
FAST, BIOLOGICALLY INSPIRED CORNER DETECTION USING A SQUARE SPIRAL 

ADDRESS SCHEME AND ARTIFICIAL EYE TREMOR 

 

John Fegan1, Sonya Coleman1, Dermot Kerr1, Bryan Scotney2 

 
1School of Computing, Engineering and Intelligent Systems 

2School of Computing and Information Engineering 

Ulster University, Northern Ireland 
 

ABSTRACT 

 

This paper presents an efficient approach to corner detection 

in images using a spiral addressing scheme in conjunction 

with simulated, biological involuntary eye movements. As 

part of this approach, a combined gradient detection and 

smoothing operation is used to quickly obtain a feature 

representation that can be used with a standard ‘cornerness’ 

measure. A computationally efficient use of the spiral address 

scheme to apply further processing operations such as non-

maximum suppression is demonstrated. Comparative 

evaluation of three corner detection methods is presented and 

results demonstrate significantly faster processing times than 

other well-known corner detection methods. 

 

Index Terms—Fast Image Processing, Square Spiral 

Address Scheme, Eye Tremor, Corner Detection 

 

1. INTRODUCTION 

 

While fast runtime performance is essential in many machine 

vision tasks it is difficult to attain using traditional frame-

based image processing methods. These methods are based 

on the assumption that an image uses a raster address scheme 

where the pixels are stored in computer memory as a matrix 

and processed in sequential order for each frame. Research 

indicates that this Traditional Image Processing (TIP) 

approach does not accurately reflect the way in which 

biological vision systems process visual information in an 

efficient manner [1, 2]. Characteristics of the Human Visual 

System (HVS) have motivated research into hexagonal based 

image representations where hexagonal based pixels are used 

with a spiral address scheme [1]. Whilst hexagonal based 

approaches have demonstrated they are able to achieve 

increased accuracy and faster runtime performance than TIP 

[3] they are unfortunately limited in application by a lack of 

hexagonal pixel image hardware. When a hexagonal image 

representation needs to be used with standard rectangular 

pixel-based hardware, the additional processing overhead 

which is needed to convert a rectangular image to a hexagonal 

format [3, 4] negates some of the performance improvements. 

To circumvent this problem, a one-dimensional (1D) square-

spiral (squiral) address scheme has been proposed for 

standard rectangular based images [4] to increase 

performance. Like hexagonal approaches, Squiral Image 

Processing (SIP) can achieve faster runtime performance than  

TIP [3] and is efficient for low level image processing tasks 

such as edge detection [3, 5]. Despite these benefits there are 

some difficulties with using SIP for increasingly complex 

image processing operations such as corner detection [6]. In 

this paper we embrace the SIP image framework to develop 

a computationally efficient corner detection approach. 
 

2. SQUARE SPIRAL IMAGE PROCESSING 

 

Neighbourhood operations are a standard image processing 

feature extraction technique where each pixel and its 

surrounding neighbours are processed as a collective unit 

called a neighbourhood. In TIP this is achieved by iterating 

over an entire image, pixel-by-pixel, in order to process the 

complete image. During this operation the adjacent 

neighbours of one pixel may also be the adjacent neighbours 

of another nearby pixel, thus the neighbourhoods are said to 

be overlapping. Biological visual processing systems, in 

particular the retina, do not possess this overlapping 

processing ability. In biological vision systems the cells that 

sense and process visual stimuli are arranged in collective 

groups called receptive fields (RFs) [2, 7]. The visual stimuli 

sensed through photoreceptors and processed by intermediate 

retinal cells, which are arranged in RFs, correspond with a 

lesser number of retinal ganglion cell outputs which indicates 

that early visual processing in the HVS is not coordinated by 

substantial overlap of RFs [2].  
The squiral address scheme simulates the 

arrangement of RFs by grouping pixels into sets of non-

overlapping but contiguous neighbourhoods (Figure 1) where 

pixels in each neighbourhood are indexed consecutively. To 

achieve this an image is partitioned into square clusters called 

layers (denoted as λ). The address scheme begins at layer 0, 

which is the origin pixel at the centre of an image and spirals 

over the eight surrounding adjacent neighbours to form the 

3⨉3 layer 1. Thereafter the eight neighbourhoods that 

surround layer 1 are addressed recursively in the same spiral 

order to form layer 2 which is composed of eight 3⨉3 

neighbourhoods. Likewise, layer 3 encompasses layer 2 and 

eight surrounding neighbourhoods, recursively addressed in 

the same way. This partitioning approach is repeated for all 

subsequent layers when using the squiral address scheme [4]. 

