

1

 Contradiction Separation Based Dynamic Multi-Clause

Synergized Automated Deduction

Yang XU1, 3, Jun LIU†2, 3, Shuwei CHEN1, 3, Xiaomei ZHONG†1, 3 and Xingxing HE1, 3

1. School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China

2. School of Computing, Ulster University, Northern Ireland, UK

3. National-Local Joint Engineering Laboratory of System Credibility Automatic Verification,

Southwest Jiaotong University, Chengdu 610031, China

Abstract

Resolution as a famous rule of inference has played a key role in automated reasoning for over

five decades. A number of variants and refinements of resolution have been also studied,

essentially, they are all based on binary resolution, that is, the cutting rule of the complementary

pair while every deduction involves only two clauses. In the present work, we consider an

extension of binary resolution rule, which is proposed as a novel contradiction separation based

inference rule for automated deduction, targeted for dynamic and multiple (two or more) clauses

handling in a synergized way, while binary resolution is its special case. This contradiction

separation based dynamic multi-clause synergized automated deduction theory is then proved

to be sound and complete. The development of this new extension is motivated not only by our

view to show that such a new rule of inference can be generic, but also by our wish that this

inference rule could provide a basis for more efficient automated deduction algorithms and

systems.

Keywords: Propositional logic, first-order logic, resolution, automated deduction, theorem

proving, contradiction separation, dynamic multi-clause synergized deduction

1. Introduction

Resolution [34] as a famous rule of inference is particularly suitable for automation so has

played a key role in automated reasoning for over five decades [12, 31, 37]. In developing

† The corresponding authors: email: j.liu@ulster.ac.uk; zhongxm2013@home.swjtu.edu.cn

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287023034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:j.liu@ulster.ac.uk
mailto:zhongxm2013@home.swjtu.edu.cn

2

resolution based automated deduction, dozens of variants and refinements of resolution have

been studied from both the empirical and analytical sides aimed at improving the efficiency of

the deduction process, for the detailed review and collection of different variations or strategies

please refer to [6, 8, 12, 13, 15, 37, 40]. It is worthy note that those methods are all

essentially based on binary resolution inference rule and indeed have improved

the efficiency and capability of resolution based ATP systems in different ways.

In its simplest form, binary resolution may be viewed as a procedure for deducting a new

clause (from the two ‘source’ clauses) which is a result of eliminating the occurrences of a

complementary pair while leaving a disjunction of everything else. There are two key

characteristics in the binary resolution: 1) it is based on the cutting rule of the complementary

pair from two clauses respectively; 2) in the whole resolution deduction process every

deduction involves only two clauses, so can be regarded as a static deduction process in term

of the clause involvement.

This simple and elegant binary resolution inference scheme has been very successful,

however there are still a lot of real problems unsolved or not solved efficiently as illustrated in

TPTP (Thousands of Problems for Theorem Provers) [44]. From the latest release of the TPTP

benchmark library up to version 6.4.0 in 2016, there are 4,982 easy, 12,368 difficult, and 3,547

unsolved problems among 20897 problems for theorem provers, where as indicated in [20],

more than a third of these problems have more than 100 axioms, more than 10% have more

than 1000 axioms, and more than 5% have more than 10000 axioms. The efficiency and

versatility of contemporary automated deduction depend on inference rule and techniques that

may go beyond the pure resolution calculus, especially go beyond binary resolution [11, 31].

This present work aims at addressing the following questions: although the simple and

elegant binary resolution inference scheme has been successful, has it been too restrictive?

Instead of treating a contradiction as a complementary pair based on two clauses, can we extend

it into a contradiction consists of more than two clauses? Accordingly, can we make a flexible

or dynamic selection of the number of clauses involved in each deduction to get better efficiency

and capability?

3

There have been previous earlier attempts to use chains of rules (e.g., generalized resolution

[13, 36], hyper-resolution [35], and unit-resulting resolution [26]) which were not very

successful. There has been up to now (to the best of our knowledge) no exist of theory and

algorithm capable of handling multiple clauses dynamically in a synergized way, i.e., dynamic

multi-clause synergized deduction.

Motivated by the above questions, plus our previous research work on resolution-based

automated deduction based on many-valued logic [48], this paper proposes a new inference

principle and its sound and complete automated deduction theory framework to extend from

the existing static (i.e., fixed) binary resolution into a contradiction separation based dynamic

multi-clause (two or more clauses) synergized inference rule. A key idea behind this new

method is the extension of the concept of contradiction from a complementary pair based on

two clauses to a typical kind of unsatisfiable clause set consists of more than two clauses. This

typical kind of unsatisfiable clause set does not imply only one complementary pair among the

clause set, therefore, the computation/searching is synergized among multiple clauses in terms

of a contradiction.

The present work aims at establishing a new automated deduction theory with the following

distinctive features in order to address the above questions: 1) multi-clause deduction: multiple

clauses from a clause set (or even the whole clause set) are involved in each deduction process;

2) dynamic and flexible deduction: the number of clauses involved in each deduction can be

varied from each other in the whole deduction process, so it is regarded as a dynamic and

flexible deduction process; 3) synergized deduction: cooperative interaction among multiple

clauses that creates a combined effect of all the clauses (two or more) on the deduction result,

which can reflect better the overall logical relationship among multiple clauses than only

considering two clauses several times; 5) robust deduction: deleting or adding some literals in

the contradiction following certain strategies will not affect its contradictoriness as well as the

corresponding deduction result; 6) generic deduction: it is generic, can be applied into a rich

set of automated deduction systems, where the existing binary resolution rules and their

variations are its special cases.

4

Note that an extended abstract of this paper was presented in [49]. The present paper

provides a comprehensive introduction of all concepts and results with detailed proofs along

with a good number of example illustrations. The focus of this paper is mainly on the

new concept introduction and the corresponding automated deduction theory set

up (i.e., soundness and completeness) to serve as a theoretical ground for

the development of new provers. Therefore, the automated deduction theory is

presented in a generic way, so that future work may easily build on it and

explore various proof search strategies and implementation techniques. Actually, some

specific algorithms and strategies to support this theory and achieve the

implementation for automation with detailed experiments and case studies have

been also established by the same author team, but are beyond the scope of

this paper, so not covered here.

The remainder of this paper is structured as follows. In Section 2, we briefly review

some related works. Followed some preliminaries about the notations and

terminologies, the key concept of contradiction separation based deduction in propositional

logic is provided in Section 3, along with soundness and completeness proved. Section 4

extends it into first-order logic. A graphical illustration of the key technical ideas is given in

Section 5. The paper is concluded in Section 6.

2. Related Work

As indicated in the Introduction section, a lot of variants of resolution or strategies have been

studied from both the empirical and analytical sides. For example, strategies by restricting or

specifying the resolution path [36, 37], including set-of-support strategy as one of the most

powerful strategies of this kind [47], semantic resolution [24, 36], block resolution [24], linear

resolution [32] and lock-resolution [4]; strategies like hyper-resolution to reduce the number of

intermediate resolvents by combining several resolution steps into a single inference step [36];

strategies to specify the selection of clauses or literals [1, 15, 37, 39]; resolution supplemented

by heuristic strategies in the deduction process [7, 10, 16, 38, 40]; reducing the search space [9,

25, 29, 33]; splitting the clause set [16]; reducing the function terms by using equality [28] etc.,

5

among others. These methods indeed improved the efficiency and capability of

resolution deduction in different ways and in different extents, but they are

all essentially based on binary resolution inference rule.

Some resolution deductions did consider to handle several clauses, such as Robinson

(1968) [36] and Harrison and Rubin (1978) [13] independently proposed generalized resolution

principle respectively, although both generalizations seem to handle several clauses, both share

the key concept and have two essential features: 1) the clauses involved in the resolution are all

binary clauses; 2) there must exist a special clause which includes a negation of literal appeared

in those binary clauses. It is not easy to find that special clause in practical implementation. In

addition, its soundness is still on the basis of binary resolution. Therefore, their works were not

further developed and followed up since then. Another interesting one is hyper-resolution [36],

which is a multi-step binary resolution process where intermediate clauses are discarded. The

clauses to be resolved are divided into two types: clauses with only positive literals are referred

to as electrons and a selected clause containing one or more negative literals which is referred

to as the nucleus. The nucleus is resolved with a series of electrons until the final resultant

clause itself is an electron (contains no negative literals) and this is the output of the hyper-

resolution step. Hyper-resolution is complete and will reduce the number of generated clauses

as only one clause is generated for several resolution steps but the proof found may require

more steps overall, negating some of the advantage. The theorem prover Otter and its successor

Prover9 [27] use hyper-resolution. Hyper-resolution can be viewed as a sequence of binary

resolution steps ending with a positive clause. In addition, although some simplification

technique in propositional logic called blocked clause elimination [14, 18, 23] or super-blocked

clauses [21] consider handling several clauses together, they are based on redundancy property,

are only a kind of simplification process, and are quite different from the proposed work which

actually is an inference rule, i.e., the result from the logical inference, not an equivalent result

in terms of satisfiability in simplification process. Some most recent works have shown

different visions to advanced automated reasoning from different points of view, such as s new

paradigm called explainable Artificial Intelligence is proposed which explores the relationship

between automated reasoning and machine learning [2]; a semantically-guided goal-sensitive

6

reasoning was proposed in [3], but not trying to expand the resolution; [5] introduces an

extension of the resolution calculus called conflict resolution calculus, where the resolution

inference rule is restricted to (first-order) unit propagation and the calculus is extended with a

mechanism for assuming decision literals and with a new inference rule for clause learning,

which is a first-order generalization of the propositional conflict-driven clause learning

procedure. In addition, a theorem prover based on conflict resolution called Scavenger 0.1 is

proposed in [17]; A unifying principle for clause elimination in first-order logic as one of a

preprocessing techniques for formulas in CNF was proposed in [22]; abstract interpretation is

discussed in [42] to explore how it can be linked with algorithmic deduction applied in

automated deduction; the new method and tool is proposed in [41] to explore how automated

reasoning can be applied to detecting inconsistencies in large first-order knowledge bases;

Superposition is further highlighted and reviewed in [45] and saturation with redundancy as

preprocessing techniques is further checked in [46], all these work aimed at advancing the

current automated reasoning.

From the literature review, we noticed that most of the advancements in the area of

resolution-based first-order automated deduction since Robinson's seminal paper were in the

direction of addressing the problem of restricting resolution search space from either syntactic

or semantic point of view while preserving its completeness. They are all focused on binary

resolution. As a question raised earlier, has binary resolution been too restrictive? Can we go

beyond binary resolution, e.g., a dynamic multi-clause synergized deduction, to provide the

basis for the more efficient automated deduction? This is the main motivation of the present

work.

3. Contradiction Separation Based Deduction in Propositional Logic

We need some preliminaries first. We consider the propositional formula in conjunctive normal

forms (CNF) which are defined as follows.

A literal is either a propositional logic variable p or its negation ~p. Two literals are said

to be complements or a complementary pair if one is the negation of the other (e.g., ~p is taken

to be the complement to p).

7

A clause C, is an expression formed from a finite collection of literals, is a disjunction of

literals usually written as C= p1∨···∨pk, where pi (i  1, …, k) is a literal. In the subsequent

section, for the notation simplicity, we also use C to denote the set of literals in C. The readers

can easily distinguish it from the context, regarded as either a disjunction of literals or a set of

literals.

A clause can be empty (defined from an empty set of literals), denoted by . The truth

assignment of an empty clause is always false.

A propositional formula is a conjunction of clauses, i.e., a conjunctive normal form (CNF).

A formula in CNF, S = C1∧···∧ Cm, is usually regarded a set of clauses, written as S {C1,… ,

Cm}. So in the subsequent section, S = C1∧···∧ Cm is an equivalent expression to S {C1,… ,

Cm} as a clause set.

A formula is said to be satisfiable if it can be made TRUE by assigning appropriate logical

values (i.e. TRUE, FALSE) to its variables. We refer the reader to, for instance, [34], for more

details about logical notations and resolution concept.

Definition 3.1 Let S1 and S2 be two propositional formulae. If for any true assignment I,

I(S1) ≤ I(S2), then it is denoted as S1 ≤ S2.

Definition 3.2 Let S {C1, C2,…, Cm} be a clause set. The Cartesian product of C1, C2, …,

Cm, denoted as ∏ 𝐶𝑖
𝑚
𝑖=1 , is the set of all ordered tuples (p1,…, pm) such that piCi (i=1,…, m),

where pi is a literal, and Ci is also regarded as a set of literals (i=1,…, m).

Central to the present discussion is the notion of a contradiction. We have the following

contradiction definition, which expands the normal way of defining a contradiction as a

complementary pair, considers the contradictory normal form as a whole instead.

Definition 3.3 (Contradiction) Let S {C1, C2,…, Cm} be a clause set. If (p1,…,

pm)∈ ∏ 𝐶𝑖
𝑚
𝑖=1 , there exists at least one complementary pair among {p1,…, pm}, then S=⋀ 𝐶𝑖

𝑚
𝑖=1

is called a standard contradiction (in short, SC). If ⋀ 𝐶𝑖
𝑚
𝑖=1 is unsatisfiable, then S=⋀ 𝐶𝑖

𝑚
𝑖=1 is

called a quasi-contradiction (in short, QC).

Remark 3.1: from Definition 3.3, a contradiction does not simply contain only two clauses

with one complementary pair (which certainly is a special case of contradiction). It can contain

8

more than two clauses, and can be regarded a collection (or group) of those contradictory

clauses. This concept plays a critical role in the subsequent novel inference rule and automated

deduction.

Lemma 3.1 Assume a clause set S {C1, C2,…, Cm} in propositional logic. Then S is a

standard contradiction if and only if S is a quasi-contradiction.

Proof. See the detailed proof in Appendix.

Remark 3.2: according to Lemma 3.1, in propositional logic, a standard contradiction is

equivalent to a quasi-contradiction, so we just call them contradiction in short. However, as

discussed in Section 4, in general, this conclusion does not hold for first-order logic, so they are

discussed separately in Section 4.

Remark 3.3: it follows also from Lemma 3.1 that whether ⋀ 𝐶𝑖
𝑚
𝑖=1 is a contradiction or

not is regardless of the ordering of C1, C2,…, Cm.

Lemma 3.2 In propositional logic, a clause set S=C1C2 is unsatisfiable if and only if C1

and C2 are single-literal clauses and C1=~C2.

Proof. See the detailed proof in Appendix.

Based on the above definitions and lemmas, we introduce the following new concept.

Definition 3.4 (Contradiction Separation Rule in Propositional Logic) Assume a clause

set S {C1, C2,…, Cm}. The following inference rule that produces a new clause from S is called

a contradiction separation rule, in short, a CS rule:

For each 𝐶𝑖 (i=1,…, m), separate it into two sub-clauses 𝐶𝑖
− and 𝐶𝑖

+ such that

(1) 𝐶𝑖=𝐶𝑖
−∨𝐶𝑖

+, where 𝐶𝑖
− and 𝐶𝑖

+ have no common literals;

(2) 𝐶𝑖
+ can be an empty clause itself, but 𝐶𝑖

− cannot be an empty clause;

(3) ⋀ 𝐶𝑖
−𝑚

𝑖=1 is a standard contradiction.

