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Abstract—Due to the battery-limited nature of mobile
devices, improving energy efficiency (EE) of individual
users and ensuring EE fairness among those users are
one of the key design issues in uplink transmission of
cellular networks. In this paper, we consider the joint
optimization of discrete power and resource blocks allo-
cations to maximize the minimum EE among users subject
to individual power budget constraints. The optimization
problem is combinatorial. Thus, we propose an efficient
algorithm, based on semidefinite relaxation with Gaussian
randomization, to solve the resultant non-convex problem
in polynomial time complexity. The numerical results show
how well the proposed algorithm performs against the
optimal one and indicate the impact of discrete power levels
on the fairness-oriented EE optimization.

Index Terms—Energy efficiency, max-min fairness,
OFDMA, convex optimization, semidefinite relaxation, ran-
domization.

I. INTRODUCTION

Today’s mobile devices become an irreplaceable part

of our life with a wide range of new emerging appli-

cations and services, e.g., GPS navigation, e-healthcare,

and mobile video conference. However, these advance

applications and services require not only higher data

rates [1], but also higher energy consumption. Such a rise

in energy consumption adversely affects the battery life of

mobile devices that are typically powered by pre-charged

batteries. To prolong the battery life of the devices, for all

users, it is important to have the highest energy efficiency

(EE) possible. However, this will lead to a problem of EE

fairness (balancing) among users, particularly in uplink

transmissions, as each individual will want to maximize

their own benefits. Hence, for current and next-generation

wireless networks, not only improving users’ EE, but also

ensuring EE fairness among users are critically important

design requirements.

Generally speaking, for improving the users’ EE, their

data rate needs to be increased, while at the same

time, their energy consumption needs to be decreased.

To achieve these objectives, resource allocation is an

effective tool [2]. More specifically, optimizing the way

how the available resource blocks (RBs) in the network

are allocated among the users, and the way how the

users allocate their available power across those RBs

can substantially enhance the users’ EE [3]. For further

enhancement in the users’ EE, the interaction between

these network functionalities should be considered.

A. Prior Work and Contribution

Despite the rich literature on the overall EE optimiza-

tion in the downlink of an orthogonal frequency divi-

sion multiple access (OFDMA)-based systems, fairness-

oriented individual EE optimization in the uplink of

OFDMA-based systems is not thoroughly investigated

from resource allocation perspective. There are only a

limited number of works in the literature studied this

problem (see, e.g., [4]–[7]). In [4], the power optimization

problem with fixed RB allocation is considered for

uplink transmission in OFDMA systems to maximize

the minimum EE of all users. Similarly, in [5], the power

optimization problem is discussed for uplink transmission

in spectrum-sharing networks to achieve the proportional,

harmonic, and max-min fair EE. On the other hand,

the problem of the joint optimization of subcarrier

and power allocation is addressed in [6] to achieve

the max-min EE fairness in the uplink transmission of

OFDMA networks. Lastly, in [7], the problem of the

joint optimization of subcarrier and and power allocation

is investigated to attain the max-min EE fairness in the

uplink transmission of amplify-and-forward cooperative

OFDMA networks. However, it is important to mention

that the resource allocation techniques proposed in [4]–

[7] are based on continuous power allocation, rather than

allocation of discrete power levels. Hence, implementing

such resource allocation techniques in practical networks

supporting discrete power levels, e.g., LTE networks, can

be problematic.

In this work, we propose a joint resource allocation

technique to maximize the minimum EE of all users in

OFDMA networks, while taking practical implementation

constraints into account, i.e., including discrete power

levels and per-user power budget. In particular, we

consider the joint design of RB and discrete power

allocations, and formulate the joint design as a max-

min EE optimization problem. Restricting the power

levels for being discrete has several advantages, such

as simplifying the hardware designs, and enabling a low
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cost implementation, however, this usually leads to non-

convex formulations. To overcome this difficulty, we

consider the semidefinite relaxation (SDR)-based Gaus-

sian randomization technique that invokes a relaxation

on the rank of the matrix-value optimization variable to

obtain near-optimal results in polynomial time.

II. PROBLEM STATEMENT AND PRELIMINARIES

This section describes the network model under

consideration, and discusses the optimization problem

formulation.