The scheme naturally facilitates neighbourhood processing 

operations because each pixel at a 0 mod 9λ address (the 

centre of a squiral neighbourhood) can be processed with its 



neighbours in a contiguous sequence. However, in the case of 

pixels which are not at the centre of a squiral neighbourhood, 

computationally expensive mod 9 addition and multiplication 

operations are required to find their neighbours. Hence, the 

squiral address scheme is biologically inspired in that it 

embraces non-overlapping operations, where only pixels at 

the centre of a squiral neighbourhood are processed. This 

approach is efficient but results in a sparse or downsampled 

image output which on its own is not always sufficient for 

computer vision tasks. In Section 2.1, an approach inspired 

by biological eye tremor is outlined to obtain non-sparse 

outputs from non-overlapping operations. 

 

 
 

Figure 1. Square Spiral Address Scheme 

 

2.1. Eye Tremor 

 

Biological eye tremor is thought to maintain activity in the 

retina, leading to visual perception [8]. Taking inspiration 

from this biological process we can simulate eye tremor by 

capturing a number of image frames at slightly different 

spatial locations where each image corresponds to visual 

perception from a shifted eye movement. In SIP eye tremor 

is simulated by shifting the origin of the squiral address 

scheme over each initial layer one address. In practice the 

address scheme shifts each time a new frame is captured, so 

the centre of each squiral neighbourhood is focused on a 

different mod 9 neighbour location. Thus, each of the pixels 

at each mod 9 address can be sparsely processed over nine 

image frames and their outputs are subsequently combined to 

generate a non-sparse output. This is demonstrated in Figure 

2 where nine squiral, eye tremor frames (denoted as F0 - F8) 

are obtained using the image in Figure 1 and represented as 

1D arrays. For each of these frames, each squiral 

neighbourhood is processed and the pixel at the centre is used 

to construct as part of an output (denoted as O in Figure 2). 

Eye tremor is applied here to the same image with the origin 

shifted over each layer one address, this results in 9 eye-

tremor images (the original image and eight shifted images) 

which are processed to obtain a non-sparse output. 

 

 
 

Figure 2. Eye Tremor Processing 

 

3. SIP CORNER DETECTION 

 

A common approach to corner detection is based on an image 

gradient: changes in luminance between pixels and their 

neighbours [9]. A gradient is said to be large where there are 

prominent changes and small where there are few or no 

changes. In other words, a gradient is a representation of 

discontinuities in an image making it useful in tasks such as 

feature detection. For example, an edge is perceived as a 

prominent and consistent discontinuity in luminance; 

therefore, edges can occur where an image gradient is large 

in a single direction. By extension, corners are usually 

locations where two or more edges intersect, more precisely, 

a location where an image gradient is large in multiple 

directions. In practice, gradient based corner detection can 

have several stages, but the three common ones are: gradient 

detection; gradient smoothing and corner measurement; and 

non-maximum suppression. 

 

3.1. Gradient Detection 

 

A common way to measure an image gradient involves 

convolution: the multiplication of a matrix operator on a pixel 

and its neighbours followed by the summation of their 

products. In TIP, convolution normally involves sliding a 

matrix operator over an image, pixel-by-pixel, such that the 

neighbourhoods covered by the operator overlap. In SIP, 

operations involving overlapping neighbourhoods are 

inefficient and do not align with the way biological RFs are 

arranged. The use of eye tremor in conjunction with SIP 



permits sparse gradient detection where the gradient 

detection operator is vectorised using the squiral address 

scheme and applied contiguously to each pixel at the centre 

of a squiral neighbourhood. The non-overlapping SIP 

approach is fast and relatively straightforward to implement 

as demonstrated in [3] and [5] where SIP is used with squiral 

gradient detection operators to find edges in images and 

videos. 