The resulting clause ⋁ 𝐶𝑖
+𝑚

𝑖=1 , denoted as Cm(C1, C2,…, Cm), is called a contradiction

separation clause (CSC) of C1, C2,…, Cm, and ⋀ 𝐶𝑖
−𝑚

𝑖=1 is called a separated contradiction

(SC).

Remark 3.4: note that in the above CS rule, some clauses in {C1, C2,…, Cm} can be

repeated, and the CSC Cm(C1, C2,…, Cm) is regardless of the ordering of C1, C2,…, Cm. In

9

addition, since contradiction is actually a group of the contradictory clauses, Cm(C1, C2,…, Cm)

represents the resulting clause of the CS rule, especially resulted from C1, C2,…, Cm through

multiple contradictory clauses separation. Actually, as justified in the subsequent section that

Cm(C1, C2,…, Cm) is the logical consequence of C1, C2,…, Cm, is not used as an operator or

function.

Remark 3.5: binary resolution rule is actually a special case of the CS rule when only two

clauses are involved in the contradiction separation process. Different from binary resolution

where only the complementary pair is excluded, the CS rule means the contradiction as a group

of multiple contradictory clauses itself (a set of sub-clauses which is unsatisfiable) is jointly

eliminated regardless of how many other literals involved in each clause. A CS step will then

create a new clause by combining together the leftover literals in those clauses. This allows

much bigger steps of deduction. This reflects the key motivation of the proposed CS rule: these

bigger deduction steps are expected to allow the CS-based automated deduction to solve

problems faster or to solve more problems.

The above facts are illustrated by the following examples.

Example 3.1 Let C1=~p3∨~p7, C2=p2∨p3∨p5∨~p6, C3=p1∨~p2∨p5∨~p7, C4=p1∨p3∨~p5, C5=

p3∨p4∨p6, C6=~p1∨p3, and C7=p7. Then it follows from the CS rule (Definition 3.4 and Table

3.1) that one CSC involving 7 clauses is C7 (C1, C2, C3, C4, C5, C6, C7)= p4, while the

corresponding SC is

(~p3∨~p7)∧(p2∨p3∨p5∨~p6)∧(p1∨~p2∨p5∨~p7)∧(p1∨p3∨~p5)∧(p3∨p6)∧(~p1∨p3)∧(p7).

Table 3.1 The sub-clauses 𝐶𝑖
− and 𝐶𝑖

+ for C1, C2, C3, C4, C5, C6, C7

 C1 C2 C3 C4 C5 C6 C7

𝐶𝑖
+

 p4

𝐶𝑖
− ~p3∨~p7 p2∨p3∨p5∨~p6 p1∨~p2∨p5∨~p7 p1∨p3∨~p5 p3∨p6 ~p1∨p3 p7

However, it will need several steps of binary resolutions on (C1, C2, C3, C4, C5, C6, C7) to

obtain p4 as illustrated below:

C8= R(C1, C7)= ~p3; C9= R (C3, C7)= p1∨~p2∨p5

C10= R (C2, C8)= p2∨p5∨~p6; C11= R (C4, C8)= p1∨~p5

C12= R (C5, C8)= p4∨p6; C13= R (C6, C8)= ~p1

10

C14= R (C9, C13)= ~p2∨p5; C15= R (C11, C13)= ~p5

C16= R (C10, C15)= p2∨~p6; C17= R (C14, C15)= ~p2

C18= R (C16, C17)= ~p6; C19= R (C12, C18)= p4

This example shows that the CS rule could go beyond the binary resolution in terms of

efficiency, depending on the strategy making the suitable CS step.

Remark 3.6: suppose two sequences of clauses Ci and Di, i=1,…, n, such that Ci ≤ Di

respectively. It does not normally follow that Cn(C1, C2,…, Cn) ≤ C n (D1, D2,…, Dn). This also

implies that the CS rule reflects the synergized effects of all the clauses involved in the CS

deduction process. It can be illustrated in the following example.

Example 3.2 Let two clause sets

SC: C1=p1, C2=p2∨p4, C3=~p1∨p3, C4=~p3;

SD: D1=p1, D2=~p1∨p2∨p4, D3=~p1∨~p2∨p3, D4=~p3.

It is easy to note that Ci ≤ Di, i=1,…, 4.

1) For the clause set SC, we have

Table 3.2 The sub-clauses 𝐶𝑖
− and 𝐶𝑖

+ for C1, C2, C3, C4

 C4 C3 C2 C1

𝐶𝑖
+

 p2

𝐶𝑖
− ~p3 ~p1∨p3 p4 p1

It follows that C4 (C1, C2, C3, C4)=p2 (the corresponding SC is {p1}∧{p4}∧{~p1, p3}∧{~p3}).

2) For the clause set SD, we have

Table 3.3 The sub-clauses 𝐷𝑖
− and 𝐷𝑖

+ for D1, D2, D3, D4

 D4 D3 D2 D1

𝐷𝑖
+

 p4

𝐷𝑖
− ~p3 ~p1∨~p2∨p3 ~p1∨p2 p1

It follows that C4 (D1, D2, D3, D4)=p4 (the corresponding SC is {p1}∧{~p1, p2}∧{~p1, ~p2,

p3}∧{~p3}). However, C4 (C1, C2, C3, C4)≰C 4(D1, D2, D3, D4).

Definition 3.5 Suppose a clause set S {C1, C2,…, Cm} in propositional logic. Φ1, Φ2,…,

Φt is called a contradiction separation based dynamic deduction sequence (or a CS based

dynamic deduction sequence) from S to a clause Φt, denoted as D, if

(1) Φi  S, i 1, 2, …, t; or

11

(2) there exist r1, r2 ,…, 𝑟𝑘𝑖
 i, Φi C𝑘𝑖

(Φ𝑟1
, Φ𝑟2

, …, Φ𝑟𝑘𝑖
).

Remark 3.8: the ki in (2) varies with the deduction process, which means that the number

of clauses involved in the contradiction separation in each deduction process could be different

from each other, i.e., not fixed. This reflects the meaning of “dynamic deduction”. This is

another key motivation of the proposed automated deduction. Dynamic selection of different

numbers of clauses during the deduction process provides much flexibility and enhances the

adaptive behaviour of the automated deduction. This is quite similar to the local search in an

optimization problem: due to the restriction into two clauses in binary resolution, it may be easy

to get stuck somewhere so stop the proof search. The dynamic nature, i.e., the flexibility in

selecting the number of clauses in the proposed CS-based dynamic deduction actually provides

an effective way to overcome the two-clause restriction and continue the proof search using

multiple paths.

Both Remarks 3.4 and 3.8 clarify the key motivations of the present research. More

specifically, the key contribution of the present paper is to introduce and justify theoretically

that this CS-based dynamic deduction is sound and complete, so will play an role of theoretical

foundation for the present research.

Two examples below are provided to illustrate the key features of this CS-based dynamic

deduction.

Example 3.3 Suppose a clause set S {C1, C2,…, C13} in propositional logic with

C1: ~p4∨p6, C2: p6∨~p7, C3: ~p6∨p7, C4: ~p6∨~p7, C5: p1∨p2∨p3, C6: p1∨p2∨~p3

C7: ~p1∨p2∨p3, C8: ~p1∨~p2∨p3, C9: ~p1∨~p2∨~p3, C10: p4∨~p5∨p7

C11: p1∨~p2∨p3∨p4, C12: p1∨~p2∨~p3∨p5, C13: ~p1∨p2∨~p3∨p6.

Using the CS rule for the clauses C5, C6, C7, C8, C9, C11, C12, C13, we obtain a CSC involving

8 clauses:

C14= C8 (C5, C6, C7, C8, C9, C11, C12, C13) = p4∨p5∨p6.

The corresponding SC is:

(p1∨p2∨p3)∧(p1∨p2∨~p3)∧(~p1∨p2∨p3)∧(~p1∨~p2∨p3)∧(~p1∨~p2∨~p3)∧(p1∨~p2∨p3)∧(p1

∨~p2∨~p3)∧(~p1∨p2∨~p3).

12

Furthermore, using the CS rule for 3 clauses C1, C10, and C14, we obtain another CSC

involving 3 clauses:

C15= C3 (C1, C10, C14) = p6∨p7.

The corresponding SC is: (~p4)∧(p4∨~p5)∧(p4∨p5).

Finally, we have

C16=C4 (C2, C3, C4, C15) =

The corresponding SC: (p6∨~p7)∧(~p6∨p7)∧(~p6∨~p7)∧(p6∨p7).

The above process illustrates a CS based dynamic deduction from S to an empty clause 

using 3 steps of CS deduction.

Below shows binary resolution in multiple steps:

C14= R (C2, C4) = ~p7; C15= R (C3, C14) = ~p6; C16= R (C10, C14) = p4∨~p5

C17= R (C1, C15) = ~p4; C18= R (C13, C15) = ~p1∨p2∨~p3

C19= R (C11, C17) = p1∨~p2∨p3; C20= R (C16, C17) = ~p5

C21= R (C5, C6) = p1∨p2; C22= R (C5, C19) = p1∨p3

C23= R (C7, C8) = ~p1∨p3; C24= R (C9, C12) = ~p2∨~p3

C25= R (C9, C18) = ~p1∨~p3; C26= R (C21, C23) = p2∨p3

C27= R (C21, C25) = p2∨~p3; C28= R (C26, C27) = p2

C29= R (C24, C28) = ~p3; C30= R (C22, C29) = p1

C31= R (C23, C29) = ~p1; C32= R (C30, C31) = 

Remark 3.9: from the above example, compared with binary resolution, the CS rule has

the following distinctive features: 1) the number of clauses involved in each CS process can be

more than two, while the number of literals deleted through the CS process is much more than

one binary resolution process. For example, the first CS process to obtain C14, 32 literals were

deleted in one step; however, only two literals are deleted in each binary resolution; it also

follows that the size of a CSC is normally much small than the size of binary resolvent; 2) the

number of clauses involved in the CS deduction is not fixed (e.g., 8, 3 and 4 for those 3 CS

processes respectively in Example 3.3), which reflects the dynamic feature; 3) each deduction

reflects the synergized effects of all the clauses involved and reduce the deduction steps. For

example, it is not easy or straightforward to obtain the CSC C14 = p4∨p5∨p6 from C5, C6, C7, C8,

13

C9, C11, C12, C13 using multiple steps of binary resolution; however, as illustrated above, C14

play an important role in obtaining the empty clause C16=C4 (C2, C3, C4, C15) =.

Lemma 3.3 (Soundness Lemma of the CS-Based Dynamic Deduction in Propositional

Logic) Suppose Dk, Dk-1,..., D1 are k clauses in propositional logic, where Di=𝐷𝑖
+𝐷𝑖

−, i=1,…,

k. If ⋀ 𝐷𝑖
−𝑘

𝑖=1 is unsatisfiable, then Dk∧Dk-1∧...∧D1 ≤𝐷𝑘
+∨𝐷𝑘−1

+ ∨...∨𝐷1
+, that is,

Dk∧Dk-1∧...∧D1 ≤Ck (Dk, Dk-1,…, D1).

Proof. See the detailed proof in Appendix.

Theorem 3.1 (Soundness Theorem of the CS-Based Dynamic Deduction in

Propositional Logic) Suppose a clause set S {C1, C2,…, Cm} in propositional logic. Φ1, Φ2,…,

Φt is a CS based dynamic deduction sequence from S to a clause Φt. If Φt is an empty clause,

then S is unsatisfiable.

Proof. It follows from the definition of a CS-based dynamic deduction sequence

(Definition 3.5) and also the soundness lemma (Lemma 3.3) that

C1∧C2∧…∧Cm≤Φ1∧Φ2∧…∧Φt ≤Φt .

This concludes the proof.

Theorem 3.2 (Completeness Theorem of the CS-Based Dynamic Deduction in

Propositional Logic) Suppose a clause set S {C1, C2,…, Cm} in propositional logic. If S is

unsatisfiable, then there exists a CS based dynamic deduction sequence from S to an empty

clause.

Proof. One way to prove the completeness is based on the fact that standard binary

resolution is a special case of the CS deduction, i.e., any binary resolution derivation can be

represented as a single application of the CS rule involving two clauses. However, for the

readers’ interest and also for the integrity of the proposed work, the detailed proof by induction

is given in Appendix.

4. Contradiction Separation Based Deduction in First-Order Logic

First-order logic in the present paper follows the standard way of definition. Some basic

concepts and notations are given briefly here.

14

In the first-order logic, a literal is either an atom or a negated atom, where an atom is an n-

ary predicate (denoted P or Q) applied to n terms. A term is either a constant (denoted a or b),

a variable (denoted x, y, v or z) or an n-ary function (denoted f or g) applied to n terms. A clause

is simply a disjunction of literals where all variables are universally quantified.

Substitutions (denoted by , possibly superscripted) is a mapping from variables to terms.

Considering a clause C, we write C to denote the result of substituting each assigned variable

with the assigned term in C. The empty (i.e. identity) substitution is denoted ε. If none of the

terms in a substitution contains a variable, i.e., all the terms in the substitution are ground terms,

we have a so-called ground substitution. If  is a (ground) substitution, then C is called an

(ground) instance of C.

A substitution  is a unifier of terms e1,…, en if and only if (e1)=…= (en) where “=”

denotes syntactic identity. A unifier  is a most general unifier (mgu) of e1,…, en if and only if

for every unifier  of e1,…, en there exists a substitution  such that (ei) = ((ei)) for

all ei {e1,…, en}. If a set of terms of first-order logic can be unified, there exists a mgu.

Definition 4.1 (Standard Contradiction Separation Rule in First-Order Logic)

Suppose a clause set S {C1, C2,…, Cm} in first-order logic. Without loss of generality, assume

that there does not exist the same variables among C1, C2,…, Cm (if there exists the same

variables, there exists a rename substitution which makes them different). The following

inference rule that produces a new clause from S is called a standard contradiction separation

rule, in short, an S-CS rule:

For each Ci (i=1, 2,…, m), firstly apply a substitution i to Ci (i could be an empty

substitution but not necessary the most general unifier), denoted as 𝐶𝑖
𝜎𝑖 ; then separate 𝐶𝑖

𝜎𝑖 into

two sub-clauses 𝐶𝑖
𝜎𝑖−

 and 𝐶𝑖
𝜎𝑖+

 such that

i) 𝐶𝑖
𝜎𝑖 =𝐶𝑖

𝜎𝑖−
∨𝐶𝑖

𝜎𝑖+
, where 𝐶𝑖

𝜎𝑖−
 and 𝐶𝑖

𝜎𝑖+
 have no common literals;

ii) 𝐶𝑖
𝜎𝑖+

 can be an empty clause itself, but 𝐶𝑖
𝜎𝑖−

 cannot be an empty clause;

iii) ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 is a standard contradiction, that is (x1,…, xm)∈ ∏ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 , there exists at

least one complementary pair among {x1,…, xm}.

