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………………………………………………to tailor mechanical 
properties of open cell structures

• Tissue engineering solutions are an attractive alternative to autograft treatment for 
bone trauma patients

Introduction

INTRODUCTION MATERIALS AND METHODS RESULTS CONCLUSIONS

[Image] Alessandra Giuliani, Synchrotron Radiation and Nanotechnology for Stem Cell Research, Stem Cells in Clinic and Research, 2011

• Bone tissue scaffold development has 
challenges:-

• High porosity in conjunction with 
suitable mechanical properties

• Limitation in selection of materials

Thin film nanocomposite coating
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Ziminska et al. ACS Appl Mater Interfaces. 2016;8(34):21968–73.
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Porous Substrate

Coated foam

Positively charged 

polyelectrolyte

Negatively charged 

polyelectrolyte

Negatively 

nanoclay platelets

Water sensitive

100 µm
Un-coated

100 µm
Coated

Coating has only been tested under ambient 

conditions. Testing must be done when submerged 

to examine efficacy under hydrated conditions

• Highly porous

• Less than desirable mechanical properties

• Slightly reduced porosity

• Tailored mechanical properties to match 

surroundings
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Materials 

• Open cell polyurethane foam

• Coated with varying number of quadlayers of:

» Poly(ethyleneimine)

» Poly(acrylic acid)

» Cloisite Na+ nanoclay

Methods

• Uniaxial compression testing

• SEM

• Surface profilometry

• MicroCT

• Mass and elastic modulus in environments of increasing RH

Hydrated Testing Materials and Methods 

INTRODUCTION MATERIALS AND METHODS RESULTS CONCLUSIONS
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Ziminska, et al. ACS Appl Mater Interfaces. 2016;8(34):21968–73.

Adapted Ashby-Gibson Model

Mechanical properties of open 

cell materials can be tailored

How do these coatings act when 

hydrated?
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Proposed Solution:

Hariri, et al. 2012. Macromolecules 45, 9364–9372.
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Two-level factorial design of experiments (DoE) to investigate crosslinking effect

Optimal Crosslinked Coated Foams Characterised:
• Hydrated elastic modulus

• Coating thickness SEM

• Hydrated coated thickness surface profilometry

• Mass and elastic modulus in environments of increasing RH

• FTIR

Factor Parameter Low High Units Factor Type

A Glutaraldehyde Molarity 0 2.5 M Continuous

B Glutaraldehyde Time 30 300 mins Continuous

C Temperature 0 120 °C Discrete

D Temperature Time 60 1500 mins Continuous

E Crosslink Interval 5 30 QL Discrete

Table 5.1 Design of Experiment Factors

Optimise for output:

Hydrated elastic modulus
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Optimal Crosslinking:
• Glutaraldehyde Crosslinking at 2.5 M

• Glutaraldehyde treatment time of 30 mins

• Crosslinking coating every 5 quadlayers deposited
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• Nanocomposite coatings provide significant improvement in elastic modulus, under 
ambient conditions

• Coating loses almost all of its mechanical properties when hydrated

• Effects of water on coating analogous with water acting as a plasticiser as described by 
others[1,2]

• Design of Experiments identified optimised crosslinking parameters:

» Glutaraldehyde treatment at 2.5 M for 30 mins, every 5 quadlayers

• Crosslinked coated foams retained 57% of their ambient mechanical properties when 
hydrated compared to 1.97% for uncrosslinked coated foams

• Crosslinking of coating allows for tailored hydrated physio-mechanical properties

• Coatings can be used to tailor the mechanical and physical structure of bone tissue 
scaffold materials to match that of surrounding bone

Conclusions

INTRODUCTION MATERIALS AND METHODS RESULTS CONCLUSIONS

[1] Tanchek et al. Langmuir. 2006;22(11):5137–43. 

[2] Nolte, et al. Macromolecules, 2008:41, 5793–5798.
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