 

3.2. Gradient Smoothing and Corner Measurement 

 

Often in gradient based corner detection the components of 

an image gradient must be smoothed to reduce noise: inherent 

variance between pixels that can cause inaccurate feature 

detection [9]. Smoothing is usually achieved using 

convolution with an operator that reduces the variance 

between pixels and their neighbours. In TIP, smoothing an 

image gradient is straightforward because operations can 

have overlapping neighbourhoods and are therefore able to 

produce non-sparse outputs. However, in SIP smoothing an 

image gradient is problematic because the image gradient is 

stored in a squiral vector (O in Figure 2) which does not easily 

permit overlapping operations. In this situation, the addresses 

of a pixel’s neighbours can be found using computationally 

expensive base 9 arithmetic. To avoid this problem an 

operator that concurrently detects and smooths the gradient 

of an image can be used; in this case, the 3×3 Linear2 

Gaussian (L2G) operator [10] which measures a product of 

the first order directional derivative: 

 

𝐻𝐼
𝜎(𝑈) = ∫ (𝑏𝑖

1 ∙ ∇𝑈)
Ω

(𝑏𝑖
2 ∙ ∇𝑈)𝜉𝑖

𝜎𝑑Ω        (1) 

 

Here, two piecewise linear basis functions are used with a 

Gaussian basis function to generate the non-linear operators 

𝐻𝐼𝑋𝐼𝑌
𝜎 ,  𝐻𝐼

𝑋2
𝜎  and 𝐻𝐼

𝑌2
𝜎 . In the case of 𝐻𝐼𝑋𝐼𝑌

𝜎 , 𝑏𝑖
1 and 𝑏𝑖

2 are 

along the x and y coordinate directions, respectively; and for 

𝐻𝐼
𝑋2
𝜎  and 𝐻𝐼

𝑌2
𝜎 , 𝑏𝑖

1 = 𝑏𝑖
2 along the x and y coordinate 

directions. Hence, a direct measure of the products of 

directional derivatives is obtained, rather than the products 

from measures of the directional derivatives. In-built 

smoothing is performed via the presence of a Gaussian basis 

function in the operator definition. The corner strength 

response can then be calculated as in [9], but now using the 

cornerness measure: 
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𝑋2
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𝑌2
𝜎 )2      (2) 

 

3.3. Non-Maximum Suppression 

 

The final step in corner detection is Non-Maximum 

Suppression (NMS): an operation which suppresses non-

maximum values in a pixel neighbourhood. Incidentally, 

NMS can incorporate thresholding to suppress maximum 

values that are not within a certain range. In corner detection, 

NMS is used to select strongly responding corner points. The 

most common NMS method in TIP [11] is presented in 

Algorithm 1: here the pixels of an image are compared with 

their neighbours to determine if they are neighbourhood 

maximums. In this algorithm: r is the radius of the 

neighbourhood, u and v are coordinates used to navigate the 

neighbourhood; p and q are the upper boundaries of the 

neighbourhood; I is a raster input matrix; and O is a raster 

output matrix. 

 
u = x - r, p = x + r 
while (u ≤ p) 

v = y - r, q = y + r 
while (v ≤ q) 

if (Ix, y < Iu, v) {goto end} 
v = v + 1 

u = u + 1 
Ox, y = Ix, y 
end: y = y + 1 

 

Algorithm 1: Traditional Non-Maximum Suppression 

 

In Algorithm 2 a non-overlapping SIP based NMS 

suppression method is presented: here a single maximum 

value is retained from each squiral neighbourhood. In this 

algorithm: u is the coordinate used to navigate the 

neighbourhood; a is the size of the neighbourhood; p is the 

upper boundary of the neighbourhood; max is the address of 

the pixel with the largest value; I is a squiral input vector and 

O is a squiral output vector. 

 
u = x + 1, p = x + a, max = x 
while (u < p) 

if (Iu > Imax) {max = u} 
u = u + 1 

Omax = Imax 
x = p 

 

Algorithm 2: Squiral Non-Maximum Suppression 

 

It can be seen that the squiral NMS algorithm has a more 

streamlined appearance than its traditional counterpart. This 

is reflected in the computation which is significantly less in 

the squiral algorithm. More precisely, the traditional 

algorithm can require up to p × q comparisons per pixel, 

whereas the squiral algorithm requires only one comparison 

per pixel regardless of the neighbourhood size. This is 

achieved via non-overlapping neighbourhood suppression 

and becomes increasingly important as the size of the NMS 

neighbourhood grows. For example, as the size of p and q 

increase the traditional algorithm requires more comparisons. 

In the squiral algorithm p can be scaled without any 

additional computational overhead. 