15

The resulting clause ⋁ 𝐶𝑖
𝜎𝑖+𝑚

𝑖=1 , denoted as C𝑚
𝑠𝜎

(C1,…, Cm) (here “s” means “standard”, 

=⋃ 𝜎𝑖
𝑚
𝑖=1 , i is a substitution to Ci, i=1,…, m), is called a standard contradiction separation

clause (S-CSC) of C1,…, Cm, and ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 is called a separated standard contradiction (S-

SC).

Remark 4.1: it is apparent that whether ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 is a standard separated contradiction

or not is regardless of the ordering of C1, C2,…, Cm. The S-CSC C𝑚
𝑠𝜎

 (C1,…, Cm) is also

regardless of the ordering of C1, C2,…, Cm. Similar to Remark 3.4, some clauses in C1, C2,…,

Cm can be repeated. In the first-order logic case, C𝑚
𝑠𝜎

(C1,…, Cm) is also resulted from C1, C2,…,

Cm through a multiple clause synergized deduction!

Definition 4.2 (Quasi-Contradiction Separation Rule in First-Order Logic) Suppose a

clause set S {C1, C2,…, Cm} in first-order logic. Without loss of generality, assume that there

does not exist the same variables among C1, C2,…, Cm (if there exists the same variables, there

exists a rename substitution which makes them different). The following inference rule that

produces a new clause from S is called a quasi-contradiction separation rule, in short, a Q-CS

rule:

For each Ci (i=1, 2,…, m), firstly use a substitution i to Ci (i could be an empty

substitution but not necessary the most general unifier), denoted as 𝐶𝑖
𝜎𝑖 ; then separate 𝐶𝑖

𝜎𝑖 into

two sub-clauses 𝐶𝑖
𝜎𝑖−

 and 𝐶𝑖
𝜎𝑖+

 such that

i) 𝐶𝑖
𝜎𝑖 =𝐶𝑖

𝜎𝑖−
∨𝐶𝑖

𝜎𝑖+
, where 𝐶𝑖

𝜎𝑖−
 and 𝐶𝑖

𝜎𝑖+
 have no common literals;

ii) 𝐶𝑖

𝜎𝑖
+

 can be an empty clause itself, but 𝐶𝑖
𝜎𝑖−

 cannot be an empty clause;

iii) ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 is unsatisfiable.

The resulting clause ⋁ 𝐶𝑖
𝜎𝑖+𝑚

𝑖=1 , denoted as C𝑚
𝑞𝜎

(C1, C2,…, Cm) (here “q” means “quasi”, 

=⋃ 𝜎𝑖
𝑚
𝑖=1 , i is a substitution to Ci, i=1,…, m), is called a quasi-contradiction separation clause

(Q-CSC) of C1, C2,…, Cm, and ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 is called a separated quasi-contradiction (S-QC).

16

Remark 4.2: it is apparent that if ⋀ 𝐶𝑖
𝜎𝑖−𝑚

𝑖=1 is a quasi-contradiction that is regardless of

the ordering of C1, C2,…, Cm, the Q-CSC C𝑚
𝑞𝜎

(C1, C2,…, Cm) is also regardless of the ordering

of C1, C2,…, Cm, and some clauses in C1, C2,…, Cm can be repeated.

Remark 4.3: the reason that the variation Q-CS in the first-order case is introduced and

discussed is due to the following facts: if S {C1, C2,…, Cm} is unsatisfiable, it does not mean

that S is a standard contradiction. For example, considering S={P(x), ~P(f(y))}, it is obviously

that S is unsatisfiable, however, P(x) and ~P(f(y)) is not a complementary pair. Therefore, in

first-order logic, quasi-contradiction may not be a standard contradiction, but the following

relationship holds.

Lemma 4.1 Suppose a clause set S {C1, C2,…, Cm} in first-order logic. If C1C2…Cm

is a standard contradiction, then S is a quasi-contradiction (i.e., S is unsatisfiable).

Proof. See the detailed proof in Appendix.

From the proof of Lemma 4.1, we have the following corollary:

Corollary 4.1 (Invariance of Standard Contradiction in terms of Variable Substitution)

Suppose S {C1, C2,…, Cm}, where C1, C2,…, Cm are clauses in the first-order logic. If

C1C2… Cm is a standard contradiction, then for any variable substitution σ of S,

(C1C2…Cm)σ is also a standard contradiction.

Remark 4.4: a quasi-contradiction obtained after applying some substitution may not be

a quasi-contradiction any more. For example, considering S={P(x), ~P(f(a))}, here a is a

constant, obviously S is an unsatisfiable clause set. Suppose a substitution σ={a/x}, then Sσ =

{P(a), ~P(f(a))}. Obviously, Sσ is satisfiable.

Definition 4.3 Suppose a clause set S {C1, C2,…, Cm} in first-order logic.Φ1, Φ 2,…, Φt

is called a standard contradiction separation based dynamic deduction sequence (or a S-CS

based dynamic deduction sequence from S to a clause Φt, denoted as D s, if

(1) Φi  S, i 1, 2, …, t; or

(2) there exist r1, r2 ,…, 𝑟𝑘𝑖
 i, Φi C𝑟𝑘𝑖

𝑠𝜃𝑖 (Φ𝑟1
, Φ𝑟2

, …, Φ𝑟𝑘𝑖
), where θi =⋃ 𝜎𝑗

𝑘𝑖
𝑗=1 , j is a

substitution to Φ𝑟𝑗
, j=1,…, ki.

17

Two examples below are provided to illustrate the key features of this S-CS-based dynamic

deduction.

Example 4.1 Let S {C1, C2,…, C11} be a clause set in first-order logic, where

C1: P1(a1)~P2(x11) C2: ~P1(x21)P2(a2) C3: ~P1(a1)~P2(x31)

C4: P3(x41, a1)P4(x42)P5(f2(a2, x43), x43) C5: P3(x51, x52)P4(f1(x53))~P5(x54, x55)

C6: ~P3(a2, x61)P4(x62)P5(f2(x63, x64), a2) C7: ~P3(x71, x72)~P4(f1(a1))P5(f2(x73,a2), x73)

C8: ~P3(a2, x81)~P4(f1(x81))~P5(x82, x83) C9: P3(a2, a1)~P4(x91)P5(x92, a2)

C10: P3(x101, a1)~P4(f1(x102))~P5(f2(a2, a2), x103)P1(x102)

C11: ~P3(a2, x111)P4(x112)~P5(x113, x114)P2(a2)

Here a1, a2 are constants; x11, x21, x31, x41,x42, x43, x51, x52, x53, x54, x55, x61, x62, x63, x64, x71, x72,

x73, x81, x82, x83, x91, x92, x101, x102, x103, x111, x112, x113, x114 are variables; P1,…, P5 are predicate

symbols; f1, f2 are function symbols.

Now using the S-CS rule for 8 clauses C4 – C11, we obtain an S-CSC involving 8 clauses:

C12= C8
𝑠𝜃12(C4, C5,…, C11)= P1(a1)P2(a2), where the corresponding S-SC is:

(P3(a2, a1)P4(f1(a1))P5(f2(a2, a2), a2)) (P3(a2, a1)P4(f1(a1))~P5(f2(a2, a2), a2))

(~P3(a2, a1)P4(f1(a1))P5(f2(a2, a2), a2))  (~P3(a2, a1)~P4(f1(a1))P5(f2(a2,a2), a2)) 

(~P3(a2, a1)~P4(f1(a1))~P5(f2(a2, a2), a2)) (P3(a2, a1)~P4(f1(a1))P5(f2(a2, a2), a2)) 

(P3(a2,a1)~P4(f1(a1))~P5(f2(a2,a2), a2)) (~P3(a2, a1)P4(f1(a1))~P5(f2(a2, a2), a2))

Furthermore, we obtain another S-CSC involving 4 clauses:

C13= C4
𝑠𝜃13(C1, C2, C2, C12)= ,

where the corresponding S-SC is:

(P1(a1)~P2(a2))(~P1(a1)P2(a2))(~P1(a1)~P2(a2))(P1(a1)P2(a2)).

This illustrates an S-CS-based dynamic deduction sequence from S to an empty clause.

Below shows binary resolution in multiple steps from S to an empty clause:

C12：~P(x11) (from C1 and C3)

C13: ~P1(x21) (from C12 and C2)

C14: P3(x41, a1) P4(x42) P3(x51, x52) P4(f1(x53)) (from C4 and C5)

C15：~P3(a2, x61) ~P3(x71, x72) P5(f2(x63, x64), a2) P5(f2(x73, a2), x73) (from C6 and C7)

18

C16: P3(x41, a1) P4(f1(x53)) (simplification of C14)

C17: ~P3(a2, x61) P5(f2(a2, a2), a2) (simplification of C15)

C18：P4(f1(x53)) ~P5(x54, x55) P4(x112) ~P5(x113, x114) ~P5(x113, x114) P2(a2) (from C5

and C11)

C19: P4(f1(x53)) ~P5(x54, x55) P4(x112) ~P5(x113, x114) (from C18 and C12)

C20: P4(f1(x53)) ~P5(x54, x55) (simplification of C19)

C21: P4(f1(x53)) P5(f1(a2, a2), a2) (from C17 and C16)

C22: P4(f1(x53)) (from C21 and C20)

C23: ~P3(x71, x72) P4(f1(a1)) ~P3(a2, x81) ~P4(f1(x81)) (from C7 and C8)

C24: ~P3(a2, a1) ~P4(f1(a1)) (simplification of C23)

C25: ~P3(a2, a1) (from C23 and C24)

C26: ~P4(f1(a1)) ~P5(x82, x83) (from C25 and C8)

C27: ~P5(x82, x83) (from C26 and C22)

C28: ~P4(f1(a1)) P5(f2(x73, a2), x73) (from C25 and C7)

C29: P5(f2(x73, a2), x73) (from C28 and C22)

C30:  (from C29 and C27)

Remark 4.5: similar to Remark 3.9, from the above example, compared with binary

resolution, the S-CS rule has the following features: 1) the number of clauses involved in each

deduction can be more than two; 2) the number of clauses involved in the deduction is not fixed,

which reflects the dynamic feature; 3) each deduction reflects the synergized effects of all the

clauses involved and the S-CS rule reduces the multiple steps binary resolution significantly,

so the S-CS rule could go beyond the binary resolution in terms of efficiency.

Schubert [43] presented the following problem (which came to be known as Schubert's

Steamroller) as a classic puzzle to automated-deduction systems, this is a typical problem that

is naturally range-restricted and includes a considerable amount of facts. This problem has been

solved by different theorem provers. Here we also use this typical example to illustrate how the

S-CS deduction can be used and successful to solve this problem.

Example 4.2 (Famous Steamroller Example in Automated Reasoning [43]):

19

“Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of each of

them. Also there are some grains, and grains are plants. Every animal either likes to eat all

plants or all animals much smaller than itself that like to eat some plants. Caterpillars and

snails are much smaller than birds, which are much smaller than foxes, which in turn are much

smaller than wolves. Wolves do not like to eat foxes or grains, while birds like to eat caterpillars

but not shads. Caterpillars and snails like to eat some plants. Therefore, there is an animal that

likes to eat a grain-eating animal”.

Assume a1, a2, a3, a4, a5, and a6 are used to represent an individual wolf, fox, bird,

caterpillar, snail and grain respectively.

Firstly use the following predicates:

A(x): x is an animal B(x): x is a bird

C(x): x is a caterpillar E(x, y): x likes to eat y

F(x): x is a fox G(x): x is a grain

M(x, y): x is much smaller than y P(x): x is a plant

S(x): x is a snail W(x): x is a wolf

Now allows the premises to be expressed as below:

C1: W(a1) C2: F(a2) C3: B(a3) C4: C(a4) C5: S(a5) C6: G(a6)

C7: ~W(x) A(x) C8: ~F(x) A (x) C9: ~B(x) A(x)

C10: ~C(x) A(x) C11: ~S(x) A(x) C12: ~G(x) P(x)

C13 ~A(x) ~P(y) ~A(z) ~P(v) E(x, y) ~M(z, x) ~E(z, v) E(x, z)

C14: ~C(x) ~B(y) M(x, y) C15: ~S(x) ~B(y) M(x, y)

C16: ~B(x) ~F(y) M(x, y) C17: ~F(x) ~W(y) M(x, y)

C18: ~W(x) ~F(y) ~E(x, y) C19: ~W(x) ~G(y) ~E(x, y)

C20: ~B(x) ~C(y) E(x, y) C21: ~B(x) ~S(y) ~E(x, y)

C22: ~C(x) P(h(x)) C23: ~C(x) E(x, h(x))

C24: ~S(x) P(i(x)) C25: ~S(x) E(x, i(x))

The phrase “grain-eating animal” may mean an animal that eats some grain. That

interpretation is assumed by Pelletier [30] (also by Stickel [43]), so that the conclusion is

formally interpreted as:

20

∃𝑥∃𝑦[𝐴(𝑥) ∧ 𝐴(𝑦) ∧ [𝐸(𝑥, 𝑦) ∧ ∃𝑧[𝐺(𝑧) ∧ 𝐸(𝑦, 𝑧)]]],

with negated clause form

C26: ~A(x) ~A(y) ~G(z) ~E(x, y) ~E(y, z).

where x, y, z, and v are variables, a1, a2, a3, a4, a5, and a6 are Skolem constants, and h and i are

Skolem functions, here the Skolem standard form follows the standard definition.

