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Abstract 

Carbon nanoporous membranes show promising performance for the passive separation and 

sieving of different gases, for example for helium and hydrogen separation. In this paper, 

nanocrystalline graphite (or nanographite) has been evaluated as a membrane material for 

molecular sieving of helium and hydrogen from larger gas constituents. Nanographite of 

350 nm thickness was prepared using plasma-enhanced chemical vapour deposition onto fused 

silica substrates, from which membranes were microfabricated using deep wet etching. 

Permeability of hydrogen and helium were 1.79 ×10-16 and 1.40×10-16 mol m m-2s-1·Pa-1 at 150 

°C respectively, and measured separation was 48 for He/Ne, >135 for H2/CO2 and >1000 for 

H2/O2. The gas separation properties of the nanographite membranes were tested in the 

temperature range of 25 to 150 °C, and the permeation measurements show nanographite to be 

highly selective of helium and hydrogen over all larger gas molecules, including neon. 
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1. Introduction 

Nanoporous membranes are attractive candidates for use as molecular sieves for the separation 

of helium and hydrogen from the larger constituents of natural gas [1,2]. Helium is an 

irreplaceable natural resource which is widely used in many industrial and scientific 

applications such as cryogenics and CMOS fabrication [1]. Helium is commonly extracted 

from fields of natural gas using cryogenic processing, whereby the mixture of gases is separated 

cryogenically [3].  This highly energy intensive process is often not financially viable and in 

many cases the helium is permanently lost to atmosphere [4], and as a result, less energy-

intensive methods of helium extraction are sought, and molecular sieving using membranes is 

considered a promising method of production. Similarly, hydrogen is an important fuel and is 

also generally obtained from, for example, natural gas and bioethanol, which leaves hydrogen 

in a mixture of undesired products such as CO2, CH4 and CO which need to be further separated 

[5,6]. 

 

Several theoretical studies have shown the promise of 2D materials such as graphene [7],  

graphdiyne [8], carbon nitride [9] and silicene [10]  to be used as molecular sieves for helium 

and hydrogen separation. These simulations show that the intrinsic pores in 2D materials 

caused by vacancies such as Stone-Wales defects and pores could enable membranes with very 

high flux of helium or hydrogen, combined with high separation from all other gases [7]. 

However, the prospect of fabricating robust, temperature resistant, large-area 2D films, with 

the presence of solely specific and ‘tailored’ defects (as opposed to non-specific defects and 

pores) remains somewhat distant. For example, studies of the gas transport through stacked 

graphene sheets have shown that tears and unintended defects greatly reduce the sieving 

properties of membranes [11].  

 

As a result of the potential challenges facing the upscaling of ‘pure’ 2D thin films, related 

porous materials such as thin graphite oxide or graphene oxide [12,13] are considered to be 

promising molecular sieve materials, as this has more scalable and reproducible production, 

and is more viable to be used in large-scale applications.  However the behaviour of graphene 

oxide molecular sieves currently show a small window of operation regarding temperature; 

with the separation factor of hydrogen and carbon dioxide ( 2

2

H
CO ) for 1.8 nm thick 

membranes, falling from ~ 2100 at 20 °C to ~ 23 at 100 °C [13]. A similar result was observed 

in graphene oxide membranes by Chi et al. with 2

2

H
CO falling from 240 at room temperature 
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to 47 at 120 °C [14]. As a result, a wider range of carbon materials are sought as molecular 

sieves due to their high flux and temperature resistance [2]. Recent studies on carbon materials 

have included pressed graphite [5] turbostratic and amorphous carbon [15], graphite foils [16], 

carbon nanomembranes derived from terphenylthiol [17] and polymer-derived carbons [18]. 

 

Furthermore, micromachined and miniaturised membranes for hydrogen separation are of 

specific interest in the use of micro-generators based on hydrogen production in micro-reactors 

[19–21]. In such systems, hydrogen is produced from steam reforming of methane [20] or 

catalytic reaction from methanol [21]. This chip-scaled power enables a high-density and high 

efficiency power source, which is required in certain aerospace [19] and consumer electronics 

[21] applications. High purification and separation of hydrogen from larger gas constituents 

are required to help bring such micro-reactor generators to wider use. Currently, such micro-

reactors have typically relied on hydrogen separation using palladium membranes [19–21] 

which are highly expensive, and suffer excessive sensitivity to surface contamination [2]. 

