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Abstract—In this paper, the power loading problem for or-
thogonal frequency division multiplexing (OFDM) with imperfect
channel estimation is investigated considering the trade-off be-
tween energy efficiency (EE) and spectral efficiency (SE). Unlike
traditional research that uses the EE as an objective function
and imposes constraints either on the SE or the achievable rate,
we propound a multiobjective optimization approach that can
flexibly switch between the EE and the SE functions or change
the priority level of each function using a trade-off parameter.
Our dynamic approach is more tractable than conventional
approaches and more convenient to realistic communication
applications and scenarios. The system model considers the path
loss and shadowing effect in modeling the EE and SE metrics,
in addition to taking the channel estimation error into account.
We first solve the marginal problems of maximizing the EE
and the SE individuality, and then prove that the multiobjective
optimization of the EE and the SE is equivalent to a simple
problem that maximizes the capacity and minimizes the total
power consumption. Finally, we use numerical results to discuss
the choice of the trade-off parameter and study the effect of the
estimation error, transmission power budget and channel-to-noise
ratio on the multiobjective optimization.

I. INTRODUCTION

The dramatic growth of wireless communication services
and applications represents the main driving force to expand
the existing wireless infrastructure and deploy new systems.
The tremendous energy consumption at the base stations
accounts for the most of energy consumption of cellular
networks, which represents an apparent contribution of the
information and communication technology industry to the
global CO2 emissions [1]. Therefore, wireless communication
systems have to be designed based on green metrics that reduce
the energy consumption wisely, along with the associated CO2

emissions.

Energy efficiency (EE) is a widely used green communi-
cation metric, defined as the number of successfully delivered
bits per unit energy or its inverse, i.e., the total energy con-
sumption to deliver one bit correctly [2]. Although EE is the
major design metric for environment-friendly future wireless
communication systems, it conflicts with other traditional met-
rics such as spectral efficiency (SE) [3]. The trade-off relation
between EE and SE states that the available system’s resources

cannot be optimized to improve EE and SE simultaneously.
To tackle such cases, optimization problems are formulated
to improve EE under SE or channel capacity constraints for
single or multiple users in [4]–[7].

The previously mentioned resource allocation problems
that deal with the EE-SE trade-off, target to fix the EE as the
objective function and impose a constraint on SE according to
the usage limitations. On the other hand, there are scenarios
in wireless communications systems in which we need to
change the optimization objective function according to the
surrounding circumstances or the application requirements. A
motivating scenario is when renewable energy sources are used
in addition to diesel generators in base stations to generate the
required electrical energy [8]. In such a scenario, when the base
station is powered by clean energy sources (i.e., renewable
sources), adopting EE as a design metric does not have a
green advantage, as the base station is working now with
zero CO2 emissions. Thus, it is more beneficial to improve
other quality of services (QoS) metrics, such as SE and delay.
On the other hand, when the surrounding environment varies,
diesel generators are used to compensate for the shortage of
the renewable sources or even replace them. Therefore, con-
sidering the EE as the objective function becomes inevitable
when diesel generators is the only energy source, while a
multiobjective function of both EE and SE is used when both
sources are used together. In the later case, the priority of
each function is chosen according to the contribution of each
energy source in powering the base station. Another motivating
scenario is the everlasting variation of the service requirements
with each user, such as real time, non-real time and rate-hungry
applications. For real time applications, the transmission rate
should be above a given value that depends on the type
of data, and maximizing the EE subject to SE constraint
becomes a suitable optimization problem. For the non-real
time applications, we mainly focus on maximizing EE. On
the other hand, for rate-hungry applications, the SE becomes
the main objective function with possible consideration to
EE. The aforementioned different cases can be integrated in
a multiobjective optimization problem of EE and SE with a
trade-off parameter that adjusts the priority of each function
according to the application type and QoS requirements.
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Motivated by the previously discussed examples, the mul-
tiobjective optimization becomes the key method to consider
conflicting objective functions and introduce a solution for a
given priority of each function [9], [10]. The multiobjective
optimization introduces flexible solutions suitable to different
practical scenarios, with a lower complexity when compared
with solving several single objective optimization problems
and switching between their solutions. In this paper, inspired
by the green communication trend and considering the vari-
ations of the objective functions according to the provided
service or the surrounding environment, we investigate the
multiobjective optimization of EE and SE for the OFDM
system with imperfect channel state information (CSI). We
assume using linear minimum mean square error (LMMSE)
for channel estimation, with the estimation error inversely
proportional to the signal-to-noise ratio (SNR) [11]. We first
solve the marginal problems of EE and SE assuming imperfect
CSI and then prove that the multiobjective optimization of
maximizing both EE and SE is equivalent to the multiobjective
optimization of minimizing the total power consumption and
maximizing the channel capacity. Finally, we employ the
simplified multiobjective optimization form to find the adaptive
power loading solutions for OFDM systems with imperfect
CSI assuming total power constraint.