 

4. PERFORMANCE EVALUATION 

 

The efficiency of corner detection is evaluated using three 

approaches. First, a ‘Harris’ approach using TIP, a single 

input image and three operators: the 3 × 3 Prewitt operator 

[12] for gradient detection; a 3 × 3 Gaussian operator with a 



standard deviation of 0.85 for gradient smoothing; and the 

NMS method in Algorithm 1 - this can be considered 

analogous to the well-known Harris corner detector [9]. 

Second, an ‘L2G’ approach using TIP, a single input image 

and two operators: the L2G operator for concurrent gradient 

detection and smoothing; and the NMS method in Algorithm 

1. Lastly, our ‘Bioinspired’ approach using SIP with an eye 

tremor image set, the L2G combined edge and corner detector 

[10] and the NMS method in Algorithm 2. 

 

4.1. Runtime Evaluation  

 

Table 1 shows the runtimes for the three approaches where 

different sizes of NMS neighbourhoods (noted in the left 

most column) are considered. The approaches were 

implemented in C++ 11 and compiled with GNU g++ version 

5.4.0 with default optimisation. The runtimes were measured 

using the system clock and the approach in [13]. Times are 

given in seconds and show the time taken to process a 2187 

× 2187 image. The runtimes account for the entirety of the 

corner detection process and are averaged over one hundred 

execution cycles. In these experiments a system with an Intel 

Core i7-4790 CPU @ 3.60GHz × 8, 16GB RAM and Ubuntu 

Linux 16.04 LTS 64-bit was used. 

 

 Harris L2G Bioinspired 

3 × 3 0.555724s 0.278108s 0.332516s 

9 × 9 1.109690s 0.828181s 0.338572s 

27 × 27 6.443590s 5.981650s 0.336046s 

81 × 81 59.49180s 54.38980s 0.335076s 

 

Table 1: Corner Detection Runtimes 

 

The timings show that the L2G approach is faster than the 

Harris approach in all cases. This is more notable if you 

consider the overhead of NMS. This supports the findings in 

[10] and shows that gradient detection and smoothing are 

faster when computed in combination rather than separately. 

When a 3 × 3 NMS neighbourhood is considered, the L2G 

approach is faster than the Bioinspired approach, though this 

could be explained by the overhead needed to switch between 

nine eye tremor images. Incidentally, the runtimes for the 

Bioinspired approach are the sums of the times needed to 

process nine frames. Thus, the time needed to process a single 

squiral frame is approximately one-ninth of the times given 

(0.036951s when measured using the system clock) and a 

substantial improvement over TIP. It can also be seen that as 

the size of a NMS neighbourhood grows, the runtimes for the 

Harris and L2G approaches increase exponentially. However, 

the runtimes for the Bioinspired approach remain constant 

showing that this approach has significant potential for 

applications where large-scale NMS is necessary. 

 

4.2. Visual Evaluation 

 

A visual comparison of the corner maps obtained from each 

approach are presented in Figure 3 and demonstrate that 

improved run-time performance does not significantly reduce 

accuracy. The corner maps were obtained using a 27 × 27 

NMS neighbourhood with thresholding to achieve results that 

offer visual best representations. It should be noted that 

several images have been used to test each program and their 

results are in line with the quality of those presented here. 

  

  
(a) Harris (b) L2G 

 
(c) Bioinspired 

 

Figure 3. Corner Maps 

 

The visual results show that the Harris approach detected the 

most locationally accurate corners and a greater number of 

corners than the two other approaches which use the L2G 

operator. This is a concession of the L2G operator which 

offers increased computational performance but reduced 

detection performance [9]. More importantly, the SIP 

approach detected almost all the corners found in the L2G 

approach and some additional ‘false’ corners near their 

vicinity. The detection of these additional corners can be 

explained by the squiral NMS method which can occasionally 

retain corners at the borders of two adjoining squiral 

neighbourhoods. Nonetheless, most of the corners detected 

are accurate showing that this approach can be used in corner 

detection tasks and ultimately in real-time robot vision tasks 

such as navigation or tracking. 

 

5. CONCLUSION 

 

In this paper, a fast and accurate approach to corner detection 

is presented which is based on adapting the traditional 

principles of gradient based corner detection for use with a 



1D spiral address scheme using a bioinspired eye tremor 

framework. The results of the corner detection 

experimentation show that this approach is slightly less 

accurate than TIP methods, but also significantly faster, 

especially when large scale NMS is needed. Further work will 

seek to implement invariant feature detectors and extend the 

developed SIP framework to other topics within computer 

and robot vision such as object recognition, high speed 

navigation and tracking.   
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