   

In this study, we explore the use of thin-film nanocrystalline graphite (referred to as NCG, 

nanographene or nanographite) micro-scaled membranes, as a candidate material for helium 

and hydrogen separation. Nanographite has crystallite sizes of roughly ~ 2 to 50 nm [22–24].  

One advantage of nanographite is that it may be deposited onto large-area substrates using 

plasma-enhanced chemical vapour deposition (PECVD) without any metal catalyst; this 

enables fabrication and characterisation of freestanding membranes using MEMS-type 

technology such as lithographic patterning and etching. Here, we demonstrate a method to 

fabricate freestanding thin-film membranes using deep HF etching which may be used for batch 

production of micro-scaled membranes. We present the gas permeation and separation 

behaviour of nanographite membranes in the temperature range of 25 to 150 °C, and 

demonstrate this to be a promising membrane material with high sieving behaviour, 

inexpensive, large area synthesis and preparation, and potential for micro-scaled applications.  

2. Experimental 

2.1 Deposition of nanographite 

Nanographite was deposited onto a 4-inch fused silica wafer (University Wafers, USA), using 

a commercial PECVD tool (Oxford Instruments Nanofab1000 Agile), with a methane 

precursor and hydrogen diluent at a temperature of 750 °C. The further deposition conditions, 
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and detailed mechanical characterisation have been described in previous work by our group 

[24–26].  

2.2 Material characterisation 

Raman spectroscopy (Renishaw inVia) was used to characterise the structural properties of the 

nanographite film, using a 532 nm wavelength excitation laser and 50 × magnification. 

Scanning electron microscopy (JEOL JSM 6700F, 5.0 kV accelerating voltage) was used to 

view the morphology of the film on the as-deposited fused silica substrate. Grazing angle X-

ray diffraction was performed (Bruker D8) using a CuKα source with wavelength of 0.154 nm. 

TEM samples were prepared using mechanical exfoliation into ethanol, sonicated for 10 

minutes and micropipetted onto copper-supported holey carbon grids (Agar Scientific Holey 

carbon film on 300 mesh cu). HRTEM (JEOL JEM-2100F) was used for imaging at 200 keV 

excitation.  

2.3 Microfabrication of membranes 

To fabricate a membrane, nanographite was deposited to a thickness of 350 nm onto one side 

of a double-polished 4-inch fused silica wafer. The nanographite was annealed at a temperature 

of 1000 °C for one minute under N2 flow, after vacuum evacuation, using a rapid thermal 

annealer (Jipelec JetFirst 150) to reduce the compressive stress of the film. Without the 

annealing step, a high level of buckling and breakage was observed. A chrome/gold (10/300 nm 

thickness) mask was patterned on the wafer back side using thermal evaporation (Fig. 1 (A)), 

over which a 7 µm layer of AZ4330 resist was spun, and patterned with a circular window of 

25 µm diameter, Fig. 1 (B). The wafer was then post-baked for 20 minutes at 120 °C in an 

oven. This post-bake was used to make the resist layer more hydrophobic [27] and thus reduce 

pinhole damage to the gold mask from the later deep hydrofluoric acid (HF) etch.  The 

chrome/gold mask was etched using Aldrich gold etchant and Microchrome Technology, CEP-

200 chrome etchant respectively.  
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The wafer was then diced and the front side of each membrane chip was protected from the HF 

by adhering the surface to a silicon wafer using melted wax, heated at 50 °C and then left to 

cool at room temperature. 49 % HF acid was used to isotropically etch the fused silica through 

to the nanographite, thus releasing the membrane, Fig. 1 (C). The etching process typically 

took around 12 to 16 hours. After etching, the wax was melted and the chip thoroughly cleaned 

in, successively, acetone, deionised water and isopropyl alcohol, Fig. 1 (D). A microscope 

image of a released membrane is shown in Fig. 2. The membrane is slightly buckled due to 

some remaining compressive stress, but remained fairly robust. This fabrication process gave 

reproducible results, with around 75 % of 100 – 1000 µm diameter membranes successfully 

released. 

 

Fig. 1. Schematic fabrication process of nanographite membranes on fused silica substrates. 

(A) Deposition of nanographite using PECVD and Cr/Au using thermal evaporation. (B) 

Photolithography using AZ4330 resist followed by Au and Cr etching, front protection using 

wax and a silicon carrier. (C) Deep HF etching. (D) Wax melting and solvent cleaning. 