The S-CS based dynamic deduction sequence is given and illustrated as follows:

C1, C2, C3, C4, C5, C6, C7, C8, C9, C11, C12, C13,

C15, C16, C17, C18, C19, C21, C22, C24, C25, C26

C27: C2
𝑠𝜃27(C6, C12)=P(a6), the SC is: G(a6)∧~G(a6)

C28: C2
𝑠𝜃28(C13, C27)=E(x, a6) ~M(y, x) ~E(y, z) E(x, y) ~A(x) ~A(y) ~P(z), the

SC is: P(a6)∧~P(a6)

C29: C3
𝑠𝜃29(C1, C2, C17)=M(a2, a1), the SC is: W(a1)∧F(a2)∧(~W(a1) ~F(a2))

C30: C3
𝑠𝜃30(C2, C3, C16)=M(a3, a2), the SC is: (~F(a2) ~B(a3))∧F(a2)∧B(a3)

C31: C3
𝑠𝜃31(C3, C5, C15)=M(a5, a3), the SC is: S(a5)∧(~B(a3) ~S(a5))∧B(a3)

C32: C3
𝑠𝜃32(C1, C6, C19)=~E(a1, a6), the SC is: (~W(a1) ~G(a6))∧W(a1)∧G(a6)

C33: C3
𝑠𝜃33(C3, C5, C21)=~E(a3, a5), the SC is: B(a3)∧(~B(a3) ~S(a5))∧S(a5)

C34: C3
𝑠𝜃34(C28, C29, C32)=E(a1, a2) ~A(a1) ~E(a1, x) ~A(a2) ~P(x), the SC is: (~M(a2,

a1)∨ E(a1, a6))∧M(f, a1)∧~E(a1, a6)

C35: C2
𝑠𝜃35(C1, C7)=A(a1), the SC is: W(a1)∧~W(a1)

C36: C2
𝑠𝜃36(C3, C9)=A(a3), the SC is: B(a3)∧~B(a3)

C37: C3
𝑠𝜃37(C13, C30, C36)=~E(a3, x) E(a2, a3) ~A(a2)∨E(a2, y) ~P(y) ~P(x), the SC

is: A(a3)∧(~M(a3, a2) ~A(a3))∧M(a3, a2)

C38: C3
𝑠𝜃38(C13, C31,C36)=~E(a5, x) E(a3, a5) E(a3, y) ~A(a5) ~P(y) ~P(x), the SC

is: (~M(a5, a3) ~A(a3))∧A(a3)∧M(a5, a3)

C39: C3
𝑠𝜃39(C1, C2, C18)=~E(a1, a2), the SC is: (~F(a2) ~W(a1))∧F(a2)∧W(a1)

21

C40: C3
𝑠𝜃40(C34, C35, C39)=~A(a2)~E(a2, x)~P(x), the SC is: (~A(a1)E(a1, a2))∧~E(a1,

a2)∧A(a1

C41: C5
𝑠𝜃41 (C4, C22, C24, C37, C40)=~A(a2) E(a2, a3) ~E(a3, i(x)) ~S(x), the SC is:

(~P(h(a4)) ~E(a2, h(a4)))∧(~C(a4) P(h(a4)))∧(E(a2, h(a4)) ~P(i(x)))∧P(i(x))∧C(a4)

C42: C2
𝑠𝜃42(C5, C11)=A(a5), the SC is: S(a5)∧~S(a5)

C43: C3
𝑠𝜃43 (C28, C31, C42)=E(a3, a5) E(a3, a6) ~P(x) ~E(a5, x) ~A(a3), the SC is:

(~A(a5) ~M(a5, a3))∧A(a5)∧M(a5, a3)

C44: C4
𝑠𝜃44(C5, C25, C33, C43)=~P(i(a5)) E(a3, a6) ~A(a3), the SC is: (~E(a5, i(a5)) E(a3,

a5))∧(E(a5, i(a5)) ~S(a5))∧~E(a3, a5)∧S(a5)

C45: C2
𝑠𝜃45(C5, C21)=~B(x) ~E(x, a5), the SC is: ~S(a5)∧S(a5)

C46: C3
𝑠𝜃46(C3, C38, C45)=~E(a5, x) E(a3, y) ~A(a5) ~P(y) ~P(x), the SC is: (~E(a3,

a5) ~B(a3))∧B(a3)∧E(a3, a5)

C47: C4
𝑠𝜃47(C5, C6, C26, C41)=~A(a2) ~E(a3, i(a5)) ~A(a3) ~E(a3, a6), the SC is: (~E(a2,

a3) ~G(a6))∧(E(a2, a3) ~S(a5))∧S(a5)∧G(a6)

C48: C3
𝑠𝜃48(C24, C36, C44)=~S(a5) E(a3, a6), the SC is: A(a3)∧(~P(i(a5)) ~A(a3)) ∧P(i(a5))

C49: C4
𝑠𝜃49(C5, C36, C47, C48)=~A(a2) ~E(a3, i(a5)), the SC is: (~E(a3, a6) ~A(b))∧(E(a3,

a6) ~S(a5))∧A(a3)∧S(a5)

C50: C6
𝑠𝜃50(C2, C5, C8, C24, C46, C49)=~P(x) ~A(a5) ~E(a5, x), the SC is: (E(a3, i(a5))

~P(i(a5))∧(~A(a2) ~E(a3, i(a5)))∧(~S(a5) P(i(a5)))∧(~F(a2) A(a2))∧S(a5)∧F(a2)

C51: C4
𝑠𝜃51 (C5, C24, C42, C50)=~E(a5, i(a5)), the SC is: (~A(a5) ~P(i(a5)))∧(P(i(a5))

~S(a5))∧A(a5)∧S(a5)

C52: C3
𝑠𝜃52(C5, C25, C51)=, the SC is: (E(a5, i(a5)) ~S(a5))∧S(a5)∧~E(a5, i(a5)).

Remark 4.6: Note that the above given deduction sequence is only for illustration purpose

as one possible deduction. Due to the dynamic nature or flexibility in selecting the number of

22

clauses involved in each S-CS based deduction step, there could be various deduction sequences

with much less steps to reach to the solution, but will not be addressed in this paper.

Now that standard contradiction and quasi-contradiction are not equivalent concepts in

first-order logic case, below we will introduce some results based on quasi-contradiction.

Definition 4.4 Suppose a clause set S {C1, C2,…, Cm} in first-order logic. Φ1, Φ 2,…, Φt

is called a quasi-contradiction separation based dynamic deduction sequence (or an Q-CS

based dynamic deduction sequence from S to a clause Φt, denoted as D q, if

(1) Φi  S, i 1, 2, …, t; or

(2) there exist r1, r2 ,…, 𝑟𝑘𝑖
 i, Φi C𝑟𝑘𝑖

𝑞𝜃i (Φ𝑟1
, Φ𝑟2

, …, Φ𝑟𝑘𝑖
), where θi =⋃ 𝜎𝑗

𝑘𝑖
𝑗=1 , j is a

substitution to Φ𝑟𝑗
, j=1,…, ki.

Definition 4.5 Suppose a clause set S {C1, C2,…, Cm} in first-order logic. If there are two

clauses 𝐶𝑖0
 and 𝐶𝑗0

 in S such that 𝐶𝑖0
= 𝑃 ⋁ 𝐶𝑖0

∗ , 𝐶𝑗0
= ~𝑃 ⋁ 𝐶𝑗0

∗ , where P and P is a

complementary pair of literals, 𝐶𝑖0

∗ ≠  , and 𝐶𝑗0

∗ ≠  . Then it is said that S satisfies the

complementary condition.

Lemma 4.2 Suppose Dk，Dk-1,..., D1 are k clauses in first-order logic. Assume that a

substitution i is applied to Di (i could be an empty substitution) for i=k, k1,…, 1, and the

same literals merged after substitution, such that ⋀ 𝐷𝑖
𝜎𝑖1

𝑖=𝑘 is a standard contradiction.

The following statements hold:

(1) If there exists some complementary pair among 𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1, then there exist

k2 clauses among 𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1 which are all redundant clauses.

(2) If there does not exist any complementary pair among 𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1 , then

{𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1} satisfies the complementary condition, i.e., there exists a complementary

pair of literals P and P, and there also exist 𝐷𝑖
𝜎𝑖 and 𝐷

𝑗

𝜎𝑗
 such that: 𝐷𝑖

𝜎𝑖=𝐷𝑖0

𝜎𝑖∨P, 𝐷𝑖0

𝜎𝑖≠,

and 𝐷
𝑗

𝜎𝑗
=𝐷

𝑗0

𝜎𝑗∨~P, 𝐷
𝑗0

𝜎𝑗
≠.

Proof. See the detailed proof in Appendix.

23

Lemma 4.3 (Soundness Lemma of the S-CS Based Dynamic Deduction in First-Order

Logic) Let Dk，Dk-1,..., D1 be k clauses in first order logic. Assume that a substitution i is

applied to Di (i could be an empty substitution) for i=k, k1…, 1, and the same literals merged

after substitution. Suppose 𝐷𝑖
𝜎𝑖 is partitioned into two sub-clauses 𝐷𝑖

𝜎𝑖−
 and 𝐷𝑖

𝜎𝑖+
 such that

i) 𝐷𝑖
𝜎𝑖 =𝐷𝑖

𝜎𝑖−
∨𝐷𝑖

𝜎𝑖+
, where 𝐷𝑖

𝜎𝑖−
 and 𝐷𝑖

𝜎𝑖+
 have no common literals;

ii) 𝐷𝑖
𝜎𝑖+

 can be an empty clause, but 𝐷𝑖
𝜎𝑖−

 cannot be an empty clause;

ii) ⋀ 𝐷𝑖
𝜎𝑖−1

𝑖=𝑘 is a standard contradiction.

Then we have

 Dk∧Dk-1∧...∧D1 ≤𝐷𝑘
𝜎𝑘+

∨𝐷𝑘−1
𝜎𝑘−1+

∨...∨𝐷1
𝜎1+

, i.e., Dk∧Dk-1∧...∧D1≤C𝑘
𝑠𝜎

(Dk, Dk-1,..., D1),

where 𝜎 = ⋃ 𝜎𝑖
1
𝑖=𝑘 , i is a substitution to Di, i= k, k1…, 1.

Proof. See the detailed proof in Appendix.

Theorem 4.1 (Soundness Theorem of the S-CS Based Dynamic Deduction in First-

Order Logic) Suppose a clause set S {C1, C2,…, Cm} in first-order logic. Φ1, Φ 2,…, Φt is

an S-CS based dynamic deduction from S to a clause Φt. If Φt is an empty clause, then S is

unsatisfiable.

Proof. It follows from the definition of a S-CS based dynamic deduction (Definition 4.3)

and also the Soundness Lemma of an S-CS based dynamic deduction (Lemma 4.3) that

C1∧C2∧…∧Cm≤Φ1∧Φ∧… ∧Φt ≤Φt.

This concludes the proof.

Remark 4.7: in general, soundness of the Q-CS based dynamic deduction in first-order

logic does not hold. For example,

Example 4.3 Let C1=P(x)∨Q(x), C2=~P(f(x))∨R(x). If we obtain the deduction result

Q(x)∨R(x) by directly deleting the quasi-contradiction P(x) ~P(f(x)), then Q(x)∨R(x) is not a

logical consequence of C1 and C2. Actually, suppose that the Herbrand field (denoted by H) [8]

is given as {a, f(a), f(f(a)), f(f(f(a))),…}, and an interpretation I0 is given as follows (↦ means

the true-value assignment, 0 mean false and 1 means true):

P: f(a) ↦ 0, where all the other elements in H: ↦ 1;

24

~P: f(a) ↦ 1, where all the other elements in H: ↦ 0;

Q: f(a) ↦ 1, where all the other elements in H: ↦ 0;

R: a ↦ 0, where all the other elements in H: ↦ 1.

Then I0(C1)=1, I0(C2)=1, but I0(Q(x)∨R(x))=0. Therefore, the Q-CS based deduction does

not hold for soundness in general, due to the fact that the Q-CS based deduction cannot

guarantee the result from each deduction is the logical consequents from all the clauses used.

In the following, reference to the construction procedure of the Lifting Lemma about binary

resolution deduction, we establish the following lemma.

Lemma 4.4 (Lifting Lemma of the S-CS Based Dynamic Deduction in First-Order

Logic) In first-order logic, let C1, C2,…, Cm be clauses without common variables, 𝐶𝑖
0 an

instance of Ci, i  1, 2,…, m. If 0 (=C𝑚
𝑞μ

(𝐶1
0, 𝐶2

0,…, 𝐶𝑚
0)) is an S-CSC of 𝐶1

0, 𝐶2
0,…, 𝐶𝑚

0 ,

then there exists an S-CSC (=C𝑚
𝑞θ

(C1, C2,…, Cm)) of C1, C2,…, Cm such that 0 is an instance

of , i.e., the following transformation diagram Fig. 4.1 holds, where  and  are the

substitutions applied to 𝐶1
0,…, 𝐶𝑚

0 and C1,…, Cm respectively when constructing the S-CSC.

 Fig. 4.1 The transformation diagram

Proof. See the detailed proof in Appendix.

Based on the Herbrand Theorem II [8] and the above Lifting Lemma, we have the following

completeness theorem:

Theorem 4.2 (Completeness of the S-CS Based Dynamic Deduction in First-Order

Logic) Suppose a clause set S {C1, C2,…, Cm} in first-order logic. If S is unsatisfiable, then

there exists an S-CS based dynamic deduction from S to an empty clause.

0

C1 C2 Cm …



C1
0 C2

0 … Cm
0

25

Proof. In fact, according to Herbrand Theorem II [8], if S is unsatisfiable, then there exists

at least a ground instance S of S such that S is unsatisfiable. According to the completeness

theorem of the CS-based dynamic deduction in propositional logic (Theorem 3.2), there exists

a CS based dynamic deduction sequence D0 from S to an empty clause. Moreover, we can lift

D0 to an S-CS based dynamic deduction sequence D from S to an empty clause by using the

above Lifting Lemma (Lemma 4.4).

Theorem 4.3 (Completeness of the Q-CS Based Dynamic Deduction in First-Order

Logic) Suppose a clause set S {C1, C2,…, Cm} in first-order logic. If S is unsatisfiable, then

there exists a Q-CS based dynamic deduction from S to an empty clause.

Proof. It only needs to note that a standard contradiction is a quasi-contradiction (Lemma

4.1). Then it follows from Theorem 4.2 that the conclusion holds.

Remark 4.8: if the S-CS rule only involves two clauses in Propositional Logic or in First-

Order Logic, then the S-CS rule is reduced to binary resolution rule in Propositional Logic or

in First-Order Logic respectively. Therefore, alternatively, the above completeness in the first-

order case simply follows from the fact that the S-CS rule simulates (the complete) binary

resolution.

5. Graphical Illustration of the Key Ideas

This section provides a graphical and intuitive illustration on the essential features of the CS-

based dynamic deduction, as well as the essential difference from binary resolution deduction.

We use the funnel as an intuitive figure to show the automated deduction process from the input

clause set. The one coming out from the exit of the funnel is the final output. Fig. 5.1 and Fig.

5.2 below show a graphical funnel view comparison between the binary resolution deduction

process and the CS-based dynamic deduction process.

Fig. 5.1 actually also illustrates some insights why the pre-processing and simplification

steps are essential in the binary resolution deduction, even take the majority of the steps and

time, and also why lots of work have been focused on splitting and simplifying the clause set

into the simpler ones just because the exit is too narrow. Fig. 5.2 illustrates the dynamic and

26

flexible nature of the CS-based dynamic deduction, which essentially opens multiple paths by

which the outcome may be discovered.

Fig. 5.1 The graphical funnel view of binary resolution deduction process

Fig. 5.2 The graphical funnel view of CS-based dynamic deduction process

6. Conclusions and Future Works

After extending the term “contradiction” from the traditionally defined a complementary pair

based on two clauses into a typical unsatisfiable clause set (i.e., a standard contradiction consists

of more than two clauses), this paper proposed a new inference principle and set up its sound

and complete theory framework to extend the existing static (i.e., fixed) binary resolution into

Static and binary restrict deduction

 Each ellipse represents one deduction step;

 The number of clauses used in each step is

fixed as two clauses.

…

…

…

Dynamic and flexible deduction

 Each ellipse represents one deduction step;

 The number of clauses used in each step

can be different, can be guided and adjust

dynamically.

