 10 

 Deep - - - 45 

Algae cover: canopy Shallow - - - 21 

 Medium - - - 36 

  Deep - - - 0 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Parameters estimated for coefficients for occupancy model A (without covariates for ψ) and model B (with covariates for ψ). 
GOF is the Bayesian p-value, where values closer to 0.5 indicate better fit. Gelman-Ruben MV is the multivariate Gelman-Ruben 
convergence statistic, where values close to 1 mean the model has successfully converged. Current is the current speed at the time of 
observation of cusk, effort is sampling effort, none is regions with no canopy forming species of algae, current | none is the interaction 
between current and none, complexity is RDMV, current max is the maximum current speed during the sampling season. 

Model A GOF 
Gelman-

Ruben MV           

 
0.58 1.01 

  
Credible 
Interval Inclusion 

probability Sub-model Parameter  Mean s.d. 2.5% 97.5% 

Detection Intercept  -1.57 0.79 -3.27 -0.04  

 Current  -1.26 0.59 -2.58 -0.19 0.66 

 Effort  -0.37 0.75 -1.94 1.05 0.32 

 none  3.01 0.88 1.52 5.19 0.99 

 Current | none  1.77 0.71 0.44 3.32 0.79 

                

Model B GOF 
Gelman-

Ruben MV           

 
0.62 1.01 

  
Credible 
interval Inclusion 

probability Sub-model Parameter  Mean s.d 2.5% 97.5% 

Occupancy Intercept  1.41 1.4 -0.93 4.55  

 Depth  -1.66 1.55 -5.08 1.24 0.50 

 Complexity  0.99 1.66 -2.01 4.63 0.49 

 Current max  0.04 1.31 -2.53 2.64 0.40 

 Current max2  0.17 1.31 -2.42 2.78 0.39 

        
Detection Intercept  -1.43 0.83 -3.17 0.2  

 Current  -1.31 0.63 -2.67 -0.21 0.7 

 Effort  -0.35 0.79 -1.97 1.09 0.34 

 none  2.85 0.93 1.3 4.98 0.99 

  Current | none   1.85 0.75 0.47 3.44 0.82 
 

 

 

 

 



 

Figure 1. Flow diagram for analyses described in the methods. Solid lines represent the flow of information to create the dynamic 
occupancy model, and dashed lines represent the flow of information for producing the output probability surfaces in Figure 6. 

 

 

 

 

 

 



 

Figure 2. (a) Location of 14 sites sampled for cusk at Cashes Ledge. Grey triangles are from the hydrodynamic model computational 
mesh, the full domain of which is in (b) along the location of Cashes Ledge in the Gulf of Maine. CB is Cashes Basin, AB is Ammen Basin. 

 



 

Figure 3: Tidal ellipse for a point in open water 100 m away from Cashes Ledge. The distance from the centroid to the arc of the ellipse 
is proportional to the current speed, and the direction of a vector radiating from the centroid to any point on the arc represents the 
direction any that point. The number on the arc correspond to the numbers on the tidal curve and in Figure 6. 

 



 

Figure 4: Example of difference in arrival time of tidal signal for three sites, one deep (1), one intermediate (3) and one shallow (2) at 
Cashes Ledge over one and a half tidal cycles throughout the summer 2006 sampling season. Time on the x-axis of the tidal curve (b) 
and current speed plot (c) are the same. The locations of the three sites are marked on the map (a).  

 



 

Figure 5: Model outputs showing (a) final model for detectability of cusk at Cashes Ledge based on current speed and bottom type, 
coloured bands are 95 % credible interval, (b) difference in detection probability between canopy forming and non-canopy forming 
regions. Where the 95% credible interval includes zero, there is no significant difference in detection probability. 

 

 

 



 

Figure 6: Tidal curve (top), current speeds (middle) and predicted probability surfaces (bottom) along a full tidal cycle during the 
summer 2006 sampling season. Surfaces are predicted from the detection model outputs. Numbers of each panel in the grey boxes (t1 
– t39) correspond to the numbers on the tidal curve. The darker regions in t10 and t30 indicate the areas with canopy forming species 
of algae based on extinction depth for those species at Cashes Ledge, while the lighter regions are the areas with no canopy forming 
species of algae. 

 

 

 

 

 



 

Figure 7. Observed and median estimated proportions of sites occupied by cusk at Cashes Ledge during the four sampling periods; S1 
(Summer 2006), S2 (Spring 2007), S3 (Summer 2007 and  S4 (Autumn 2007). Also shown are the 50% and 95% credible intervals for the 
posterior estimates of the proportion of occupied sites. 

 