The rest of the paper is organized as follows. In Section II,
we describe the system model and formulate the EE and SE
metrics in imperfect CSI. In Section III, we find the optimal
power loading for maximum EE and SE, then we solve the
multiobjective optimization problem of EE and SE for a given
trade-off parameter. Then, we present numerical simulation in
Section IV and conclude the paper in Section V.

II. SYSTEM MODEL AND ENERGY EFFICIENCY METRIC

In this section, we introduce the model of the OFDM
system with LMMSE channel estimation and define the EE and
SE metrics. We assume a serial data sequence that is divided
into blocks, processed by a given precoded matrix and loaded
to M subcarriers. The channel is assumed to change slowly
and is modeled as a finite impulse response system with order
equal to L, h = [h(0), h(1), · · · , h(L)]T , where each channel
tap is assumed to be complex Gaussian distributed with zero-
mean and variance σ2

h. To avoid the inter-block interference,
a cyclic prefix is added at the transmitter and removed at the
receiver. The noise at the receive-side is modeled as additive
white Gaussian noise (AWGN) with zero mean and correlation
matrix equal to σ2

nI. The training pilot symbols b are added to
the precoded block, where the receiver knows the pilot pattern
and estimates the channel using the LMMSE estimator as [11]

ĥ =
(
σ2
nR

−1
h +BHB

)−1
BHx, (1)

where B is an M × (L + 1) column wise circulant matrix
with the first column equal to b. The subchannel estimates are
computed as [11][

Ĥ(1), Ĥ(W ), . . . , Ĥ(WM−1)
]T

=
√
MFLĥ, (2)

where W = exp(j2π/M), FL is the first L+1 submatrix of F,
and F is the M ×M discrete Fourier transform (DFT) matrix
with the (m,n) element defined [F]m,n =W−mn/

√
M .

The channel capacity is expressed in terms of the channel
estimate across subcarriers similarly to [11], while considering
powers per subcarriers (P = [P1, P2, ..., PM ]T ),

C(P) = B

M∑
m=1

log2

1 +

∣∣∣Ĥ (Wm)
∣∣∣2GPm

σ2
∆HGPm + σ2

n

, (3)

where B is the subcarrier bandwidth, Pm is the mth subcarrier
power, G is the large scale fading power coefficient, and σ2

∆H
is the minimum mean square error (MMSE). The latter can be
expressed as [11]

σ2
∆H =

(L+ 1)σ2
hσ

2
n

σ2
n + σ2

hGPp
, (4)

where Pp is the pilots’ transmitted power, and the noise
variance is defined as σ2

n = N0NfB, with N0 as the noise
power spectral density and Nf as the noise figure. The power
loss due to the large scale fading captures both the path loss
and shadowing loss, and can be expressed in dB as [12],

GLoss,dB = GPL,0 + 10n log10 (d/d0) + S, (5)

where GPL,0 is the path loss at a reference distance d0, d
is the distance between the transmitter and receiver, n is the
exponent loss, and S is the shadowing fading power loss in
dB and is modeled as a zero-mean Gaussian random variable
with a standard deviation σs.

The EE of the OFDM is expressed as

ηEE =
C(P)

κ
M∑
m=1

Pm + Pc

, (6)

where κ is a constant depending on the power amplifier
efficiency and Pc is the circuitry power consumption. The
SE of the OFDM system with LMMSE channel estimation
is expressed as

ηSE =
C(P)

B
=

M∑
m=1

log2

1 +

∣∣∣Ĥ (Wm)
∣∣∣2GPm

σ2
∆HGPm + σ2

n

. (7)

III. EE AND SE POWER LOADING SCHEMES

In this section, we aim to find the power loading solution
that improves the conflicting objective functions (i.e., EE and
SE) individually, then jointly as a multiobjective optimization
approach.