 

Fig. 2. Microscope image of a released nanographite membrane taken from the top side. The 

membrane shows slight crumpling due to some compressive stress. 
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2.4 Mass spectrometry system for permeance measurement 

The flux of gases through the membrane was calculated by measuring the downstream pressure 

of gas using a residual gas analyser (RGA, SRS RGA 300) type quadrupole mass spectrometer 

in an ultra-high vacuum (UHV) chamber. Fig. 3 shows a schematic of the system, and is similar 

to permeation testing rigs used in other reports [28,29].  

 

Fig. 3. Schematic of UHV rig used to measure the permeance of nanographite membranes. 

 

The rig comprises two chambers, separated by the membrane. The larger chamber (6.74 L 

volume) is at ultrahigh vacuum (UHV) in which sensitive gas partial pressure measurements 

are made using the RGA, and a smaller chamber evacuated to high vacuum (HV), which during 

testing is filled with the analyte gas to a pressure up to 80 Torr. The membrane was sealed over 

a 1/4’’ stainless steel Swagelok gasket using a UHV-rated 2-part adhesive (Allectra 330s-

GLUE1-M3). The gasket was then adhered using the same adhesive over the orifice connecting 

the two chambers. The UHV chamber was evacuated using a Varian V-551 turbomolecular 

pump rated to 550 L s-1. The system was thoroughly baked overnight using external heater 

tapes at 150 °C to remove water vapour and other contaminants from the system walls. After 

baking, a UHV base pressure of around 1×10-10 Torr was achieved.  The two chambers are 

separated by the membrane, and gas flows through due to the concentration gradient. To 

measure the flux through the membrane, the UHV chamber was shut off from the evacuating 

turbopump and the pressure rise of the analyte gas was measured until the overall pressure in 

the UHV chamber reached around 1×10-5 Torr. During measurement, only the pressure of the 

analyte gas was measured, as the RGA enables measurement of the ion current at a specified 

atomic mass, whilst ignoring the pressure of other background gases. The RGA was calibrated 

against a total-pressure ionisation gauge [30]. 

Gas inlet 

TP MP RGA IG TP 

HV Chamber UHV Chamber 

Membrane TP = Turbopump 

MP = Manometer pressure gauge 

IG = Ionisation gauge 

RGA = Residual gas analyser 



7 

 

To test the leak-tightness of the membrane holder, a blank (plain fused silica chip) was adhered 

over a gasket, and helium was flowed to a pressure of 80 Torr to the HV side of the setup and 

the pressure observed using the RGA. No pressure rise of helium was observed, showing that 

during testing all flowing gas should be through the membrane itself. To measure the flux of 

gases through the membrane at elevated temperature, the membrane holder and adjacent 

components were wrapped in heating tape and aluminium foil, to help maintain homogenous 

heating throughout. A thermocouple was taped to the outer face of the membrane holder using 

conductive carbon tape and the sample was heated and maintained at temperature for one hour 

prior to permeation measurement. The measurement of helium, hydrogen, neon, oxygen and 

carbon dioxide was performed through a nanographite membrane at temperatures from room 

temperature (25 °C) to 150 °C.  

2.5 Gas flux measurement 

The membrane leak rate Qm (Pa ∙ m3 ∙ s-1) can be calculated by measuring the change in partial 

pressure of the analyte gas with time, as described in Equation 1 [31]:  

   0
/ /

m avg
Q P t P t v       

 
     (1) 

where ΔPavg is the measured change in pressure over a time period Δt, ΔP0 is the measured 

change in background pressure arising from gases emanating from the vacuum chamber 

internal surfaces and v is the measured volume of the chamber. This pressure rise occurs in the 

UHV system, when the turbopump valve has been closed, to allow the analyte gas pressure to 

build up. ΔP0 was measured from the background signal, by measuring the pressure rise when 

there was no analyte gas present in the HV chamber. ΔP0 was negligible in the case of helium, 

since there is no ambient helium present in the UHV chamber, however ΔP0 was non-negligible 

in the case of hydrogen, since some hydrogen diffuses from the inner steel walls of the UHV 

chamber, particularly from the grain boundaries [32]. From the leak rate, the molar flux, J, 

(mol m-2s-1) may be calculated by [31]:  

      m
J Q RTa      (2) 

where a is the geometric surface area of the membrane, R is the molar gas constant and T is the 

absolute temperature. The permeance, B, (mol m-2 s-1 Pa-1) is defined as [33]:  