27

a dynamic multi-clause synergized contradiction separation based inference rule. Three terms

“dynamic”, “multi-clauses” and “synergized” reflected the key motivations of the present work.

The key contribution of the present paper was then focused on justifying theoretically that this

CS-based dynamic deduction is sound and complete, along with some example illustrations of

those key features.

From the computational point of view, the term “dynamic” reflects non-determinism in

terms of which clauses and how many of them involved in each deduction (binary resolution is

a special case in terms of which two clauses involved). This non-determinism is different from

its more familiar deterministic counterpart in its ability to arrive at outcomes using various

routes. Nondeterminism is especially beneficial for those problems when there is a single

outcome with multiple paths by which the outcome may be discovered, this is the common case

in mathematical theorem proving. Compared with binary resolution, the proposed CS deduction

offers more chances or new windows of algorithms and implementations development for proof

search.

This established CS-based automated deduction theory is just a first step towards the

development of a proof search procedure that could be implemented as an effective CS-based

theorem prover. Practical implementation of the CS-based automated deduction further hinges

on specific algorithms and strategies making the “right” single CS step including the “suitable

selection” of the number of clauses to be involved in each deduction process useful for proof

search. These algorithms and strategies (including indexing techniques) could vary in quality

and efficiency. This kind of CS-based proof search algorithms or strategies and implementation

will be still one of the challenging problems in this topic.

Although it is challenging, it does not mean it is impossible. The good news however is

that some concrete search algorithms and strategies (such as so-called standard

triangle-type contradiction separation based deduction algorithm) to support

the theory and achieve the implementation for automation with detailed

experiments and case studies have been also established by the author team,

along with their corresponding automated reasoning systems (called MC-SCS),

which is reported in a subsequent work [50]. It has been shown from a big amount

28

of experimental testing using the benchmark problem in TPTP [44] or Mizar [20], that it is

possible and feasible to dynamically, automatically, and efficiently select multiple clauses to

be involved in deduction according to the deduction process, this escapes from the two clause

restriction, enhances the deduction flexibility, increases the concurrent behaviour and

synergistic effect among the clauses involved, therefore, could improves the overall

capability and efficiency of automated deduction.

This present work mainly placed the theoretical foundation of CS-based

automated deduction. The CS-based proof search algorithms or strategies is beyond the

scope of this paper, but is a crucial direction for future work.

Another essential direction for further development would be the extension of CS-based

automated deduction with ability to handle the equalities, since equality is a very common and

important relation for applications. This, certainly, is the next step work for our research team

working toward to incorporate the superposition calculus into the CS-based deduction.

Finally, it is worth noting that: it is known that the resolution principle extended the MP

rule in the classical logic. In this proposed work, the contradiction separation inference rule has

generalized the resolution principle. Therefore, if the MP rule in the classical logical system is

replaced and generalized by the contradiction separation inference rule, it is expected that

classical logical system can be generalized into a new generic logical system.

Future plans include extensive and deeper experimental studies and comparative analysis

with the state of art based on the benchmark problem; new and better CS-based search

algorithms and strategies, forward and backward deduction, complexity analysis as well as the

real application etc.

Acknowledgement

This work is partially supported by the National Natural Science Foundation of China (Grant

No.61673320) and the Fundamental Research Funds for the Central Universities (Grant

No.2682017ZT12, 2682016 CX119).

REFERENCES

29

[1] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection

and simplification. Journal of Logic and Computation, 4(3)(1994) 217–247.

[2] M.P. Bonacina, Automated reasoning for explainable artificial intelligence, The First

International ARCADE (Automated Reasoning: Challenges, Applications, Directions,

Exemplary Achievements) Workshop (in association with CADE-26), Gothenburg,

Sweden, August 6, 2017.

[3] M.P. Bonacina and D. A. Plaisted, Semantically-guided goal-sensitive reasoning:

inference system and completeness. Journal of Automated Reasoning, 59(2)(2017) 165-

218.

[4] R.S. Boyer. Locking: A Restriction of Resolution. Doctoral Dissertation, University of

Texas at Austin, 1971.

[5] J.S. Bruno and W. Paleo, Conflict resolution: a first-order resolution calculus with

decision literals and conflict-driven clause learning. Journal of Automated Reasoning, 58

(1)(2017) 1–24.

[6] J. Buresh-Oppenheim and T. Pitassi, The complexity of resolution refinements. Proc. of

the 18th IEEE Sym. on LICS, pp. 138–147, 2003.

[7] Z.Y. Cai, Q. Huang, Q.Y. Huang, and D.R. Huang, Set-support strategy based resolution

inference method: implementation and optimization. Modern Computer, 5(2005) 74-76

(in Chinese).

[8] C.L. Chang and R.C.T. Lee. Symbolic Logic and Mechanical Theorem Proving. 1973,

Academic Press.

[9] A. Degtyarev, R. Nieuwenhuis, and A. Voronkovc, Stratified resolution, Journal of

Symbolic Computation, 36(2003) 79–99.

[10] M.R. Fellows, S. Szeider, G. Wrightson. On finding short resolution refutations and small

unsatisfiable subsets. Theoretical Computer Science, 351(3)(2006) 351-359.

[11] J. Gozny and B.W. Paleo, Towards the compression of first-order resolution proofs by

lowering unit clauses, Automated Deduction – CADE-25, Berlin, Germany, August 1-7,

2015, pp. 356-366.

[12] J. Harrison, Handbook of Practical Logic and Automated Reasoning, Cambridge

University Press, 2009.

[13] M.C. Harrison and N. Rubin, Another generalization of resolution, Journal of the

Association for Computing Machinery, 25(3)(1978) 341-351.

[14] M. Heule, M. Jarvisalo, F. Lonsing, M. Seidl, A. Biere, Clause elimination for SAT and

QSAT, Journal of Artificial Intelligence Research, 53(2015) 127-168.

[15] K. Hoder, G. Reger, M. Suda, and A. Voronkov, Selecting the selection. The 8th

International Joint Conference on Automated Reasoning – IJCAR 2016, LNAI 9706,

Coimbra, Portugal, June 27-July 2, 2016, pp. 313-329.

30

[16] K. Hoder, A. Voronkov, The 481 ways to split a clause and deal with propositional

variables. In: MP. Bonacina (ed.) CADE 2013. LNCS, vol. 7898, pp. 450–464. Springer,

Heidelberg (2013).

[17] D. Itegulov, J. S. Bruno, and W. Paleo, Scavenger 0.1: a theorem prover based on conflict

resolution. International Conference on Automated Deduction CADE 2017: Automated

Deduction – CADE 26, pp. 344-356, 2017.

[18] M. Jaarvisalo, A. Biere, and M. Heule. Blocked clause elimination. In Javier Esparza and

Rupak Majumdar, editors, Proceedings of the 16th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS 2010), volume 6015

of Lecture Notes in Computer Science, pages 129–144. Springer, 2010.

[19] C. Kaliszyk and J. Urban, MizAR 40 for Mizar 40. CoRR, abs/1310.2805 (2013).

[20] C. Kaliszyk, S. Schulz, J. Urban, and J. Vyskočil, System Description: E.T. 0.1,

Proceedings of the 25th International Conference on Automated Deduction (CADE-25),

Lecture Notes in Artificial Intelligence 9195, Berlin, Germany, August 1-7, 2015, pp. 389

– 398.

[21] B. Kiesl, M. Seidl, H.Tompits, and A. Biere, Super-blocked clauses, Proceeding of the

8th International Joint Conference on Automated Reasoning – IJCAR 2016, LNAI 9706,

June 27-July 2, 2016, pp. 45-61.

[22] B. Kiesl and M. Suda, A unifying principle for clause elimination in first-order logic.

International Conference on Automated Deduction CADE 2017: Automated Deduction –

CADE 26, pp. 274-290, 2017.

[23] O. Kullmann, On a generalization of extended resolution, Discrete Applied Mathematics,

96–97(1999) 149–176.

[24] X.H. Liu, A new semantic resolution principle, Journal of Jilin University, 2(1978) 112-

117 (in Chinese).

[25] X.H. Liu, Deletion strategies about resolution, Journal of Jilin University, 2(1982) 97-

106 (in Chinese).

[26] J. McCharen, R. Overbeek, and L. Wos. Complexity and related enhancements for

automated theorem-proving programs. Computers and Mathematics with Applications,

2(1976) 1–16.

[27] W.W. McCune, Prove9 and Mae4 (2005-2010). http://www.cs.unm.edu/mccune/prover9/.

Accessed 27 April 2016.

[28] R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving, in Book:

Handbook of Automated Reasoning, pp. 371-443, 2001.

[29] J. Nordström, A simplified way of proving trade-off results for resolution, Information

Processing Letters 109 (2009) 1030–1035.

[30] F.J. Pelletier, Completely non-clausal, completely heuristically driven automatic theorem

proving, MSc Thesis, University of Alberta, Edmonton, Alberta, Canada, 1982.

31

[31] D. Plaisted, History and prospects for first-order automated deduction, Automated

Deduction – CADE-25, Berlin, Germany, August 1-7, 2015, pp. 3-28.

[32] D. Plaisted, The search efficiency of theorem proving strategies. Automated Deduction -

CADE-12. LNCS, Vol. 814. Springer, Heidelberg (1994).

[33] A. Riazanov and A. Voronkov, Limited resource strategy in resolution theorem, Journal

of Symbolic Computation 36 (2003) 101–115.

[34] J.A. Robinson, A machine oriented logic based on the resolution principle, J. ACM,

12(1)(1965) 23-41.

[35] J.A. Robinson, Automatic deduction with hyper-resolution. International Journal of

Computer Mathematics, 1(1965) 227-234.

[36] J.A. Robinson, The generalized resolution principle, Journal of Symbolic Computation,

3(1968) 135-151.

[37] J.A. Robinson and A. Voronkov, Handbook of Automated Reasoning, Vols. 1 and 2, the

MIT Press and North Holland, 2001.

[38] S. Schulz, Learning search control knowledge for equational theorem proving,

Proceedings of the Joint German/Austrian Conference on Artificial Intelligence (KI-

2001), volume 2174 of LNAI, 2001, pp. 320-334.

[39] S. Schulz. System description: E 1.8. In Proc. of the 19th LPAR, 2013, Stellenbosch,

volume 8312 of LNCS. Springer.

[40] S. Schulz and M. Mohrmann, Performance of clause selection heuristics for saturation-

based theorem proving, The 8th International Joint Conference on Automated Reasoning

– IJCAR 2016, LNAI 9706, Coimbra, Portugal, June 27-July 2, 2016, pp. 330-345.

[41] S. Schulz, G. Sutcliffe, J. Urban, and A. Peas, Detecting inconsistencies in large first-

order knowledge bases. International Conference on Automated Deduction CADE 2017:

Automated Deduction – CADE 26, pp. 310-325, 2017.

[42] V.D. Silva and C. Urban, Abstract interpretation as automated deduction. Journal of

Automated Reasoning. 58 (3)(2017) 363–390.

[43] M.E. Stickel, Schubert's Steamroller problem: formulations and solutions, Journal of

Automated Reasoning, 2(1986) 89-101.

[44] G. Sutcliffe. The TPTP problem library and associated infrastructure: the FOF and CNF

parts, v3.5.0. Journal of AR, 43(4)(2009) 337–362.

[45] U. Waldmann, Superposition. In: Paleo, B.W. (eds.) Towards an Encyclopaedia of Proof

Systems, pp. 29. College Publications, London, UK, 2017.

[46] U. Waldmann, Saturation with redundancy. In: Paleo, B.W. (eds.) Towards an

Encyclopaedia of Proof Systems, pp. 30. College Publications, London, UK, 2017.

[47] L. Wos, G.A. Robinson, and D.F. Cason, Efficiency and completeness of the set of support

strategy in theorem proving, Journal of the ACM, 12(4)(1965) 536-541.

32

[48] Y. Xu, J. Liu, X.M. Zhong, and S.W. Chen, Multi-ary α-resolution principle for a lattice-

valued logic, IEEE Trans. on Fuzzy Systems, 21(5) (2013) 898-912.

[49] Y. Xu, J. Liu, S.W. Chen, and X.M. Zhong, A novel generalization of resolution principle

for automated deduction, The 12th International FLINS Conference on Uncertainty

Modelling in Knowledge Engineering and Decision Making (FLINS2016), August 24-26,

2016, ENSAIT, Roubaix, France.

[50] J. Zhong, Y. Xu, J. Liu, X.X. He, Q.H. Liu, S.W. Chen, X.M. Zhong, G.F. Wu, X.R. Ning,

X.D. Guan, Q.S. Chen, and Z.M. Song, Multi-clause synergized contradiction separation

based first-order theorem prover – MC-SCS, Proceeding of the 12th International

Conference on Intelligent Systems and Knowledge Engineering (ISKE2017), Nanjing,

China, November 24-26, 2017, pp. 453-458.

33

Appendix:

This appendix section provides the detailed proofs for the relevant lemmas and theorems in the

paper.

Lemma 3.1 Assume a clause set S {C1, C2,…, Cm} in propositional logic. Then S is a

standard contradiction if and only if S is a quasi-contradiction.

Proof. It needs to prove that S is unsatisfiable if and only if  (x1,…, xm)∈ ∏ 𝐶𝑖
𝑚
𝑖=1 , there

exists at least one complementary pair among {x1,…, xm}.

It follows from the distributive law between the disjunction and conjunction that

𝑆 = ⋀ 𝐶𝑖
𝑚
𝑖=1 = ⋁ (𝑥1…𝑥𝑚)(𝑥1,…,𝑥𝑚)∈∏ 𝐶𝑖

𝑚
𝑖=1

.

Hence, S is unsatisfiable if and only if (x1,…, xm)∈∏ 𝐶𝑖
𝑚
𝑖=1 , x1...xm is unsatisfiable if and

only if (x1,…, xm)∈∏ 𝐶𝑖
𝑚
𝑖=1 , there exists at least one complementary pair among {x1,…, xm}.

Lemma 3.2 In propositional logic, a clause set S=C1C2 is unsatisfiable if and only if C1

and C2 are single-literal clauses and C1=~C2.

Proof. () If C1 or C2 has more than one literal, we can assume x1, x2C1 , x1≠x2 , and

yC2, then it follows from the commutativity of the conjunction that no complementary pair

exists in either {x1, y} or {x2, y}. By Lemma 3.1, it is a contradiction to the fact that S=C1C2

is unsatisfiable. If C1 and C2 are all single-literal clauses but C1~C2, it is also a contradiction

to the fact that S=C1C2 is unsatisfiable.

() Obviously.

Lemma 3.3 (Soundness Lemma of the CS-Based Dynamic Deduction in Propositional

Logic) Suppose Dk, Dk-1,..., D1 are k clauses in propositional logic, where Di=𝐷𝑖
+𝐷𝑖

−, i=1,…,

k.