A. System Description

We consider an uplink OFDMA network which consists

of a base station (BS), M users, J RBs and L discrete

power levels. Let M = {1, . . . ,M} denote the set

of users, J = {1, . . . , J} denote the set of RBs and

P = {p1, . . . , pℓ, . . . , pL} denote the set of power levels,

where L = |P| is the cardinality of P . Let hj
m represent

the channel gain for the m-th user on the j-th RB. Then,

the maximum achievable rate for m-th user on the j-th

RB when ℓ-th power level is used can be expressed as

rjℓm = B log2

(

1 +
pℓ|gjm|2

BN0

)

, (1)

where each RB has a bandwidth of B and N0 is the

power spectral density of additive white Gaussian noise.

Additionally, let binary variable xjℓ
m be an indicator

variable that indicates whether the m-th user is associated

with the BS on the j-th RB using the ℓ-th power level or

not. Using the indicator variables, the overall transmission

rate for the m-th user can be cast as
∑

j∈J

∑

ℓ∈P rjℓmxjℓ
m.

Moreover, to avoid interference among RBs, each RB is

allocated to a single user at most, so that total usage of

the j-th RB over the network should satisfy
∑

m∈M

∑

ℓ∈P

xjℓ
m ≤ 1, ∀j ∈ J . (2)

Energy Efficiency Metric: The power consumption

for the m-th user is composed of two components. The

first is the total transmit power consumption for m-th user

to the BS, which can be expressed as
∑

j∈J

∑

ℓ∈P pℓxjℓ
m.

Noting that in practice, this consumption is limited by a

threshold, Pmax
m , so that it should satisfy

∑

j∈J

∑

ℓ∈P

pℓxjℓ
m ≤ Pmax

m , ∀m ∈ M. (3)

The second is circuitry power consumption for the m-th

user to the BS, Pm,C. As a result, the overall power

consumption at the m-th user

Pm,T = Pm,C +
1

ρ

∑

j∈J

∑

ℓ∈P
pℓxjℓ

m, ∀m ∈ M, (4)

where ρ is the power amplifier efficiency constant.

The EE for each user is defined as the ratio between

the total data rate and the total consumed power:

Em,EE =

∑

j∈J

∑

ℓ∈P rjℓmxjℓ
m

Pm,T
bits/Joule, ∀m ∈ M. (5)

Fairness Metric: For measuring the EE fairness

between the users with the battery operated devices,

we adopt a (non-numeric) qualitative metric, i.e., max-

min fairness index. When the network reaches max-min

EE fairness, any user’s EE cannot be increased without

decreasing another user’s EE.

B. Problem Formulation for Fairness-Oriented Energy

Efficiency Optimization

We consider RB and power allocations jointly to obtain

a max-min energy-efficient resource allocation strategy in

the uplink OFDMA networks. In particular, this strategy

aims to maximize the minimum EE among all users

while guaranteeing the total transmit power per user is

not exceeded. We formulate the max-min optimization

problem as follows:

max
{xjℓ

m}
min
m∈M

Em,EE =

∑

j∈J

∑

ℓ∈P rjℓmxjℓ
m

1
ρ

∑

j∈J

∑

ℓ∈P pℓxjℓ
m + Pm,C

,

(6a)

subject to
∑

m∈M

∑

ℓ∈P

xjℓ
m ≤ 1, ∀j ∈ J , (6b)

∑

j∈J

∑

ℓ∈P

pℓxjℓ
m ≤ Pmax

m , ∀m ∈ M, (6c)

xjℓ
m ∈ {0, 1}, ∀m ∈ M, ∀j ∈ J , ∀ℓ ∈ P.

(6d)

Noting that the objective is fractional, and the constraint

in (6d) is non-convex. Hence, the optimization problem

in (6) is a fractional integer non-linear programming

problem. Finding out the optimal solution for such a

non-convex problem requires exponential complexity and

is computationally prohibitive. Hence, we propose a two-

steps polynomial-time algorithm that based on the SDR

technique with Gaussian randomization [8] to provide

an approximate solution with high accuracy. In the next

section, we will elaborate on the proposed algorithm.