/
hv

B J P      (3) 

where Phv is the upstream pressure of the gas, in the HV chamber. The coefficient of 

permeability C (mol m m-2s-1Pa-1 ) is a measure of the thickness-normalised permeance of a 

membrane material [34] and is calculated as: 
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C B x       (4) 

where x is the membrane thickness. The selectivity α of two gases is calculated as the ratio of 

the permeance of both gases, flowing under the same conditions: 

1

2

B

B
        (5) 

3 Results and discussion 

3.1 Material characterisation 

Nanocrystalline graphite comprises nano-scaled crystallites of sp2 bonded carbon [35,36]. A 

Raman spectrum obtained from a nanographite thin film is shown in Fig. 4, with the main peaks 

highlighted. The characteristic D peak (A1g breathing mode 1350 cm-1) arises from defects such 

as grain boundaries and dislocations in the graphitic structure, and is characteristic of defected 

graphene or graphite [37] and the G peak (E2g mode 1594 cm-1) is the so-called ‘graphite mode’ 

and originates from the radial breathing mode of sp2 carbon [37]. The 2D peak (second order 

of the D peak of 2690 cm-1) is an overtone of the D peak [38]. The D+G peak (2934 cm-1) is 

defect related [39]. To calculate ID/IG we fit Lorentzian peaks (Origin Pro 9.3) to the D and G 

peaks, with a Fano peak for the slight shoulder of D’ (1620 cm-1)  [24,39] and ID/IG equals 

~1.79 which is characteristic of a nanocrystalline graphite [37]. An SEM image of nanographite 

is included in Fig. 5, which shows the granular structure of nanographite. 

Fig. 4. Raman spectrum of 350 nm thick nanographite sample, on a fused silica substrate with 

the main peaks denoted. 

D 

G 

2D 

D+G 
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Fig. 5. SEM image of nanographite morphology on fused silica substrate.  

 

X-ray diffraction (XRD) was carried out to confirm the presence of graphitic phases. The XRD 

pattern of nanocrystalline graphite deposited on fused silica substrate is shown in Fig. 6. The 

plot mainly consists of two broad peaks centered at 2θ ~ 21.8o and 2θ ~ 43.7o. The first peak 

can be attributed to the fused silica substrate, as observed previously [40]. In order to confirm 

that the peak arises because of the substrate, a similar grazing angle XRD was also carried out 

on the pristine substrate, shown in Fig. 6, and a similar peak is obtained. The second XRD peak 

around 2θ ~ 43.7o can be assigned to the graphite (100) crystal plane [40] with some inherent 

strain. In order to calculate the hexagonal spacing we used Bragg’s equation [41]: 

2 sind n        (6) 

where 𝜃 is half of the diffraction angle, n equals 1 and λ is the wavelength of X-rays (0.154 nm). 

The hexagonal spacing (d100) is calculated as ~0.21 nm which corresponds closely to similar 

studies on nanographite [42]. Because of the lack of long range crystallinity of the 

nanographite, a very high fullwidth at half maximum (FWHM) (~0.05 radian) is obtained. The 

crystallite size was further calculated using the Scherrer equation [43]: 

cos

k
D



 
       (7) 

200 nm 
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where D is the average crystalline size, k is a constant (k=0.89), λ is the wavelength of X-rays 

(0.154 nm), β is the FWHM of the diffraction peak and 𝜃 is half of the diffraction angle. The 

average crystalline size is calculated, and the value of D is found to be ~ 3.0 nm, which is 

similar to the crystallite size measured by Hargreaves et al. [42] who measured a mean 

graphene domain size of ~ 1 to 3 nm, with some larger crystallites. 

 

 

Fig. 6. X-ray diffraction patterns of the nanographite sample on fused silica substrate, and the 

bare silica substrate. 

TEM analysis is shown in Fig. 7 (A-D), of an exfoliated flake suspended on a holey carbon 

grid. From the bright-field TEM images shown in Fig. 7(A-B), we observe that nanographite 

is comprised of planar sheets, randomly oriented. Fig. 7(C) is a HRTEM image, and here we 

observe nano-sized graphitic crystallite regions with no long-range order. The nano-scaled 

crystallites are of random orientation and range from a few to ~ 20 graphitic layers, which 

appears broadly consistent with the crystallite size obtained from XRD (~ 3 nm). The interlayer 

spacing d002 was measured using selected-area electron diffraction (SAED), Fig. 7 (D), and 

shows interlayer graphite spacing of 0.34 nm, similar to previous measurements of between 

0.34 and 0.345 nm [42,44] for nanographite. We were not able to calculate a value of (d002) 

from XRD as this was largely masked by the substrate. The hexagonal spacing (d100) was 

measured from SAED as 0.21 nm, in close agreement with the XRD value.  