If ⋀ 𝐷𝑖
−𝑘

𝑖=1 is unsatisfiable, then Dk∧Dk-1∧...∧D1 ≤𝐷𝑘
+∨𝐷𝑘−1

+ ∨...∨𝐷1
+, that is,

Dk∧Dk-1∧...∧D1 ≤Ck (Dk, Dk-1,…, D1).

Proof. For arbitrary a valuation I in propositional logic, suppose

I([𝐷𝑘
+∨𝐷𝑘

−]∧[𝐷𝑘−1
+ ∨𝐷𝑘−1

−]∧...∧[𝐷1
+∨𝐷1

−])=I(Dk∧Dk-1∧...∧D1)=1.

If I(𝐷𝑘
+∨𝐷𝑘−1

+ ∨...∨𝐷1
+)=0, now that I(𝐷𝑖

+)≤I(𝐷𝑘
+∨𝐷𝑘−1

+ ∨...∨𝐷1
+), then

I(𝐷𝑖
+)=0, i=1,..., k-1, k.

Therefore, we have

34

1=I(Dk∧Dk-1∧...∧D1)

=I([𝐷𝑘
+∨𝐷𝑘

−]∧[𝐷𝑘−1
+ ∨𝐷𝑘−1

−]∧...∧[𝐷1
+∨𝐷1

−])

=[I(𝐷𝑘
+)∨I(𝐷𝑘

−)]∧ [I(𝐷𝑘−1
+)∨I(𝐷𝑘−1

−)]∧...∧ [I(𝐷1
+)∨I(𝐷1

−)]

=I(𝐷𝑘
−)∧I(𝐷𝑘−1

−)∧...∧I(𝐷1
−)

=I(𝐷𝑘
−∧𝐷𝑘−1

− ∧...∧𝐷1
−).

This, however, is contradictory to the assumption that ⋀ 𝐷𝑖
−𝑘

𝑖=1 is unsatisfiable. Hence, for

arbitrary a valuation I in propositional logic,

if I(Dk∧Dk-1∧...∧D1)=1, then I(𝐷𝑘
+∨𝐷𝑘−1

+ ∨...∨𝐷1
+)=1,

that is, Dk∧Dk-1∧...∧D1 ≤𝐷𝑘
+∨𝐷𝑘−1

+ ∨...∨𝐷1
+. This concludes the proof.

Theorem 3.2 (Completeness Theorem of the CS-Based Dynamic Deduction in

Propositional Logic) Suppose a clause set S {C1, C2,…, Cm} in propositional logic. If S is

unsatisfiable, then there exists a CS based deduction sequence from S to an empty clause.

Proof. (1) If S includes only one clause C. Now that S is unsatisfiable, the result holds

obviously because C will be an empty clause.

(2) If S includes more than one clause. For any i 1, 2,…, m, let |Ci| be the number of all

literals occurring in Ci. Suppose K(S) represents the difference between the total number of

literals occurring in S and the number of clauses in S, i.e., K(S) ∑ |𝐶𝑖|
𝑚
𝑖=1 − 𝑚. Hence, we have

the following two cases:

Case 1: If K(S)  0, then S is composed of unit clauses, i.e., each clause in S includes only

one literal. Since S is unsatisfiable, it follows that the unit clause set {C1, C2,…, Cm} includes

some complementary pairs. Without loss of generality, suppose a complementary pair is C1=p,

C2=~p, therefore, {C1=𝐶1
−, C2=𝐶2

−} forms a contradiction, and C2(C1, C2) . It means the

result holds.

Case 2: Suppose the result holds for K(S)  n (n  0). Now we need to prove the result also

holds for K(S)  n.

Let K(S)  n. Then S has at least one non-unit clause. Suppose g is a literal occurring in a

non-unit clause of S. Let Ci  Ci
  g, where Ci

 is not an empty clause. Now we have

S  C1 … Ci1  Ci  Ci1 … Cm

= (C1 … Ci1  Ci
  Ci1 … Cm)(C1 … Ci1  g Ci1 … Cm).

35

Suppose

S1  C1 … Ci1  Ci
  Ci1 … Cm; and

S2= C1 … Ci1  g Ci1 … Cm.

Obviously, now that S1≤S and S is unsatisfiable, we have S1 is unsatisfiable and K(S1)  n.

According to the induction hypothesis, there exists a CS based deduction sequence D1
 from S

to an empty clause.

Replacing all 𝐶𝑖
∗ occurring in D1

 with Ci and modifying the corresponding contradiction

separation clauses, we can obtain a deduction sequence D1. In fact, D1 is a CS based deduction

sequence from S to an empty clause or g. Note that for the 𝐶𝑖
− applied in order to get the

contradiction separation clauses Cm(…, Ci,…) involving Ci as well as the 𝐶𝑖
∗− applied in order

to get the contradiction separation clauses Cm(…, 𝐶𝑖
∗,…) involving Ci

, there will be two cases:

1) 𝐶𝑖
∗−= 𝐶𝑖

−; or 2) 𝐶𝑖
−= 𝐶𝑖

∗−g (that means g may appear in some contradiction involving

Ci when replacing all 𝐶𝑖
∗ occurring in D1

 with Ci).

If D1 is a CS based deduction sequence from S to an empty clause, then it completes the

proof according to the induction proof.

If D1 is a CS based deduction sequence from S to g, now that S2 ≤ S and S is unsatisfiable,

we have S2 is unsatisfiable and K(S2)  n. According to the induction hypothesis, there exists a

CS based deduction sequence D2 from S2 to an empty clause. Connecting D1 and D2, we can

obtain a CS deduction sequence from S to an empty clause. Hence, this completes the proof

according to the induction proof.

Lemma 4.1 Suppose a clause set S {C1, C2,…, Cm} in first-order logic. If C1C2…Cm

is a standard contradiction, then S is a quasi-contradiction (i.e., S is unsatisfiable).

Proof. Suppose arbitrary a substitution , for (x1,…, xm) ∏ 𝐶𝑖
𝑚
𝑖=1 , consider

(𝑥1
𝜎 , … , 𝑥𝑚

𝜎) ∏ 𝐶𝑖
𝜎𝑚

𝑖=1 , from the assumption, there is some complementary pair among

(x1,…, xm).

Without loss of generality, we assume x1 and x2 is a complementary pair, this implies that

x1 and x2 share the same terms, the same number of terms, and the same location of each term,

except for the predicate symbols which are negative each other. Therefore, 𝑥1
𝜎 and 𝑥2

𝜎 is

36

also a complementary pair for the substitution , it follows that there is some complementary

pair among (𝑥1
𝜎 , … , 𝑥𝑚

𝜎).

Assume that all the variables in S are y1,…, yn, and β is a ground substitution applied to

y1,…, yn. Then, ∏ 𝐶𝑖
𝛽𝑚

𝑖=1 is a standard contradiction in propositional logic. Therefore, the

clause set S={𝐶1
𝛽

, … , 𝐶𝑚
𝛽

} corresponding to ∏ 𝐶𝑖
𝛽𝑚

𝑖=1 is unsatisfiable. Moreover, notice that

S ≤ S, it implies that S is unsatisfiable.

Lemma 4.2 Suppose Dk，Dk-1,..., D1 are k clauses in first order logic. Assume that a

substitution i is applied to Di (i could be an empty substitution) for i=k,…, 1, and the same

literals merged after substitution, such that ⋀ 𝐷𝑖
𝜎𝑖1

𝑖=𝑘 is a standard contradiction.

The following statements hold:

(1) If there exists some complementary pair among 𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1, then there exist k-

2 clauses among 𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1 which are all redundant clauses.

(2) If there does not exist any complementary pair among 𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1 , then

{𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1} satisfies the complementary condition, i.e., there exists a complementary

pair of literals P and P, and there also exist 𝐷𝑖
𝜎𝑖 and 𝐷

𝑗

𝜎𝑗
 such that: 𝐷𝑖

𝜎𝑖=𝐷𝑖0

𝜎𝑖∨P, 𝐷𝑖0

𝜎𝑖≠,

and 𝐷
𝑗

𝜎𝑗
=𝐷

𝑗0

𝜎𝑗∨~P, 𝐷
𝑗0

𝜎𝑗
≠.

Proof. (1) Since there exists some complementary pair among 𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1 ,

without loss of generality, assume 𝐷1
𝜎1 and 𝐷2

𝜎2 is a complementary pair, it follows that

⋀ 𝐷𝑖
𝜎𝑖1

𝑖=𝑘 =𝐷2
𝜎2 ∧ 𝐷1

𝜎1. Therefore, 𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷3
𝜎3 are all redundant clauses.

(2) Since there does not exist any complementary pair among 𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1 , so

among 𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1, there exists some clause which includes more than one literal.

Apparently, among 𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1, there exists non-redundant clause which includes

more than one literal (otherwise, if the clauses which include more than one literal are all

redundant clauses, then the non-redundant clause among 𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1 are only unit

37

clauses. In addition, note that ⋀ 𝐷𝑖
𝜎𝑖1

𝑖=𝑘 is a standard contradiction, it follows that there exists

some complementary pair among 𝐷𝑘
𝜎𝑘 , 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1, this contradicts to the assumption).

Without loss of generality, assume 𝐷𝑘
𝜎𝑘=𝐷𝑘0

𝜎𝑘 ∨P, 𝐷𝑘0

𝜎𝑘≠ , and 𝐷𝑘
𝜎𝑘 is a non-redundant

clause which includes more than one literal. Then among 𝐷𝑘−1
𝜎𝑘−1 , … , 𝐷1

𝜎1 , there exists some

clause which includes ~P (because there exists some complementary pair among any (xk,…,

x1)∈ 𝐷𝑘
𝜎𝑘 × 𝐷𝑘−1

𝜎𝑘−1 × … × 𝐷1
𝜎1, if there is no ~P among 𝐷𝑘−1

𝜎𝑘−1 , … , 𝐷1
𝜎1, then for any (xk-1,…,

x1)∈ 𝐷𝑘−1
𝜎𝑘−1 × … × 𝐷1

𝜎1, there exists some complementary pair among P, xk-1,…, x1 if and

only if there exists some complementary pair among xk-1,…, x1. Therefore, there exists some

complementary pair among any (xk-1,…, x1)∈ 𝐷𝑘−1
𝜎𝑘−1 × … × 𝐷1

𝜎1 , that is, ⋀ 𝐷𝑖
𝜎𝑖1

𝑖=𝑘−1 is a

standard contradiction. It follows that 𝐷𝑘
𝜎𝑘 is a redundant clause. This again contradicts to the

assumption.

Without loss of generality, we assume 𝐷𝑘−1
𝜎𝑘−1=𝐷𝑘−10

𝜎𝑘−1 ∨~P.

(1) If 𝐷𝑘−10

𝜎𝑘−1≠, then the conclusion holds;

(2) Suppose 𝐷𝑘−10

𝜎𝑘−1 =. In this case, considering a literal Q in 𝐷𝑘
𝜎𝑘 (because 𝐷𝑘

𝜎𝑘 is a

non-redundant clause and ≠𝐷𝑘0

𝜎𝑘(𝐷𝑘
𝜎𝑘), there always exists such literal Q), without loss of

generality, assume there exist more than one literal in the clause 𝐷𝑘−2
𝜎𝑘−2 which includes ~Q,

then the conclusion holds (now that 𝐷𝑘
𝜎𝑘 = 𝐷𝑘1

𝜎𝑘 ∨Q, 𝐷𝑘−2
𝜎𝑘−2 =𝐷𝑘−20

𝜎𝑘−2 ∨~Q, where P𝐷𝑘1

𝜎𝑘 ≠,

𝐷𝑘−20

𝜎𝑘−2 ≠); If there exist only one literal in the clause 𝐷𝑘−2
𝜎𝑘−2 which includes ~Q (i.e.,

𝐷𝑘−20

𝜎𝑘−2 =), then 𝐷𝑘−1
𝜎𝑘−1=~P, 𝐷𝑘−2

𝜎𝑘−2=~Q.

Note that 𝐷𝑘
𝜎𝑘 includes P, so 𝐷𝑘

𝜎𝑘 does not include ~P. In addition, 𝐷𝑘0

𝜎𝑘 includes p and

𝐷𝑘0

𝜎𝑘𝐷𝑘
𝜎𝑘 , it follows that Q is not ~P (certainly p is not P too).

Therefore 𝐷𝑘−1
𝜎𝑘−1 can be reconstructed as Q∨~P, denoted as 𝐷𝑘−1

𝜎𝑘−1 ∗
=Q∨~P.

38

Notice that it follows from the binary resolution that (Q∨~P)∧~Q≤~P, and

(Q∨~P)∧~Q≤~Q. Therefore, ~P∧~Q≤(Q∨~P)∧~Q≤~P∧~Q, and ~P∧~Q=(Q∨~P)∧~Q.

Accordingly, we have

𝐷𝑘
𝜎𝑘 ∧𝐷𝑘−1

𝜎𝑘−1∧𝐷𝑘−2
𝜎𝑘−2∧𝐷𝑘−3

𝜎𝑘−3∧…∧𝐷1
𝜎1

=𝐷𝑘
𝜎𝑘∧~P∧~Q∧𝐷𝑘−3

𝜎𝑘−3∧…∧𝐷1
𝜎1

=𝐷𝑘
𝜎𝑘∧ (Q∨~P)∧~Q∧𝐷𝑘−3

𝜎𝑘−3∧…∧𝐷1
𝜎1

=𝐷𝑘
𝜎𝑘∧𝐷𝑘−1

𝜎𝑘−1∗
∧~Q∧𝐷𝑘−3

𝜎𝑘−3∧…∧𝐷1
𝜎1

=𝐷𝑘
𝜎𝑘∧𝐷𝑘−1

𝜎𝑘−1∗
∧𝐷𝑘−2

𝜎𝑘−2∧𝐷𝑘−3
𝜎𝑘−3∧…∧𝐷1

𝜎1 (*)

Considering the equation (*), we have 𝐷𝑘
𝜎𝑘=𝐷𝑘0

𝜎𝑘∨P, 𝐷𝑘0

𝜎𝑘≠ and 𝐷𝑘−1
𝜎𝑘−1∗

=Q∨~P, which

coincides with the conclusion.

Finally, we can always assume 𝐷𝑘−10

𝜎𝑘−1 ≠, this concludes the proof.

Lemma 4.3 (Soundness Lemma of the S-CS Based Dynamic Deduction in First-Order

Logic) Let Dk，Dk-1,..., D1 be k clauses in first order logic. Assume that a substitution i is

applied to Di (i could be an empty substitution) for i=k,…, 1, and the same literals merged

after substitution. Suppose 𝐷𝑖
𝜎𝑖 is partitioned into two sub-clauses 𝐷𝑖

𝜎𝑖−
 and 𝐷𝑖

𝜎𝑖+
 such that

i) 𝐷𝑖
𝜎𝑖 =𝐷𝑖

𝜎𝑖−
∨𝐷𝑖

𝜎𝑖+
, where 𝐷𝑖

𝜎𝑖−
 and 𝐷𝑖

𝜎𝑖+
 have no common literals;

ii) 𝐷𝑖
𝜎𝑖+

 can be an empty clause, but 𝐷𝑖
𝜎𝑖−

 cannot be an empty clause;

iii) ⋀ 𝐷𝑖
𝜎𝑖−1

𝑖=𝑘 is a standard contradiction.