III. PROPOSED SOLUTION

The idea behind the SDR technique1 is that the

original non-convex problem is first reformulated in a

higher dimension, and next, the non-convex constraints

are relaxed. The resulting convex problem is lastly used

to approximate the original one. To facilitate formulating

1A somewhat similar technique is used in [9] to address a different
optimization problem in a different context. More specifically, in [9],
maximizing the network-side overall EE is discussed in downlink of
OFDMA-based systems, whereas herein the design objective is to
improve minimum individual EE as much as possible in uplink of
OFDMA-based systems.



the optimization problem in a higher dimension, we

define the following five 3-dimensional tensors: Aj ,

Bm, Gm, and X . These tensors are in the form of

a J ×ML block-partitioned matrix with 1×M blocks,

each with J ×L entries. The tensor X can be expressed

as X =
[

X1 . . . XM

]

, where, for all m = 1, . . . ,M ,

Xm is given as Xm =







x11
m . . . x1ℓ

m

...
. . .

...

xJ1
m . . . xJL

m






. The tensor

Aj can be given as Aj =
[

Aj1 . . . AjM

]

, j =
1, . . . , J, where for all m = 1, . . . ,M , Ajm =
ej1

T
L , where ej is the j-th column of the J × J

identity matrix IJ . The tensor Bm can be written

as Bm =
[

Bm1
. . . Bmm̂

. . . BmM

]

, m =
1, . . . ,M, where for i = 1, . . . ,M , Bmi

= 0J×L

when i 6= m̂, and, when i = m̂, Bmm̂
=







r11m̂ . . . r1ℓm̂
...

. . .
...

rJ1m̂ . . . rJLm̂






. The tensor Gm can be expressed

as Gm =
[

Gm1
. . . Gmm̂

. . . GmM

]

, m =
1, . . . ,M, where for i = 1, . . . ,M , Gmi

= 0J×L when

i 6= m̂, and, when i = m̂, Gmm̂
=







p1 . . . pL

...
. . .

...

p1 . . . pL






.

Subsequently, we obtain the following vectors: x ,

vec(XT ), aj , vec(AT
j ), bm , vec(BT

m), and gm ,

vec(GT
m). Additionally, we introduce the vector x ∈

{0, 1}MJL. Using the defined vectors, the optimization

problem can be cast as

max
x

min
m∈M

bTmx
1
ρ
gT
mx+ Pm,C

, (7a)

subject to aT
j x ≤ 1, ∀j ∈ J , (7b)

gT
mx ≤ Pmax

m , ∀m ∈ M, (7c)

x ∈ {0, 1}MJL. (7d)

Using the vector y ∈ {−1, 1}MJL, where y = 2x− 1,

we reformulate the problem in (6) as

max
y

min
m∈M

bTm(y + 1)
1
ρ
gT
m(y + 1) + 2Pm,C

, (8a)

subject to
1

2
aT
j (y + 1) ≤ 1, ∀j ∈ J , (8b)

1

2
gT
m(y + 1) ≤ Pmax

m , ∀m ∈ M, (8c)

y ∈ {−1, 1}MJL. (8d)

It is worth to mention that the constraints in (8b) and (8c)

are linear. However, since the objective (8a) and the

constraint (8d) are non-convex, the problem in (8) is still

non-convex.

The next step for applying the SDR technique is

to formulate the optimization problem of (8) in a

higher dimension, i.e., the optimization variables are

replaced with symmetric positive semidefinite (PSD)

matrices [8]. Before proceeding with the next step, we

also define the following vectors in R
MJL+1, ĝm ,

[ 1
ρ
gT
m

1
ρ
gT
m1+2Pm,C]

T , âj , [aT
j aT

j 1]
T , j = 1, . . . , J ,

b̂m , [bTm bTm1]T , m = 1, . . . ,M , 1̂ , [1T
1
T
1]T ,

ŷ , [yT 1]T and f̂ , [0T 1]T . Subsequently, we

define the following (MJL+ 1)× (MJL+ 1) matrices

Kâj
, f̂ âT

j , Kĝm
, f̂ ĝT

m, and K
b̂m

, f̂ b̂Tm, In addi-

tion, we define the symmetric matrices Y ∈ R
MJL×MJL

and Ω ∈ R
(MJL+1)×(MJL+1) to be Y , yyT and

Ω = ŷŷT , in particular, Ω =

[

Y y

yT 1

]

. Using those

matrices, the optimization problem in (8) can be cast as

max
Ω

min
m∈M

Tr(K
b̂m

Ω)

Tr(Kĝm
Ω)

, (9a)

subject to
1

2
Tr(Kâj

Ω) ≤ 1, ∀j ∈ J , (9b)

1

2
Tr(Kĝm

Ω) ≤
1

ρ
Pmax
m + Pm,C, ∀m ∈ M,

(9c)

