

Improving Mechanical Properties of Nanocomposite Coatings: Potential uses in Bone Tissue Scaffold Applications

Acheson, J.¹, Ziminska, M.¹, Goel, S.², Dunne, N.³, Hamilton, A.¹

¹School of Mechanical and Aerospace Engineering, Queen's University Belfast, UK ²School of Aerospace, Transport and Manufacturing, Cranfield University, UK ³School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland

Introduction

FUTURE WORK

- Tissue engineering solutions are an attractive alternative to autograft treatment for bone trauma patients
- Bone tissue scaffold development has challenges:-
 - High porosity in conjunction with suitable mechanical properties

Tailor mechanical properties of bone tissue scaffolds via thin film nanocomposite coating

RESULTS

[Image] Alessandra Giuliani, Synchrotron Radiation and Nanotechnology for Stem Cell Research, Stem Cells in Clinic and Research, 2011

CONCLUSIONS

Materials

- Open cell polyurethane foam
- Coated with varying number of quadlayers of:
 - » Poly(ethyleneimine)
 - » Poly(acrylic acid)
 - » Cloisite Na⁺ nanoclay

<u>Methods</u>

- Tested under uniaxial compression in the elastic range at:
 - » Preload of 0.03 N
 - » Deformed to 6% of strain
- Under ambient conditions (≈30% RH, 21 °C)

IALS AND

METHODS

• Under DI water (100% RH, 21 °C)

Queen's University

Belfast

FUTURE WORK

Bioengineering Research Group

>>

Crosshead speed of 2.0 mm/min

CONCLUSIONS

Coated Foams Hydrated Testing

Mechanism of Mechanical Property Loss

FUTURE WORK

Proposed Solution:

INTRODUCTION

Two-level factorial design of experiments (DoE) to investigate crosslinking effect

Inputs:

- Glutaraldehyde molarity (M)
- Glutaraldehyde time (mins)
- Thermal treatment temperature (°C)
- Thermal treatment time (mins)
- Crosslink treatment interval

Outputs:

- Ambient elastic modulus (kPa)
- Hydrated elastic modulus (kPa)

- 0.00 2.50 M
- 30 300 mins
- 0 or 120 °C
- 60 1500 mins
- 5 or 30 quadlayers
- Coating thickness (µm)

Crosslinked Coated Foams Hydrated Testing

Conclusions

- Mechanical contribution of (PEI/PAA/PEI/Nanoclay) coating is negligible upon submersion in DI water
- Mechanical properties of coating fully recover to match elastic modulus under ambient conditions, after desiccation
- Effects of hydration on coating analogous with **water plasticisation** as described by Tanchak et al.^[1]
- Chemical crosslinking of primary amine groups between PEI layers is the main factor for retention of mechanical properties when hydrated
 - » Effect of thermal temperature
 - » Effect of thermal time
 - » Effect of glutaraldehyde time
- Crosslinking improved retention of elastic modulus in water by up to 45%, further improvements expected after DoE optimisation

Not significant

[1] Tanchek et al. Langmuir. 2006;22(11):5137-43.

- » Effect of glutaraldehyde molarity
- » Crosslink point

Future Work

- Optimised crosslinking experiment based on DoE analysis
 - » Confirmation and validation of DoE analysis
 - » Confirmation of crosslinking activity
- Compile results alongside Ziminska et al. Ashby-Gibson model adaptation

RESULTS

» Predict potential hydrated elastic modulus

NETHODS

Acknowledgements

Special Thanks Dr. A Hamilton M. Ziminska Prof. N Dunne Dr. S Goel

Dr. A Lennon

Bioengineering Research Group

DEL Funding