A. Optimal Power Loading for Maximum EE

The optimal power loading solution that maximizes the EE
can be found by solving the equivalent optimization problem
that minimizes the inverse of EE,

min
Pm, m=1,2,···M

η−1
EE =

κ
M∑
m=1

Pm + Pc

C(P)

subject to

M∑
m=1

Pm ≤ PT. (8)
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By following [13], the nonlinear fractional optimization prob-
lem in (8) is transformed to the following equivalent parame-
terized convex function

LEE = κ

M∑
m=1

Pm + Pc − qC(P), (9)

where the parameter q is a constant equal to the minimum
value of our objective function (η−1

EE) and is computed such
that LEE(q) = 0. Based on (9), the optimization problem is
formulated as,

min
Pm, m=1,2,···M

LEE

subject to

M∑
m=1

Pm ≤ PT. (10)

The constrained optimization problem in (10) can be expressed
in the Lagrangian form as

LEE,con =κ

M∑
m=1

Pm + Pc

− qB
M∑
m=1

log2

1 +

∣∣∣Ĥ (Wm)
∣∣∣2GPm

σ2
∆HGPm + σ2

n


+ λ

(
M∑
m=1

Pm − PT + y2

)
, (11)

where λ is the Lagrange multiplier corresponding to the total
power constraint and y2 is the slack variable referring to the
required inequality in (10). By differentiating LEE,con with
respect to λ, y and Pm, m = 1, 2, ...,M , and equating the
results with zero, one obtains(
σ2

∆HPm + σ2
n

)((
σ2

∆H +
∣∣∣Ĥ (Wm)

∣∣∣2G)Pm + σ2
n

)

−
(
qB

ln 2

) ∣∣∣Ĥ (Wm)
∣∣∣2Gσ2

n

(κ+ λ)
= 0 (12)

M∑
m=1

Pm − PT + y2 = 0 (13)

2λy = 0. (14)

From (14), we have two possible scenarios: either λ = 0 or
y = 0. Assume first that λ = 0, which refers to the validity
of the total power constraint. In this case, the power loading
coefficients are calculated from (12) as

PEE,m = ρm

−1 +
√√√√√√√1 +

2

(
qB
κ ln 2

∣∣∣Ĥ (Wm)
∣∣∣2 − σ2

n

G

)
(
2σ2

∆H +
∣∣∣Ĥ (Wm)

∣∣∣2) ρm


+

,

(15)
where [x]+ denotes max(0, x) and ρm is expressed as

ρm =

σ2
n

(
2σ2

∆H +
∣∣∣Ĥ (Wm)

∣∣∣2)
2σ2

∆H

(
σ2

∆H +
∣∣∣Ĥ (Wm)

∣∣∣2)G. (16)

The constant coefficient q is computed by setting equation (9)
equal to zero and using the subcarrier’s power solution found
in (15) as,

κ

M∑
m=1

PEE,m + Pc

− qB
M∑
m=1

log2

1 +

∣∣∣Ĥ (Wm)
∣∣∣2GPEE,m

σ2
∆HGPEE,m + σ2

n

 = 0. (17)

After finding q from (17), we compute PEE,m from (15) and
check the total power constraint. If the constraint is verified,
then we obtained the required solution. On the other hand, if
the constraint is violated, then we switch to the second scenario
of (14), which assumes y = 0. In such case, the power of the
mth subcarrier is expressed in terms of the Lagrange Multiplier
(λ) as

PEE,m = ρm

−1 +
√√√√√√√1 + 2

qB
(κ+λ) ln 2

∣∣∣Ĥ (Wm)
∣∣∣2 − σ2

n

G(
2σ2

∆H +
∣∣∣Ĥ (Wm)

∣∣∣2) ρm


+

.

(18)
The constants q and λ are found by replacing (18) in (13) and
LEE,con = 0 at y = 0 as discussed in [13].