G
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Fig. 7. (A-B) Bright field TEM images of nanographite sample suspended on a holey carbon 

grid (C) HRTEM images of a nanographite sample (D) Selected-area electron diffraction 

pattern, taken from the suspended region of the sample, shows hexagonal spacing (d100) of 0.21 

nm and interlayer spacing (d002) of 0.34 nm.  

 

The graphitic structure acts as a molecular sieve, as the interlayer spacing may be small enough 

to allow flow of the smallest gases (helium, hydrogen and neon, summarised in Table 1), but 

acts as a far greater barrier to larger gases such as CO2 and O2  [45–47]. The diffusion of 

hydrogen in between graphite sheets has previously been simulated [48]. Nanographite also 

includes some amorphous bonding, but previous measurements have shown that amorphous 

carbon does not have very high gas separation properties [15], with 2

2

H
CO measured at ~2.8 

between the temperature range 25 to 250 °C and sieving is expected to be dominated by the 

interlayer graphitic spacing. Previously the interlayer permeation of hydrogen through pressed 

5 nm 5 nm-1 

30 nm 150 nm 
A B 

C D 

(100) 

(002) 
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graphite membranes was shown to have a significant effect on overall flow, in which the 

permeation parallel to the grains was a factor of around 25 higher than that perpendicular to 

the grains [5] . Shen et al. [47] showed that the 0.35 nm spacing between graphene oxide sheets 

provided transport channels with high separation properties. However, for graphene-oxide, the 

selectivity may also apparently be altered through different preparation techniques, Li et al. 

[13] observed gas selectivity through a different mechanism of gas flow through pores and 

defects at the grain boundaries with no major increase in flow observed with increased 

interlayer spacing.  

3.2 Separation performance 

Initially, the single-gas permeance of helium, hydrogen and neon was measured through a 

nanographite membrane over the temperature range 25 to 150 °C, with permeance values 

shown in Fig. 8 (A). Note the much lower value of permeance for neon, as detailed in the inset 

of Fig. 8(A). For each gas, the permeance increases exponentially with temperature. Fig. 8 (B) 

is an Arrhenius plot showing the permeance against the inverse of temperature, which can be 

used to calculate activation energy which is shown in Table 1.  
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Fig. 8. (A) Measurement of the permeance of helium, hydrogen and neon through a 350 nm 

thick nanographite membrane across the temperature range of 25 to 150 °C. Inset shows values 

of neon permeance in detail, as the permeance is much lower than of the other gases. (B) 

Arrhenius plot of the same data enables calculation of the activation energy of each gas. 

 

Gas Activation energy (kJ/Mol) Molecular diameter 

(nm) 

Helium 18.31 0.260 [49] 

Hydrogen 20.03 0.289[49] 

Neon 28.50 0.275[50] 

Carbon Dioxide - 0.339 [49] 

Oxygen - 0.346 [51] 

   

Table 1. The calculated values of activation energy, and values of molecular diameter for five 

measured gases. 

 

The temperature dependent selectivity plot of He
Ne , and 2H

Ne  is shown in Fig. 9. At room 

temperature He
Ne  and 2H

Ne  are 212 and 146, respectively. There is a clear decrease in the 

selectivity as the temperature increases; with He
Ne = 48 and 2H

Ne = 62 at 150 °C. The reason 

for this behaviour is simply that neon has a higher activation energy than helium or hydrogen, 

and thus its permeance increases relatively more at higher temperatures.  

A B 
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To test the permeance of larger gases, the permeance of carbon dioxide and oxygen were 

measured through a nanographite membrane. However, the permeation of both gases through 

the nanographite membrane was below the limit of detection of the mass spectrometry system. 

