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• Tissue engineering solutions are an attractive alternative to autograft treatment for 
bone trauma patients

Introduction
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[Image] Alessandra Giuliani, Synchrotron Radiation and Nanotechnology for Stem Cell Research, Stem Cells in Clinic and Research, 2011

• Bone tissue scaffold development has 
challenges:-

• High porosity in conjunction with 

suitable mechanical properties

Tailor mechanical properties of bone tissue scaffolds via 
thin film nanocomposite coating
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Tunable Structure of Porous Materials

Ziminska et al. ACS Appl Mater Interfaces. 2016;8(34):21968–73.
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Porous Substrate

Coated foam

Nanocomposite Coating

100 µm
Un-coated

100 µm
Coated

Coating has only been tested under ambient 

conditions. Testing must be done when submerged 

to examine efficacy under hydrated conditions

“Brick-by-brick”
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Materials 

• Open cell polyurethane foam

• Coated with varying number of quadlayers of:

» Poly(ethyleneimine)

» Poly(acrylic acid)

» Cloisite Na+ nanoclay

Methods

• Tested under uniaxial compression in the elastic range at:

• Under ambient conditions (≈30% RH, 21 °C)

• Under DI water (100% RH, 21 °C)

Hydrated Testing Materials and Methods 
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» Preload of 0.03 N » Crosshead speed of 2.0 mm/min

» Deformed to 6% of strain
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Coated Foams Hydrated Testing

Average Elastic Modulus (MPa) ± SD

Quadlayers Ambient In Water In Water 1 Hour Desiccated

0 0.08 ± 0.00 0.05 ± 0.00 0.05 ± 0.01 0.10 ± 0.01

15 1.31 ± 0.21 0.06 ± 0.01 0.06 ± 0.01 1.08 ± 0.27

30 2.78 ± 0.26 0.08 ± 0.01 0.08 ± 0.01 2.54 ± 0.35

45 3.19 ± 0.28 0.07 ± 0.01 0.07 ± 0.00 3.52 ± 0.37

60 4.9 ± 0.46 0.10 ± 0.01 0.09 ± 0.01 5.17 ± 0.60

(n=5)
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Coating transitions from 

stiff material to material as 

flexible as polyurethane 

foam
Recovery from soft to stiff state 

could be utilised for actuation 

outside of biomaterials

Loss of mechanical properties 

major challenge for application 

in biomaterials
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Mechanism of Mechanical Property Loss
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Proposed Solution:

Water Distribution in 

Multilayers of Weak 

Polyelectrolytes[1]

[1] Tanchek et al. Langmuir. 2006;22(11):5137–43. 
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Crosslinking of Coating Design Outline 
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Two-level factorial design of experiments (DoE) to investigate crosslinking effect

Inputs:
• Glutaraldehyde molarity (M) 0.00 - 2.50 M

• Glutaraldehyde time (mins) 30 - 300 mins

• Thermal treatment temperature (°C) 0 or 120 °C

• Thermal treatment time (mins) 60 - 1500 mins

• Crosslink treatment interval 5 or 30 quadlayers

Outputs:
• Ambient elastic modulus (kPa)

• Hydrated elastic modulus (kPa)

• Coating thickness (µm)
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Crosslinked Coated Foams Hydrated Testing
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• Mechanical contribution of (PEI/PAA/PEI/Nanoclay) coating is negligible upon 
submersion in DI water

• Mechanical properties of coating fully recover to match elastic modulus under ambient 
conditions, after desiccation

• Effects of hydration on coating analogous with water plasticisation as described by 
Tanchak et al.[1]

• Chemical crosslinking of primary amine groups between PEI layers is the main factor for 
retention of mechanical properties when hydrated

» Effect of thermal temperature

» Effect of thermal time

» Effect of glutaraldehyde time

• Crosslinking improved retention of elastic modulus in water by up to 45%, further 
improvements expected after DoE optimisation

Conclusions
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[1] Tanchek et al. Langmuir. 2006;22(11):5137–43. 

Not significant

» Effect of glutaraldehyde molarity

» Crosslink point

Significant
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• Optimised crosslinking experiment based on DoE analysis

» Confirmation and validation of DoE analysis

» Confirmation of crosslinking activity

• Compile results  alongside Ziminska et al. Ashby-Gibson model 
adaptation 

» Predict potential hydrated elastic modulus

Future Work
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