B. Optimal Power Loading for Maximum SE

In this subsection, we solve the optimal power loading
that maximizes the spectral efficiency under the total power
constraint, which is formulated as

max
Pm, m=1,2,···M

ηSE

subject to

M∑
m=1

Pm ≤ PT. (19)

The constrained optimization problem is expressed in the
Lagrangian form as

LSE,con =

M∑
m=1

log2

1 +

∣∣∣Ĥ (Wm)
∣∣∣2GPm

σ2
∆HGPm + σ2

n


+λ

(
PT −

M∑
m=1

Pm + y2

)
. (20)

By finding the derivatives of LSE,con with respect to λ, y and
Pm, m = 1, 2, ...,M , and equating them to zero, the solutions
are found to exist only at y = 0 since the objective function is
monotonically increasing. Thus, one can show that the solution
of the mth subcarrier’s power is

PSE,m = ρm

−1 +
√√√√√√√1 + 2

(
1

λ ln 2

) ∣∣∣Ĥ (Wm)
∣∣∣2 − σ2

n

G(
2σ2

∆H +
∣∣∣Ĥ (Wm)

∣∣∣2) ρm


+

,

(21)
where λ is computed from the total power constraint equation,
i.e., by replacing (21) in (13) at y = 0.
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C. Adaptive Power Loading for EE-SE Multiobjective Opti-
mization

Optimizing EE or SE under a given set of constraints
is suitable for a specific communication scenario/application
or under static environmental circumstances. On the hand,
the realistic conditions change dynamically, and changing the
objective function becomes indispensable. In the following
analysis, we consider a multiobjective optimization problem
that aims to maximize both EE and SE through minimizing
the inverse of EE and inverse of SE as

min
Pm

η−1
EE (Pm) and min

Pm

η−1
SE (Pm)

subject to

M∑
m=1

Pm ≤ PT. (22)

The multiobjective function is expressed using the trade-off
parameter, β, with 0 < β < 1, which describes the priority
level of each single objective function as follows,

LEE−SE = βθEEη
−1
EE + (1− β) θSEη

−1
SE 0 < β < 1

= β

θEE

(
κ

N∑
m=1

Pm + Pc

)
C(P)

+ (1− β) θSEB

C(P)
, (23)

where θEE and θSE are normalized factors used for both
objective functions in order to have a similar scale. Similar to
(10) and (12), we transform the fractional objective function
(LEE−SE) in (23) to a parameterized convex problem as,

LEE−SE,1 = βθEE

(
κ

N∑
m=1

Pm + Pc

)
+ (1− β) θSEB

− q1C(P), (24)

where q1 is a constant parameter that represents the minimum
value of (23). The term (1− β) θSEB in (24) is a constant,
thus omitting it does not affect the problem solution, and the
following objective is used instead,

LEE−SE,2 = βθEE

(
κ

N∑
m=1

Pm + Pc

)
− q1C(P). (25)

Dividing the the objective function LEE−SE,2 by βθEE gives
another objective function that has the same solution and is
expressed as

LEE−SE,3 =

(
κ

N∑
m=1

Pm + Pc

)
− q1

βθEE
C(P). (26)

The quantity q1/(βθEE) is a positive constant and is equiva-
lently replaced by (1− α)/α, where 0 < α < 1,

LEE−SE,4 =

(
κ

N∑
m=1

Pm + Pc

)
− (1− α)

α
C(P). (27)

Multiplying the objective function in (27) by α yields an
equivalent objective function that is written as

LEE−SE,5 = α

(
κ

N∑
m=1

Pm + Pc

)
− (1− α)C(P) (28)

≡ min
Pm

(
κ

N∑
m=1

Pm + Pc

)
and max

Pm

C(P). (29)

The objective function written in (28) represents a multi-
objective function that aims to minimize the total power
consumption and maximize the channel capacity using the
tradeoff parameter α, as presented in (29). Thus, the joint
optimization problem that targets to maximize the EE and SE
is equivalent to minimizing the total power consumption and
maximizing the channel capacity. Based on this proved fact,
the optimization of (23) can be equivalently written as,

min
Pm

α

θP

(
κ

N∑
m=1

Pm + Pc

)
− (1− α)