Then we have Dk∧Dk-1∧...∧D1 ≤𝐷𝑘
𝜎𝑘+

∨𝐷𝑘−1
𝜎𝑘−1+

∨...∨𝐷1
𝜎1+

, i.e.,

Dk∧Dk-1∧...∧D1≤C𝑘
𝑠𝜎

(Dk, Dk-1,..., D1),

where 𝜎 = ⋃ 𝜎𝑖
1
𝑖=𝑘 , i is a substitution to Di, i= k, k1…, 1.

Proof. Note that Dk∧Dk-1∧...∧D1≤𝐷𝑘
𝜎𝑘 ∧𝐷𝑘−1

𝜎𝑘−1 ∧... ∧𝐷1
𝜎1 , it implies that we only need to

prove the following relationship holds:

𝐷𝑘
𝜎𝑘 ∧𝐷𝑘−1

𝜎𝑘−1∧... ∧𝐷1
𝜎1≤𝐷𝑘

𝜎𝑘+
∨𝐷𝑘−1

𝜎𝑘−1+
∨...∨𝐷1

𝜎1+

 (A.1)

39

Set N(𝐷𝑘
𝜎𝑘−

, 𝐷𝑘−1
𝜎𝑘−1−

,..., 𝐷1
𝜎1−

)= ∑ |𝐷𝑖
𝜎𝑖−

|1
𝑖=𝑘 − 𝑘.

The above (4.1) can be proved using induction proof on N(𝐷𝑘
𝜎𝑘−

, 𝐷𝑘−1
𝜎𝑘−1−

, ..., 𝐷1
𝜎1−

).

(1) If N(𝐷𝑘
𝜎𝑘−

, 𝐷𝑘−1
𝜎𝑘−1−

,..., 𝐷1
𝜎1−

)=0, it follows that 𝐷𝑘
𝜎𝑘−

, 𝐷𝑘−1
𝜎𝑘−1−

,..., 𝐷1
𝜎1−

 are all unit

clauses. Hence, there exists some complementary pair among 𝐷𝑘
𝜎𝑘−

 , 𝐷𝑘−1
𝜎𝑘−1−

 , ..., 𝐷1
𝜎1−

 .

Without loss of generality, assume 𝐷𝑘
𝜎𝑘−

 and 𝐷𝑘−1
𝜎𝑘−1−

 is a complementary pair. Then based on

the soundness lemma of binary resolution, we have

𝐷𝑘
𝜎𝑘 ∧𝐷𝑘−1

𝜎𝑘−1∧... ∧𝐷1
𝜎1≤𝐷𝑘

𝜎𝑘 ∧𝐷𝑘−1
𝜎𝑘−1=(𝐷𝑘

𝜎𝑘+
∨𝐷𝑘

𝜎𝑘−
)∧(𝐷𝑘−1

𝜎𝑘−1+
∨𝐷𝑘−1

𝜎𝑘−1−
)

≤𝐷𝑘
𝜎𝑘+

∨𝐷𝑘−1
𝜎𝑘−1+

≤𝐷𝑘
𝜎𝑘+

∨𝐷𝑘−1
𝜎𝑘−1+

∨...∨𝐷1
𝜎1+

.

This mean the above (A.1) holds.

(2) Suppose the above (A.1) holds for N(𝐷𝑘
𝜎𝑘−

, 𝐷𝑘−1
𝜎𝑘−1−

, ..., 𝐷1
𝜎1−

)<m, we need to prove

the above (1) also holds for N(𝐷𝑘
𝜎𝑘−

, 𝐷𝑘−1
𝜎𝑘−1−

,...,𝐷1
𝜎1−

)=m (>0).

Note that ⋀ 𝐷𝑖
𝜎𝑖−1

𝑖=𝑘 is a standard contradiction. Without loss of generality, assume there

is no complementary pair among 𝐷𝑘
𝜎𝑘−

 , 𝐷𝑘−1
𝜎𝑘−1−

 ,..., 𝐷1
𝜎1−

 (otherwise, if there is some

complementary pair among 𝐷𝑘
𝜎𝑘−

 ,𝐷𝑘−1
𝜎𝑘−1−

 ,...,𝐷1
𝜎1−

 , following the similar step in the above

proof case (1), we can prove that (A.1) holds). According to Lemma 4.2, without loss of

generality, assume 𝐷𝑘
𝜎𝑘−

 = 𝐷𝑘0

𝜎𝑘−
 ∨P, 𝐷𝑘−1

𝜎𝑘−1−
 = 𝐷𝑘−10

𝜎𝑘−1−
 ∨~P, where P and ~P is a

complementary pair of literals, 𝐷𝑘0

𝜎𝑘−
≠, and 𝐷𝑘−10

𝜎𝑘−1−
≠.

Also note that

(𝐷𝑘0

𝜎𝑘−
 ∨P)∧(𝐷𝑘−10

𝜎𝑘−1−
 ∨~P)∧ 𝐷𝑘−2

𝜎𝑘−2− ∧...∧ 𝐷1
𝜎1−

 = 𝐷𝑘
𝜎𝑘−

 ∧ 𝐷𝑘−1
𝜎𝑘−1−

 ∧ 𝐷𝑘−2
𝜎𝑘−2− ∧...∧

 𝐷1
𝜎1−

≡ 0 (i.e., unsatisfiable),

Therefore, we have

𝐷𝑘0

𝜎𝑘−
∧𝐷𝑘−1

𝜎𝑘−1−
∧𝐷𝑘−2

𝜎𝑘−2−∧...∧𝐷1
𝜎1−

≡0 (A.2)

𝐷𝑘
𝜎𝑘−

∧ 𝐷𝑘−10

𝜎𝑘−1−
∧𝐷𝑘−2

𝜎𝑘−2−∧...∧𝐷1
𝜎1−

≡0. (A.3)

40

i) Considering Eq. (4.2), we have

N(𝐷𝑘0

𝜎𝑘−
,𝐷𝑘−1

𝜎𝑘−1−
, 𝐷𝑘−2

𝜎𝑘−2−
,..., 𝐷1

𝜎1−
)=N(𝐷𝑘

𝜎𝑘−
,𝐷𝑘−1

𝜎𝑘−1−
, 𝐷𝑘−2

𝜎𝑘−2−
,..., 𝐷1

𝜎1−
)-1=m-1<m.

Moreover, note that 𝐷𝑘0

𝜎𝑘−
∧𝐷𝑘−1

𝜎𝑘−1−
∧ 𝐷𝑘−2

𝜎𝑘−2−∧...∧𝐷1
𝜎1−

 is still a standard contradiction,

therefore, we have,

𝐷𝑘
𝜎𝑘 ∧ 𝐷𝑘−1

𝜎𝑘−1∧ 𝐷𝑘−2
𝜎𝑘−2∧... ∧𝐷1

𝜎1

=[𝐷𝑘
𝜎𝑘+

∨𝐷𝑘
𝜎𝑘−

]∧ 𝐷𝑘−1
𝜎𝑘−1∧ 𝐷𝑘−2

𝜎𝑘−2∧... ∧𝐷1
𝜎1

=[𝐷𝑘
𝜎𝑘+

∨(P∨ 𝐷𝑘0

𝜎𝑘−
)]∧ 𝐷𝑘−1

𝜎𝑘−1∧ 𝐷𝑘−2
𝜎𝑘−2∧... ∧𝐷1

𝜎1

=[(𝐷𝑘
𝜎𝑘+

∨P)∨ 𝐷𝑘0

𝜎𝑘−
]∧ 𝐷𝑘−1

𝜎𝑘−1∧ 𝐷𝑘−2
𝜎𝑘−2∧... ∧𝐷1

𝜎1
 (by induction assumption)

≤(𝐷𝑘
𝜎𝑘+

∨P)∨ 𝐷𝑘−1
𝜎𝑘−1+

∨ 𝐷𝑘−2
𝜎𝑘−2−∨...∨𝐷1

𝜎1+
 (A.4)

ii) Similarly, considering Eq. (A.2), we have

N(𝐷𝑘
𝜎𝑘−

 , 𝐷𝑘−10

𝜎𝑘−1−
 , 𝐷𝑘−2

𝜎𝑘−2−
 ,..., 𝐷1

𝜎1−
)=N(𝐷𝑘

𝜎𝑘−
 , 𝐷𝑘−1

𝜎𝑘−1−
 , 𝐷𝑘−2

𝜎𝑘−2−
 ,..., 𝐷1

𝜎1−
)-1=m-1<m.

Moreover, note that 𝐷𝑘
𝜎𝑘−

 ∧𝐷𝑘−10

𝜎𝑘−1−
 ∧ 𝐷𝑘−2

𝜎𝑘−2− ∧...∧𝐷1
𝜎1−

 is still a standard contradiction,

therefore, we have,

𝐷𝑘
𝜎𝑘 ∧𝐷𝑘−1

𝜎𝑘−1∧ 𝐷𝑘−2
𝜎𝑘−2∧... ∧𝐷1

𝜎1

=𝐷𝑘
𝜎𝑘∧[𝐷𝑘−1

𝜎𝑘−1+
∨ 𝐷𝑘−1

𝜎𝑘−1−
]∧ 𝐷𝑘−2

𝜎𝑘−2∧... ∧𝐷1
𝜎1

=𝐷𝑘
𝜎𝑘∧[𝐷𝑘−1

𝜎𝑘−1+
∨(𝐷𝑘−10

𝜎𝑘−1−
∨~P)]∧ 𝐷𝑘−2

𝜎𝑘−2∧... ∧𝐷1
𝜎1

=𝐷𝑘
𝜎𝑘∧[(𝐷𝑘−1

𝜎𝑘−1+
∨~P)∨ 𝐷𝑘−10

𝜎𝑘−1−
]∧ 𝐷𝑘−2

𝜎𝑘−2∧... ∧𝐷1
𝜎1 (induction assumption)

≤𝐷𝑘
𝜎𝑘+

∨(𝐷𝑘−1
𝜎𝑘−1+

∨~P)∨ 𝐷𝑘−2
𝜎𝑘−2+

∨...∨𝐷1
𝜎1+

 (A.5)

It follows from (A.4) and (A.5) that

 𝐷𝑘
𝜎𝑘 ∧ 𝐷𝑘−1

𝜎𝑘−1 ∧ 𝐷𝑘−2
𝜎𝑘−2 ∧ ⋯ ∧ 𝐷1

𝜎1

≤ [(𝐷𝑘
𝜎𝑘+

∨ 𝑃) ∨ 𝐷𝑘−1
𝜎𝑘−1+

∨ 𝐷𝑘−2
𝜎𝑘−2+

∨ ⋯ ∨ 𝐷1
𝜎1+

] ∧ [𝐷𝑘
𝜎𝑘+

∨ (𝐷𝑘−1
𝜎𝑘−1+

∨ ~𝑃) ∨ 𝐷𝑘−2
𝜎𝑘−2+

∨ ⋯ ∨ 𝐷1
𝜎1+

]

 (applying binary resolution to P and ~P)

≤ 𝐷𝑘
𝜎𝑘+

∨ 𝐷𝑘−1
𝜎𝑘−1+

∨ 𝐷𝑘−2
𝜎𝑘−2+

∨ ⋯ ∨ 𝐷1
𝜎1+

.

Therefore, (A.1) holds. This concludes the proof.

41

Lemma 4.4 (Lifting Lemma of the S-CS Based Dynamic Deduction in First-Order

Logic) In first-order logic, let C1, C2,…, Cm be clauses without common variables, 𝐶𝑖
0 an

instance of Ci, i  1, 2,…, m. If 0 (=C𝑚
𝑞𝜇

(C1
0, C2

0,…, C𝑚
0)) is an S-CSC of 𝐶1

0, 𝐶2
0,…, 𝐶𝑚

0 ,

then there exists an S-CSC (=C𝑚
𝑞𝜃

(C1, C2,…, Cm)) of C1, C2,…, Cm such that 0 is an instance

of , i.e., the following transformation diagram Fig. 4.1 holds, where  and  are the

substitutions applied to 𝐶1
0, 𝐶2

0,…, 𝐶𝑚
0 and C1, C2,…, Cm respectively while constructing the

S-CSC.

 Fig. 4.1 The transformation diagram

Proof. Since Ci
0 is an instance of clause Ci, i  1, 2,…, m, so there exists a substitution i

such that 𝐶𝑖
0 = 𝐶𝑖

𝜀𝑖. Since 0 is a standard contradiction separation clause of 𝐶1
0, 𝐶2

0,…, 𝐶𝑚
0 ,

it follows that there exists a substitution  such that (𝐶1
0)𝛾− ∧(𝐶2

0)𝛾− ∧…∧(𝐶𝑚
0)𝛾− is a

standard contradiction, and 0 =C𝑚
𝑞

(𝐶1
0, 𝐶2

0,…, 𝐶𝑚
0)= (𝐶1

0)𝛾+(𝐶2
0)𝛾+…(𝐶𝑚

0)𝛾+, where

𝐶𝑖
𝜀𝑖𝛾

=(𝐶𝑖
0)𝛾= (𝐶𝑖

0)𝛾+(𝐶𝑖
0)𝛾−, (𝐶𝑖

0)𝛾+ and (𝐶𝑖
0)𝛾− have no common literals, (𝐶𝑖

0)𝛾+ can

be an empty clause, but (𝐶𝑖
0)𝛾− cannot be an empty clause, i  1, 2,…, m.

Let Ci  Ci
 Yi Xi  Zi, i  1, 2,…, m (here Ci

, Yi, Xi , Zi are clauses which are composed

of literals appearing in Ci) satisfy

(1) (𝐶𝑖
0)𝛾+=(𝐶𝑖

∗)𝜀𝑖𝛾=(𝐶𝑖
∗ ∨ 𝑌𝑖)

𝜀𝑖𝛾 (it implies that Yi is unified into (𝐶𝑖
∗)𝜀𝑖𝛾 after applied

the substitution 𝜀𝑖𝛾);

(2) (𝐶𝑖
0)𝛾−=𝑋𝑖

𝜀𝑖𝛾=(X𝑖 ∨ 𝑍𝑖)𝜀𝑖𝛾 (it implies that Zi is unified into 𝑋𝑖
𝜀𝑖𝛾 after applied the

substitution 𝜀𝑖𝛾).