Low amounts of both gases were detected from the background of the UHV system (for 

example CO2 is known to diffuse from the inner steel walls [32]). However, the amount 

diffusing through the membrane did not raise the measured value of either of these gases. As a 

result, no absolute values of gas permeation and separation were obtained, but a lower limit for 

separation factors of greater than ~135 and ~1000, respectively, can be ascertained for 

hydrogen over both CO2 and O2, as any higher values would have been easily measured above 

the background. This appears to indicate that there is a cut-off of permeance between hydrogen 

(0.289 nm) and CO2 (0.339 nm) as the permeance greatly differs between these two gases. This 

may suggest that the flow of gases through nanographite is predominantly interlayer rather than 

through inter-grain defects since the drop-off in permeance appears to lie close to the interlayer 

spacing size (0.34 nm).  

 

Fig. 9. Calculated values of separation factors He
Ne  and 2H

Ne  over the temperature range of 

25 to 150 °C.  

3.3 Discussion of separation behaviour 

In inorganic membranes, the transport tends to be dominated by the following mechanisms: 

Knudsen diffusion, surface diffusion, or sized-based molecular sieving (also termed gas 

translation diffusion) [45,52–54]. In relatively large pores, the transport is dominated by the 

mean-free-path of the molecule, which is known as Knudsen diffusion [52]. However, in the 

present membranes, the ratio of permeance for both He
Ne and 2H

Ne  is far higher than that 
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predicted by Knudsen diffusion, which may be calculated from the molecular mass M of either 

constituent, for example ( / 2.2He
NeKnudsen Neon Helium

M M   ). For smaller pores, the flow 

may be dominated by surface diffusion [45] where molecules adsorb on to the pore walls, 

before hopping to the next available site [50]. As temperature increases, the adsorption 

decreases and thus the permeance from surface diffusion flow will also decrease [55], which is 

not observed in any significant way in our data.  

 

Hence, for the nanographite membrane, the flow is probably dominated by molecular sieving 

(gas translation diffusion) for the smallest pores as has been previously noted in various carbon-

based membranes [45,53]. In gas translational diffusion, there is an activated step where the 

molecule must overcome an energy barrier imposed by the surface potential of the pore walls, 

followed by gas-state diffusion in a Knudsen-type regime [54]. From our Arrhenius plot, the 

negative slope of the Arrhenius plot indicates that gas translation separation mechanism 

dominates the flow [45,50]. However, this is not to say surface diffusion is not present. 

Membranes often have transport with a combination of surface diffusion and gas translation 

diffusion [55,56] where the surface diffusion becomes less dominant, or negligible, at higher 

temperatures, as the adsorption decreases. More highly-adsorbing gases have a higher surface 

diffusion gas flow [50].  

 

Molecular sieving in many types of graphitic membranes has been observed in the literature, 

and tends to be described as arising from two main types of structure: (I) in some graphene 

oxide materials, the sieving is dominated by inter-grain defects and with no apparent major 

change in permeation characteristics when the interlayer spacing is increased [13], and (II) 

where sieving is dominated by the interlayer spacing between sheets, whereby smaller 

molecules can pass between stacked sheets but larger molecules cannot [5,16,47] and thus the 

larger gases have a much lower permeance. Ibrahim et al. [57] recently proposed a two-

pathway transport model in graphene oxide, whereby there are inter-sheet pathways composed 

of nanoscale wrinkles between sheets, and inner-sheet pathways consisting of structural defects 

in the sheets. 

 

In nanographite, the mechanism shows evidence of being dominated by interlayer spacing, as 

explained here. We note that neon has a significantly lower permeation, Fig 8, than hydrogen 

through nanographite membranes, despite being a smaller molecule (0.275 vs 0.289 nm 
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diameter [49,50]). Similar behaviour has been observed in carbon [5,58] and silica membranes 

[50,59], where for example, hydrogen has much higher permeance than helium or neon. This 

behaviour may be explained by the higher relative adsorption of hydrogen compared to neon, 

which has been measured in porous carbons [60,61] which are comparable to nanographite. 

Thus at lower temperatures, hydrogen has a larger component of gas-flow which is caused by 

surface diffusion than neon does. At higher temperatures the adsorption of hydrogen will 

become less or negligible [60,61] and therefore as the temperature increases, the flow of 

hydrogen that is caused by surface-diffusion becomes smaller, but this effect is not so strong 

in neon since the adsorption is relatively small. At higher temperatures, for all gases, any 

component of transport caused by surface diffusion will become small and the mechanism will 

turn to pure sized-based molecular sieving, for all gases, which is suggested by the decrease in 

2H
Ne   at higher temperatures, Fig. 9. 