θC
C(P)

subject to

M∑
m=1

Pm ≤ PT, (30)

where θP and θC are the normalized factor for the power and
the capacity objective functions, respectively. The multiobjec-
tive problem in (30) reduces to capacity or SE maximization
at α = 0, and to power minimization at α = 1. The energy
efficient solution is achieved at αEE that will be computed later
on in the paper. The Lagrangian problem of (30) is written as,

LEE−SE,con =
α

θP

(
κ

N∑
m=1

Pm + Pc

)
− (1− α)B

θC
C(P)

+ λ

(
M∑
m=1

Pm − PT + y2

)
. (31)

By differentiating LEE−SE,con with respect to λ, y and Pm,
m = 1, 2, ...,M , and equating the results with zero, we obtain
the following equations,(
σ2

∆HPm + σ2
n

)((
σ2

∆H +
∣∣∣Ĥ (Wm)

∣∣∣2G)Pm + σ2
n

)
−
(

θC (1− α)B
(θPακ+ λθC) ln 2

) ∣∣∣Ĥ (Wm)
∣∣∣2Gσ2

n = 0, (32)

M∑
m=1

Pm − PT + y2 = 0, (33)

2λy = 0. (34)

According to equation (34) and similar to the solution for
EE optimization in Section III-A, we assume λ = 0, which
imposes the validity of the total power constraint and obtain
the power of the mth subcarrier from (32) as

PEE−SE,m = ρm


√√√√√√√1 +

2

(
(1−α)B|Ĥ(Wm)|2

(θC/θP)ακ ln 2 − σ2
n

G

)
ρm

(
2σ2

∆H +
∣∣∣Ĥ (Wm)

∣∣∣2) − 1


+

.

(35)

By checking the total power constraint using the solution given
in (35), we impose y = 0 if the constraint is violated, and the
power of the mth subcarrier is expressed in terms of λ as,

PEE−SE,m = ρm


√√√√√√√1 +

2

(
µ
∣∣∣Ĥ (Wm)

∣∣∣2 − σ2
n

G

)
ρm

(
2σ2

∆H +
∣∣∣Ĥ (Wm)

∣∣∣2) − 1


+

,

(36)
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TABLE I: Simulation Parameters.
Pc = 300 W κ = 7.8 L = 5

Btotal = 1.25MHz M = 128 S = 13.2dB
d0 = 1m d = 1050m GPL,0 = −80.4dB
Nf = 7 dB N0 = −171 dBm/Hz n = 3.5

where λ is found from (33) with y = 0, and Pm = PEE−SE,m

and µ is expressed as

µ =

(
θP (1− α)B

θC (ακ+ λθP) ln 2

)
. (37)

It is noteworthy that the trade-off parameter α is adjusted
to obtain a required priority of the objective functions. To
optimize the SE objective function, we impose α = 0,
while to optimize EE, we use αEE that can be found from
LEE−SE,con = 0, i.e., similar to finding q in solving the EE
problem. On the other hand, for a specific priority to EE or
SE, α is chosen according to the average performance that is
discussed in the next section1.

IV. SIMULATION RESULTS

In this section, we provide a numerical evaluation of the
proposed multiobjective optimization problem for an OFDM
system with imperfect channel estimation. The simulation pa-
rameters are considered for mobile Worldwide Interoperability
for Microwave Access (WiMAX) base stations and summarized
in Table I using a single antenna for the transmission [14].
The normalization factors used in our objective function are
assumed to be θP = κPT + PC and θC = 3.6Mb/s [14].

Simulation Example 1: In the first simulation example, we
study the EE and SE behavior versus α for different ratios
of maximum transmitted power and maximum total power
consumption (PT /θP) in Fig. 1. We assume the channel-to-
noise ratio (CNR) is 20 dB and the MMSE of the channel
estimator equal to 0.001. First, we aim to investigate the choice
of the trade-off parameter α to achieve a given priority level for
either EE or SE. For α = 0 the solution reduces to maximum
SE or capacity, and for α = 1, the scenario reduces to the
minimum transmitted power. On the other hand, maximum
average EE is achieved at αEE = 0.5. As alpha increases
from zero to αEE, i.e., our region of interest, the EE increases
and SE decreases, while both EE and SE decrease for α = αEE

to 1. The average results depicted in Figure 1 are used as a
guide to choose α in order to achieve a predetermined average
EE or SE performance. For example, for PT /θP = 0.11, if
it is required to design the system for a green perspective
while satisfying average SE to 0.6 kbit/sec/Hz, then we choose
α = 0.3, while if the design targets to maximize the spectral
efficiency while keeping minimum average EE to 4 kb/J, then
we choose α = 0.1. As noted from this example, we can
switch between different optimization problem by changing the
priority factor and use the same solution rather than solving
different optimization problems.