0

C1 C2 Cm …



C1
0 C2

0 … Cm
0

42

Assume there is no common variables among C1, C2,…, Cm (otherwise, rename

substitution can be applied). So there is no common variables to be substituted while using the

substitutions 𝜀1 , 𝜀2 ,…, 𝜀𝑚 (i.e., there is no common variable in the denominators of 𝜀1 ,

𝜀2,…, 𝜀𝑚), therefore, set ε = ⋃ 𝜀𝑖
𝑚
𝑖=1 , we have

(⋀ 𝑋𝑖
𝑚
𝑖=1)𝜀𝛾=(⋀ 𝑋𝑖

𝜀𝑖𝑚
𝑖=1)𝛾=⋀ 𝑋𝑖

𝜀𝑖𝛾𝑚
𝑖=1 =⋀ (𝑋𝑖 ∨ 𝑍𝑖)𝜀𝑖𝛾𝑚

𝑖=1 =(⋀ (𝑋𝑖 ∨ 𝑍𝑖))𝜀𝛾𝑚
𝑖=1 , (A.6)

and

0 (𝐶1
0)𝛾+(𝐶2

0)𝛾+…(𝐶𝑚
0)𝛾+

=(𝐶1
∗ ∨ 𝑌1)𝜀1𝛾 (𝐶2

∗ ∨ 𝑌2)𝜀2𝛾 … (𝐶𝑚
∗ ∨ 𝑌𝑚)𝜀𝑚𝛾

=(𝐶1

∗)𝜀1𝛾(𝐶2
∗)𝜀2𝛾…(𝐶𝑚

∗)𝜀𝑚𝛾

=(𝐶1
∗)𝜀𝛾 (𝐶2

∗)𝜀𝛾 … (𝐶𝑚
∗)𝜀𝛾

=(𝐶1
∗ 𝐶2

∗ … 𝐶𝑚
∗)𝜀𝛾.

Let Vi  {yi1, yi2,…, } be the set of all variables occurring in Ci (i  1, 2,…, m). Since C1,

C2,…, Cm are clauses without common variables, so V1  V2 … Vm  .

Let i be the most general unifier of {Xi, Xi  Zi}, Vi  {yi1, yi2,…,𝑦𝑖𝜀𝑖
 } the set of all

variables occurring in Ci (i  1, 2,…, m), i={𝑡𝑖1 / yi1, 𝑡𝑖2 /yi2,…, 𝑡𝑖𝑠𝑖
 /𝑦𝑖𝜀𝑖

 }(without loss of

generality, assume for any i, j∈{1, 2,…, m}, if i≠j, then any of yi1, yi2,…,𝑦𝑖𝜀𝑖
 does not include

any variable appearing in Cj, that is because C1, C2,…, Cm are clauses without common

variables, and i can be chosen as the regular substitution of Ci.

Let  be a most general unifier of ⋀ 𝑋𝑖
𝜆𝑖𝑚

𝑖=1 and ⋀ (𝑋𝑖 ∨ 𝑍𝑖)𝜆𝑖𝑚
𝑖=1 (here obviously

⋀ 𝑋𝑖
𝜆𝑖𝑚

𝑖=1 and ⋀ (𝑋𝑖 ∨ 𝑍𝑖)𝜆𝑖𝑚
𝑖=1 can be unified). Then  is also the most general unifier of

(⋀ 𝑋𝑖)
𝜆𝑚

𝑖=1 and (⋀ (𝑋𝑖 ∨ 𝑍𝑖))𝜆𝑚
𝑖=1 , here (⋀ 𝑋𝑖)

𝜆𝜎𝑚
𝑖=1 =(⋀ (𝑋𝑖 ∨ 𝑍𝑖))𝜆𝜎𝑚

𝑖=1 , =⋃ 𝜆𝑖
𝑚
𝑖=1 .

It only needs to prove that  is a most general unifier ⋀ 𝑋𝑖
𝑚
𝑖=1 and ⋀ (𝑋𝑖 ∨ 𝑍𝑖)𝑚

𝑖=1 .

It is easy to see that  is a unifier of ⋀ 𝑋𝑖
𝑚
𝑖=1 and ⋀ (𝑋𝑖 ∨ 𝑍𝑖)

𝑚
𝑖=1 .

Let  be a unifier of ⋀ 𝑋𝑖
𝑚
𝑖=1 and ⋀ (𝑋𝑖 ∨ 𝑍𝑖)𝑚

𝑖=1 . Then  is also a unifier of Xi and Xi  Zi

(because C1, C2,…, Cm are clauses without common variables), i=1, 2,…, m.

Suppose the denominator part of  only have the variables y11,…, 𝑦1𝜀1
,…, yi1,…, 𝑦𝑖𝜀𝑖

,…,

ym1,…, 𝑦𝑚𝜀𝑚
(that is,  is a regular substitution of C1, C2,…, Cm), and let

i  {u | u , the denominator of u occurs in {yi1, yi2,…, 𝑦𝑖𝜀𝑖
}}.

Then i is a unifier of Xi and Xi  Zi, so there exists a substitution i such that i  ii, i 

1, 2,…, m.

43

Since the denominator of i only has variables {yi1, yi2,…, 𝑦𝑖𝜀𝑖
}, so the denominator of i

also only has variables {yi1, yi2,…, 𝑦𝑖𝜀𝑖
}. Let   1∪2∪…∪m. We then have

(1∪2∪…∪m)(1∪2∪…∪m)

 𝐷𝑘0

𝜎𝑘 {𝑡11
(1∪…∪𝑚)

/𝑦11, 𝑡12
(1∪…∪𝑚)

/𝑦12,…, 𝑡1𝑠1

(1∪…∪𝑚)
/𝑦1𝑠1

,…,

 𝑡𝑖1
(1∪…∪𝑚)

/𝑦𝑖1, 𝑡𝑖2
(1∪…∪𝑚)

/𝑦𝑖2,…, 𝑡𝑖𝑠𝑖

(1∪…∪𝑚)
/𝑦𝑖𝑠𝑖

,…,

𝑡𝑚1
(1∪…∪𝑚)

/𝑦𝑚1, 𝑡𝑚2
(1∪…∪𝑚)

/𝑦𝑚2,…, 𝑡𝑚𝑠𝑚

(1∪…∪𝑚)
/𝑦𝑚𝑠𝑚

,…,

 1∪2∪…∪m}

 {t11
1y11, t12

1y12, …, 𝑡1𝑠1

𝛿1 /𝑦1𝜀1
, …,

 ti1
iyi1, ti2

iyi2, …, 𝑡𝑖𝑠𝑖

𝛿𝑖 /𝑦𝑖𝜀𝑖
, …,

 𝑡𝑚1

𝛿𝑚/𝑦𝑚1
, 𝑡𝑚2

𝛿𝑚/𝑦𝑚2
,…, 𝑡𝑚𝑠𝑚

𝛿𝑚 /𝑦𝑚𝑠𝑚
, 1∪2∪…∪ m}

 {t11
1y11, t12

1y12,…, 𝑡1𝑠1

𝛿1 /𝑦1𝜀1
, 1,…,

 ti1
iyi1, ti2

iyi2,…, 𝑡𝑖𝑠𝑖

𝛿𝑖 /𝑦𝑖𝜀𝑖
, i,…,

 tm1
mym1, tm2

mym2,…, 𝑡𝑚𝑠𝑚

𝛿𝑚 /𝑦𝑚𝑠𝑚
, m}

 (11) ∪(22) ∪... ∪ (mm).

Denote   1∪2∪…∪m and   1∪2∪…∪m, we then have

  (11) ∪ (22) ∪... ∪(mm)  .

Because  is a unifier of ⋀ 𝑋𝑖
𝑚
𝑖=1 and ⋀ (𝑋𝑖 ∨ 𝑍𝑖)𝑚

𝑖=1 , it follows that  is also a unifier of

⋀ 𝑋𝑖
𝑚
𝑖=1 and ⋀ (𝑋𝑖 ∨ 𝑍𝑖)

𝑚
𝑖=1 , that implies that (⋀ 𝑋𝑖)

𝜆𝛿𝑚
𝑖=1 = (⋀ (𝑋𝑖 ∨ 𝑍𝑖))𝜆𝛿𝑚

𝑖=1 , so  is a

unifier of (⋀ 𝑋𝑖)
𝜆𝑚

𝑖=1 and (⋀ (𝑋𝑖 ∨ 𝑍𝑖))𝜆𝑚
𝑖=1 .

Accordingly, there exists a substitution  such that =. It follows that   . Hence,

 is the most general unifier of ⋀ 𝑋𝑖
𝑚
𝑖=1 and ⋀ (𝑋𝑖 ∨ 𝑍𝑖)𝑚

𝑖=1 .

It follows from the above Eq. (A.6) that  is a unifier of ⋀ 𝑋𝑖
𝑚
𝑖=1 and ⋀ (𝑋𝑖 ∨ 𝑍𝑖)

𝑚
𝑖=1 , that

means there exists a substitution  such that =.

Let

C𝑚
𝑞𝜃

(C1, C2,…, Cm)= (𝐶1
∗ ∨ 𝑌1)𝜆1𝜎(𝐶2

∗ ∨ 𝑌2)𝜆2𝜎…(𝐶𝑚
∗ ∨ 𝑌𝑚)𝜆𝑚𝜎.

44

Since (⋀ 𝑋𝑖)
𝜀𝛾𝑚

𝑖=1 =⋀ 𝑋𝑖
𝜀𝑖𝛾𝑚

𝑖=1 =(𝐶1
0)𝛾−∧(𝐶2

0)𝛾−∧…∧(𝐶𝑚
0)𝛾− is a standard contradiction,

for any (𝑥1
𝜆1𝜎

, 𝑥2
𝜆2𝜎

, … , 𝑥𝑚
𝜆𝑚𝜎

) ∈ ∏ 𝑋𝑖
𝜆𝑖𝜎𝑚

𝑖=1 , it follows that

(𝑥1
𝜆1𝜎𝜂

, 𝑥2
𝜆2𝜎𝜂

, … , 𝑥𝑚
𝜆𝑚𝜎𝜂

) = (𝑥1
𝜀1𝛾

, 𝑥2
𝜀2𝛾

, … , 𝑥𝑚
𝜀𝑚𝛾

) ∈ ∏ 𝑋𝑖
𝜀𝑖𝛾𝑚

𝑖=1 .

Without loss of generality, we can set 𝑥1
𝜀1𝛾 = ~(𝑥2

𝜀2𝛾) ， hence 𝑥1
𝜆1𝜎𝜂

= 𝑥1
𝜀1𝛾 = ~(𝑥2

𝜀2𝛾) = ~(𝑥2
𝜆2𝜎𝜂

) . In addition, for arbitrary a unifier  of ⋀ 𝑋𝑖
𝑚
𝑖=1 and

⋀ (𝑋𝑖 ∨ 𝑍𝑖)
𝑚
𝑖=1 , there always exists a unifier  of (⋀ 𝑋𝑖)

𝜆𝑚
𝑖=1 and ⋀ (𝑋𝑖 ∨ 𝑍𝑖)𝜆𝑚

𝑖=1 , and  is a

unifier of ⋀ 𝑋𝑖
𝑚
𝑖=1 and ⋀ (𝑋𝑖 ∨ 𝑍𝑖)𝑚

𝑖=1 . It follows that there exists a unifier 𝛿𝜀𝛾 of (⋀ 𝑋𝑖)
𝜆𝑚

𝑖=1

and ⋀ (𝑋𝑖 ∨ 𝑍𝑖)𝜆𝑚
𝑖=1 such that 𝑥1

1𝛿𝜀𝛾 = ~(𝑥2

2𝛿𝜀𝛾) = ~(𝑥2
𝜆2)𝛿𝜀𝛾 , that is 𝑥1

1 and ~(𝑥2
2)

can be unified with σ being the unifier. It means 𝑥1
1 =~(𝑥2

𝜆2), that is, there exists a

complementary pair among (𝑥1
𝜆1𝜎

, 𝑥2
𝜆2𝜎

, … , 𝑥𝑚
𝜆𝑚𝜎

) . Therefore, ⋀ 𝑋𝑖
𝑖𝑚

𝑖=1 is a standard

contradiction. Note that ⋀ 𝑋𝑖
𝑖𝑚

𝑖=1 =⋀ (𝑋𝑖 ∨ 𝑍𝑖)𝜆𝑖𝜎𝑚
𝑖=1 , so ⋀ (𝑋𝑖 ∨ 𝑍𝑖)

𝜆𝑖𝜎𝑚
𝑖=1 is also a standard

contradiction. Therefore, we have

C𝑚
𝑞𝜃

(C1, C2,…, Cm)= (𝐶1
∗ ∨ 𝑌1)𝜆1𝜎(𝐶2

∗ ∨ 𝑌2)𝜆2𝜎…(𝐶𝑚
∗ ∨ 𝑌𝑚)𝜆𝑚𝜎

is a standard contradiction separation clause of C1, C2,…, Cm (here 𝐷𝑖
+ = (𝐶𝑖

∗ ∨ 𝑌𝑖)
𝜆𝑖𝜎, 𝐷𝑖

− =

(𝑋𝑖 ∨ 𝑍𝑖)𝜆𝑖𝜎 , i=1, 2,…, m, ⋀ 𝐷𝑖
−𝑚

𝑖=1 is a standard contradiction, and C𝑚
𝑞𝜃

 (C1, C2,…,

Cm)=⋁ 𝐷𝑖
+𝑚

𝑖=1 is standard contradiction separation clause of C1, C2,…, Cm)

In addition, note that

(𝐶1
∗ ∨ 𝑌1)𝜆1𝜎(𝐶2

∗ ∨ 𝑌2)𝜆2𝜎…(𝐶𝑚
∗ ∨ 𝑌𝑚)𝜆𝑚𝜎

=[(𝐶1
∗ ∨ 𝑌1)(𝐶2

∗ ∨ 𝑌2)…(𝐶𝑚
∗ ∨ 𝑌𝑚)]𝜆𝜎.

Therefore, we have

(C𝑚
𝑞𝜃

(C1, C2,…, Cm))

=[(𝐶1
∗ ∨ 𝑌1)(𝐶2

∗ ∨ 𝑌2)…(𝐶𝑚
∗ ∨ 𝑌𝑚)]𝜆𝜎𝜂

=[(𝐶1
∗ ∨ 𝑌1)(𝐶2

∗ ∨ 𝑌2)…(𝐶𝑚
∗ ∨ 𝑌𝑚)]𝜀𝛾

=(𝐶1
∗ ∨ 𝑌1)𝜀𝛾(𝐶2

∗ ∨ 𝑌2)𝜀𝛾…(𝐶𝑚
∗ ∨ 𝑌𝑚)𝜀𝛾

=(𝐶1
∗ ∨ 𝑌1)𝜀1𝛾(𝐶2

∗ ∨ 𝑌2)𝜀2𝛾…(𝐶𝑚
∗ ∨ 𝑌𝑚)𝜀𝑚𝛾

=(𝐶1

∗)𝜀1𝛾(𝐶2
∗)𝜀2𝛾…(𝐶𝑚

∗)𝜀𝑚𝛾

45

=(𝐶1
∗)𝜀𝛾(𝐶2

∗)𝜀𝛾…(𝐶𝑚
∗)𝜀𝛾

=(𝐶1
∗𝐶2

∗…𝐶𝑚
∗)𝜀𝛾

=0.

This completes the proof.