 

The higher selectivity of hydrogen over neon further suggests that nanographite has an 

interlayer sieving mechanism as opposed to inter-grain defect mechanism. Channels formed by 

interlayer defects tend to have a longer length (~ equal to the crystallite size) than inter-grain 

defects which tend to be through just one atomic layer [11]. Longer channels provide many 

adsorption sites, thus allowing significant differential absorption of hydrogen compared to 

neon, whereas inter-grain defects tend to act solely on size-based sieving [13].   

 

We note that the absolute gas permeance of these membranes is relatively low compared with 

values found in much of the available literature (Table 2), which is a crucial parameter for 

membranes to be used in industrial gas separation applications. However, the low permeance 

of these membranes may largely be explained by the relatively high thickness of these 

particular samples (350 nm). These were fabricated to this thickness to ensure sufficient 

strength in order to protect our UHV system from any unintended membrane failure (which we 

did not observe throughout testing). In other work we have deposited continuous nanographite 

films of sub-10 nm thickness, for electronic applications [62,63] and this fabrication method 

for membranes may potentially be carried out on such thin films. If sufficiently robust 10 nm 

thick membranes could be fabricated, the expected hydrogen permeance would of order 

~2 ×10-8 mol m-2s-1Pa-1 at 150 °C. Further improvements could be made by using nanographite 

in a mixed-matrix membrane as shown recently in graphene oxide membranes [64,65]  where 

permeance and mechanical stability was increased by blending graphene oxide with polymer. 
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The coefficient of permeability C (Equation 4) is a measure of the thickness-normalised 

permeance, and hence allows better comparison between materials than the absolute 

permeance. The calculated values of C for hydrogen through nanographite are comparable to 

related materials such as graphene oxide [13], as detailed in Table 2. Comparing these materials 

on both permeability and 2

2

H
CO  shows that nanographite compares favourably, though we 

clearly note that further measurement of the absolute permeance of a wider range of gases will 

be useful.  We also include the sieving performance of He
Ne and 2

2

H
O , since these gases are 

more commonly measured in the literature than He
Ne , for a comparison with a number of 

other materials. The nanographite membrane consistently shows high separation properties. 
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Material 

Test 

temp. 

(°C) 

H2 

permeance 

(mol  m-2 

·s-1Pa-1) 

Sample 

thickness 

(µm) 

H2 

Permeability 

(mol m m-2 

s-1Pa-1) 

2

2

H
CO  He

Ne  2

2

H
O  

Nanographite 

[This work] 
125 1.53×10-10 0.350 5.35 ×10-17 > 135 48 - 

Nanographite 

[This work] 
150 5.11×10-10 0.350 1.79 ×10-16 - 62 >1000 

Pressed graphite 

[5] 
150 ~7.1×10-9 1000 ~7.1×10-12 ~ 5 - - 

Graphene-oxide 

[13] 
100 ~2.1×10-7 0.0018 ~3.7×10-16 ~ 23 - - 

Turbostratic 

carbon [15] 
150 ~5.7×10-9 ~8 ~4.6×10-14 ~ 5 - - 

Carbon hollow 

fiber 

membranes: [58] 

60 ~2×10-9 100 ~2×10-13 ~14 - ~50 

Silica 

membranes [66] 
200 ~5.5×10-8 0.2 ~1.1×10-14 ~6 ~10 - 

 

Table 2. Summary of the hydrogen permeance and permeation properties and separation 

between various gases of a number of membranes from the available literature. 

4 Conclusions 

We have reported for the first time the preparation and permeance testing of freestanding, 

350 nm thick, nanographite thin film membranes, produced using PECVD. The method used 

to fabricate these membranes is scalable and reproducible, using micromachining and deep 

etching of fused silica wafers. A UHV-based mass spectrometry system is used to measure the 

permeance of various gases through the membrane and the results show a predominantly gas 

translation-type permeance behaviour. The gas permeability coefficient of helium and 

hydrogen is similar to that of related materials such as graphene oxide, however the separation 

factors of nanographite at elevated temperatures are far higher and in particular, the separation 
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of  He
Ne equals 48 at 150 °C, 2

2

H
CO  >135 at 125 °C  and 2

2

H
O  >1000  at 150 °C. The high

2

2

H
CO , large scale and inexpensive synthesis route, and compatibility for microfabrication 

show nanographite to be a promising material for micro-scaled membrane applications.  
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