Ω � 0, (9d)

diag(Ω) = 1, (9e)

rank(Ω) = 1. (9f)

This formulation is non-convex due to both the objective

function (9a) and the rank-1 constraint (9f). However,

noting that after dropping rank-1 constraint, the resulting

problem is quasi-convex [10], which can be efficiently

tackled using the bisection method. Using a new variable,

E0, we reformulate the relaxed problem as

max
E0, Ω

E0, (10a)

subject toTr(E0(Kĝm
−K

b̂m
)Ω) ≤ 0, ∀m ∈ M,

(10b)

(9b) − (9e). (10c)

To obtain the maximum value of E0, we solve a series

of convex feasibility problems, each of which is of the

form

find Ω, (11a)

subject toTr(E0(Kĝm
−K

b̂m
)Ω) ≤ 0, ∀m ∈ M,

(11b)

(9b) − (9e), (11c)

where E0 is fixed at each iteration of the bisection method

and it lies in [0, Emax], where Emax = minm∈M

( bT
m1

Pm,C

)

.

Let Ω∗ represent the optimal solution of (10) correspond-

ing to the optimal value of E0. If Ω∗ has a rank one, the

relaxation is tight. Otherwise, we use Gaussian randomiza-

tion [8] in order to obtain an approximate solution. The

idea behind of the Gaussian randomization technique



is to tackle a stochastic version of the deterministic

problem in (10). Particular, in this technique, several

random samples, T , are first generated from a multivariate

Gaussian distribution with the covariance matrix of Ω∗.

Then, the random vector that maximizes the objective

in (6) is selected as the sub-optimal solution.

The SDR-based Gaussian randomization technique is

summarized in Algorithm 1.

Algorithm 1: SDR-based Gaussian randomization

Input: T , ρ, Pmax
m , and Pm,C, m ∈ M.

Output: x∗.
1 Relax the non-convex problem: Drop the rank-1

constraint.
2 Solve the semidefinite relaxation problem: Obtain the

optimal solution of the relaxed problem.
3 for t = 1 : T do
4 Generate a random vector sample: Obtain a

random vector drawn from the Gaussian distribution.
5 Find the candidate binary solution: Quantize

entries of the realization, and obtain the candidate
solution.

6 Determine the feasibility of the candidate solution:
Check the constraints.

7 if satisfied then
8 Record.

9 Find the best solution: Select the best among the
feasible solutions, which has the highest objective function
value and assign it to x

∗.

A. Complexity Discussion

The proposed algorithm uses the bisection method

to solve the problem in (10). This method requires

log2(Emax/κ) number of iterations for the convergence,

where κ > 0 is the solution accuracy. Each iteration

involves solving a convex PSD-constrained problem,

with the computational complexity of O
(

(MJL)3.5
)

[8].

Finally, it uses the Gaussian randomization technique. At

this step, the complexity of generating T random samples

for which the objective is evaluated is O
(

(MJL)2T
)

[8].

Therefore, the total computational complexity can

be found as O
(

(MJL)3.5 log2(Emax/κ) + (MJL)2T
)

.

Even though the proposed centralized algorithm has

polynomial-time complexity, the order of the polynomial

complexity is relatively high. Hence, it is applicable in

small-to-medium-size networks. For large-size networks,

decentralized algorithms can be more desirable in order

to ensure reduced complexity and overhead. However,

we have the following remarks:

• One of the most effective means of developing

optimization-based decentralized designs is to begin

with a centralized design and then, using Lagrangian

duality, the formulation is decoupled to facilitate

the task of each node in the network to optimize

its parameters locally. In other words, centralized

formulations are usually useful in developing decen-

tralized ones.

• A decentralized formulation can be regarded as a

centralized one, but with decoupling constraints.

This implies that the solutions generated through the

centralized formulation constitute an upper bound on

the solutions generated through their decentralized

counterparts. In other words, the centralized formu-

lations developed in our work will not only serve as

starting points for developing effective decentralized

algorithms, but also to serve a benchmark for

validating and examining their efficacy.

IV. SIMULATION RESULTS

In this section, the EE performance of the proposed

resource allocation scheme in an OFDMA network is

evaluated with simulations. We assume that the path

loss model is expressed as 128.1 + 37.6 log10(d) for the

user-to-BS links [11], where d denotes the distance in

kilometers. The log-normal distribution with a standard

deviation of 8 dB is used to model the shadowing factor.

