

Mechanical and Physical Response of Nanocomposite-Coated Foams Subjected To Hydration: Potential Uses For Bone Tissue Scaffolds

Acheson, J¹. Goel, S¹. Dunne, N^{2, 3, 4}. Hamilton, A¹

¹School of Mechanical and Aerospace Engineering, Queen's University Belfast, UK
²Medical Engineering Research Centre, School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland
³School of Pharmacy, Queen's University Belfast, UK
⁴Trinity Centre for Bioengineering, Trinity College Dublin, Ireland

Layer by Layer Assembly

Controlled Degradation

Surface Interaction

MATERIALS

AND METHODS

Mechanical Properties

1. Mertz D et al. Nano Lett. 2007;7(3):657-62.

Materials

- Open cell polyurethane foam (12.7Ø x 10 mm)^[1]
- Glass microscope slides (2 x 1 cm)
- Coated with:
 - » 15 quadlayers
 - » 30 quadlayers
 - » 45 quadlayers
 - » 60 quadlayers
- Samples tested in:
 - » Air (~25% RH, Ambient Temp)^[1]

AND METHODS

- » Submerged de ionised water (100% RH, Ambient Temp)
- » Humidity chamber (~50 to ~85% RH, Ambient Temp)

RESULTS

Belfast

Queen's University

Polyurethane foam

Masked Sample

FUTURE WORK

1. Ziminska et al. ACS Appl Mater Interfaces. 2016;8(34):21968-73.

CONCLUSIONS

Mechanical Properties of Coated Foams Under Aqueous Conditions

Average Elastic Modulus (MPa) ± SD				
Quadlayers	Ambient	Hydrated	Hydrated 1 Hour	Desiccated
0	0.08 ± 0.00	0.05 ± 0.00	0.05 ± 0.01	0.10 ± 0.01
15	1.31 ± 0.21	0.06 ± 0.01	0.06 ± 0.01	1.08 ± 0.27
30	2.78 ± 0.26	0.08 ± 0.01	0.08 ± 0.01	2.54 ± 0.35
45	3.19 ± 0.28	0.07 ± 0.01	0.07 ± 0.00	3.52 ± 0.37
60	4.9 ± 0.46	0.10 ± 0.01	0.09 ± 0.01	5.17 ± 0.60

Hydrated

(n=5)

FUTURE WORK

ERIALS

AND METHODS

CONCLUSIONS

When tested upon immediate submersion in DI water, elastic modulus drops significantly

RESULTS

INTRODUCTION

Thickness Measurements of Coating on Glass Slides when Hydrated

**

Crosslinking Results

Hydrated Testing

Conclusions

[1] OT et al. Langmuir. 2006;22(11):5137-43.

FUTURE WORK

CONCLUSIONS

- Elastic modulus of coated foam is reduced to that of an uncoated level
- Coating thickness when hydrated is significantly increased
- Elastic modulus of coated foam recover post desiccation
- Increasing mass in conjunction with lowering elastic modulus under increasing relative humidity
- Effects of hydration on coating synonymous with water plasticisation as described by Tanchak et al.^[1]
- Crosslinking of coating improves hydrated elastic modulus significantly
 - » Thermal crosslinking offering slight improvement in elastic modulus
 - » Chemical crosslinking offering significant improvement in elastic modulus

RESULTS

Future work

- Design of experiments to optimise mechanical properties of coating when hydrated
 - Chemical crosslinking
 - Thermal crosslinking
 - Water vapour "barrier" layers

Future work

Incorporating degradable barrier layers into system

Average Elastic Modulus (MPa) ± SD					
Quadlayers	Ambient	Hydrated			
0	0.08 ± 0.00	0.05 ± 0.00			
15	1.31 ± 0.21	0.06 ± 0.01			
30	2.78 ± 0.26	0.08 ± 0.01			
45	3.19 ± 0.28	0.07 ± 0.01			
60	4.9 ± 0.46	0.10 ± 0.01			

Acknowledgements

Special Thanks Dr. A Hamilton M. Ziminska Dr. N Dunne Dr. S Goel

Bioengineering Research Group

DEL Funding

NORTHERN IRELAND BIOMEDICAL ENGINEERING SOCIETY