Additionally, we aim to study the effect of the maximum
useful transmission power budget ratio to the maximum total
power consumption at the base station, i.e. (PT /θP). For large
transmitted power budget (PT /θP = 0.11), we observe the

1It is worthy to mention that the solutions of our optimization problems
satisfy the Karush-Kuhn-Tucker conditions; the proof is not provided due to
space limitations
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Fig. 2: EE and SE versus the priority parameter α for different MMSE
values and at PT /θP = 0.11.

expected trade-off relation between EE and SE versus α. On
the other hand, the unavailability of sufficient transmission
power budget (PT /θP = 0.04) limits the SE from improving
as α decreases and limits the EE curve from its expected trend,
i.e., having a maximum at αEE.

Simulation Example 2: To study the effect of the channel
estimation error on the trade-off relation between EE and SE,
in Fig. 2, we plot the EE and SE curves versus α for PT /θP =
0.11 and assuming different MMSE values. The performance
trend of EE and SE is the same for different estimation quality,
but with a gain loss as the MMSE increases. The loss between
curves decreases as MMSE decreases. MMSE significantly
affects the maximum SE and EE solutions, respectively. More
specifically, EE reduces around 30% when the MMSE equals
to 0.1 when compared with MMSE equal to 0.001. On
the other hand, maximum SE shows increased sensitivity to
MMSE, as the SE reduces around 40% at MMSE equal to 0.1
when compared with MMSE equals to 0.001.

Simulation Example 3: In the third simulation example, we
focus on the EE and SE cases that change significantly with
MMSE. These cases represent the optimum EE solution (at
αEE), its corresponding SE, as well as the optimal SE solution
(at α = 0) and its corresponding EE. Fig. 3 shows the relation
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of the previously mentioned functions and the MMSE. We
observe that the optimal SE is more sensitive to MMSE than
other functions. We can notice that channel estimators with
an MMSE below 0.001 are required to achieve satisfactory
results.

Simulation Example 4: In the last simulation example, we
study the effect of the channel quality on the multiobjective
optimization assuming MMSE = 0.001 and PT /θP = 0.11.
Fig. 4 plots the EE and SE versus α for different CNR values
(10 dB, 20 dB and 30 dB). The SE curves have the same trend
for different CNR values, with great improvement as CNR
increases. Similarly, the EE curves improve with increasing the
CNR; however, the maximum EE is attained at α = 0.3, 0.5,
and 0.7 for CNR = 10 dB, 20 dB and 30 dB, respectively.
By comparing the relative improvement of the optimal SE
and EE, we observe that improving CNR gives more relative
improvement to the optimal EE when compared to the optimal
SE. Specifically, as the CNR increases from 10 dB to 30
dB, the optimal EE improves by 60%, while the optimal SE
improves only by 20%.

V. CONCLUSION

In this paper, we introduced a framework of multiobjective
optimization to deal with the power loading problem for the
OFDM systems with channel estimation error, considering the
EE-SE trade-off. We proved that the multiobjective optimiza-
tion of EE-SE is equivalent to the multiobjective problem that
minimizes the total power consumption and maximizes the
channel capacity. We explained how to select the trade-off
parameter to switch between different practical communication
scenarios, with different design requirements. Numerical re-
sults showed that low ratio of the maximum transmitted power
budget to the total power consumption may significantly limit
our objective functions performance, especially for the SE. To
obtain satisfactory results, channel estimators with a maximum
MMSE of 10−3 should be considered. The channel estimation
error has a significant effect on the optimal EE and SE; it
was observed that the later is more sensitive to the MMSE
variations. On the hand, when the CNR increases the optimal
EE achieves a better relative performance improvement than
the optimal SE.
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