The power-level set consists of L equally located points

in [0.05Pmax
m , 0.5Pmax

m ], and Pmax
m = Pmax, ∀m ∈ M,

unless otherwise stated. Furthermore, we assume that

noise power spectral density is -174 dBm/Hz, the band-

width of each RB is 180 kHz, and the power amplifier

efficiency is 38%. We use 100 Monte Carlo simulations

to obtain the average performance. The optimization

problem is solved using the SDPT3 package [12] and

the randomization technique is implemented using 1000

independent randomization samples.

Fig. 1 considers a network with 4 RBs, 3 users, 2

power levels. In this network, we assume that the static

circuitry power consumption is 25 dBm. In Fig. 1, the

performance of proposed scheme is compared against

the optimal solution derived through exhaustive search.

From this figure, it can be readily observed that the

performance of the proposed technique is close to the

optimal one, especially at high values of the transmit

power. For instance, at the transmit power of 31 dBm, the

gap between the minimum EE and the one generated by

the SDR-technique is 2.97×104 bits/Joule, which is about

1% of the objective value obtained by exhaustive search.

Moreover, for completeness of presentation, a comparison

of these two algorithms in terms of EE fairness is given in

Fig. 2. For quantifying the EE fairness among multiple

users, we adopt Jain’s fairness index [13].2 Since the

adopted EE optimization metric, viz., max-min fair EE,

2Jain’s index is widely used as a (numeric) quantitative fair-
ness metric; a higher value of Jain’s index corresponds to a
fairer rate allocation. Particularly, it is defined as F (x) =
(∑

m∈M

∑
j∈J

∑
ℓ∈P rjℓmxjℓ

m

)

2

M
∑

m∈M(
∑

j∈J

∑
ℓ∈P r

jℓ
mx

jℓ
m)2

. It is a continuous non-convex

function, F (x) : R+
m → R

+, with values in the interval [ 1
M

, 1].
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Fig. 1. Performance of the proposed sub-optimal technique against
the optimal one.

improves EE fairness between different users as much

as possible, as expected, the achieved EE Jain’s fairness

index is high, specifically, higher than 0.9 for all values

of the transmit power.

Fig. 3 considers a network with 10 RBs, 5 users, and

the different number of power levels, i.e., 2, 4, and 8. In

this network, we assume that the static circuitry power

consumption is 25 dBm. Fig. 2 demonstrates the impact

of the number of power levels on the average network

performance. One can see that for a specific transmit

power, the minimum EE enhances as the number of power

level raises. This is due to the fact that the increase of the

number of power level provides extra degrees of freedom

in the energy-efficient resource allocation optimization.

Another important observation is that the impact of the

number of power levels on max-min EE optimization

becomes less significant as the transmit power increases.

Lastly, Fig. 4 considers a network with 8 RBs, 4

users. In this network, we assume that the static circuitry

power consumption is 25 dBm, and the number of

power levels varies from 1 to 11. Fig. 4 reveals the

average computational time required by the proposed

algorithm. From this figure, it can be observed that the

proposed algorithm requires a polynomial amount of

computational time.

V. CONCLUSION

In this work, we addressed the problem of opti-

mizing resource allocation in uplink OFDMA networks

for providing the EE fairness among the users while

considering discrete power levels. Particularly, we focused

on how to maximize the minimum user EE in the

network by jointly optimizing RB and discrete power

allocation. We first formulated the optimization problem,

but unfortunately, the resulting formulation was not

16 18 20 22 24 26 28 30 32 34
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
max (dBm)

E
E

 f
a
ir
n
e
s
s
 i
n
d
e
x

Optimal Solution (Exhaustive Search)

Sub−optimal Solution (SDR with Gaussian Randomization)

Fig. 2. EE fairness among the users.
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Fig. 3. Performance of the proposed technique with the different
number of power levels.

convex. In order to tackle this difficulty, we proposed an

SDR-based technique with polynomial time complexity

that approximates the solution for the max-min EE

problem using a convex program. The numerical results

indicated that the proposed technique does not only

achieve the desirable improvement on the users’ EE, but

also ensures EE fairness among the users. As future works,

we plan to put emphasis on distribute solutions, and to

investigate the joint optimization of user association, RBs

and discrete power allocations for the EE maximization

in interference-limited OFDMA-based networks.
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