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Abstract. Accidental falls can cause serious injury to at risk individuals. This is 
especially true in the elderly community where falls are the leading cause of 

hospitalization, injury-related deaths and loss of independence. Detecting and 

rapidly responding to falls has shown to reduce the long-term impact of and 

risks associated with falls. A number of real time fall detection solutions exist, 

however, these have some deficiencies relating to privacy, maintenance, and 
correct usage. This study introduces a novel fall detection approach that aims to 

address some of these deficiencies through use of computer vision processes 

and ceiling mounted thermal vision sensors. A preliminary evaluation has been 

performed on this process showing promising results, with an accuracy of 68%, 

however, highlighting a number of issues related to false positives. Future work 
will improve this approach and provide extended evaluation. 

Keywords: Fall detection, Assistive technologies, Computer vision, Sensors, 

Thermal vision. 

1 Introduction 

Accidental falls can cause serious injury to at risk individuals, such as the elderly and 

those with bone disease. Falls can cause a variety of injuries  including broken bones 

and significant bruising. In particular, broken bones can represent a significant risk to 

the immediate health of an individual and can negatively affect their long term Quali-

ty of Life (QOL) [1, 2]. This is especially true in elderly communities where falls are 

the leading cause of hospitalization, injury-related deaths and loss of independence 

[1–4]. Fall prevention may not be realistically feasible in all cases  [5, 6], however, 

detection of falls and rapidly responding to them has shown to be highly beneficial. 

Rapid response addresses injury earlier and can help prevent fall-related death and 

can increase the long-term QOL of elderly individuals who suffered a fall [4, 7, 8].  

A number of solutions currently exist to provide real-time fall detection and alert-

ing. These solutions have shown promising results . They have, however, some defi-

ciencies related to correct usage, privacy and maintenance. In order to address some 

of these deficiencies, this study investigates the feasibility of a novel approach to fall 

detection that is  based upon thermal sensing and computer vision. 

The remaining Sections of this paper are arranged as follows; Section 2 provides a 

summary of related work; Section 3 introduces the novel approach used within th is 

study; Section 4 provides an evaluation of the approach and, finally, Section 5 con-

cludes the paper with a reflection on the utility of the approach and future work. 
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2 Related work 

A number of related works exist within the domain of fall detection [9–12]. These are 
roughly separated into two classes of approach as dictated by their operational model. 

These classes are Wearable-sensor based and environmental based.  

Wearable-sensor based approaches typically use signals from sensors to detect falls  
through classifying signals  [13]. These sensors include accelerometers, gyroscopes 

and barometers [14]. These approaches may use dedicated fall detection devices, such 
as those in [15] or use smartphone based apps [16, 17].  

Wearable-sensors have shown extremely promising results with accuracy reaching 
over 90% [8], however, have a disadvantage where they need to be worn to function. 

This represents a problem for use within the elderly population where cognitive im-

pairment may lead to these wearable devices not being used correctly  [9–12]. In addi-
tion, wearable sensors need to have their power source maintained  by a recharging 

process or battery replacement, representing an additional barrier to adoption. 
Environmental approaches rely upon sensors deployed in a location of interest. A 

range of sensors have been used to in this approach, including acoustic sensors  [18], 
visual/infrared vision cameras [10, 19, 20], vibration detection [21], position-

al/pressure tracking [22–24] and thermal vision [25].  

Acoustic sensors detect noises which may represent falls. This approach has issues  
related to noisy environments where its accuracy and utility may be diminished. Visu-

al/infrared cameras show promise, however, represent a potential violation of privacy 
as they transmit/record highly detailed imagery of an environment. Depth cameras 

address the privacy issues of visual/thermal camera solutions, however, have a limited 
field of view and require an unobscured side-profile view of their subjects, introduc-

ing problems with deployment. Vibration detection based solutions detect vibrations 

in a locale that may represent a fall but are subject to false positives. Positional track-
ing, incorporating technology such as pressure-sensitive floors or radar, are effective, 

however, expensive and require an extensive retrofitting of an environment. Thermal 
vision has been previously investigated using neural networks and the vertical-

velocity of a person. This solution had issues related to low detection rate, limited 
field of view, requirement for an unobscured side-profile view and was easily con-

fused by a person sitting down.  
In order to address these shortcomings , a novel approach to detecting falls, related 

to the work in [25] has been proposed. This approach uses ceiling mounted thermal 

vision sensors in conjunction with an advanced computer vision based mechanism 
which identifies potential falls. Potential falls are logged with alerts being passed to 

caregiving staff who can then intervene appropriately. In this approach, an individu-
al’s environment is monitored in a way that is non-invasive and respects privacy.  

 

3 Detecting falls through thermal vision 

The devised fall detection approach observes an inhabitant through a thermal vision 

sensor and identifies likely fall events. Thermal sensors are placed on a ceiling and 

generate a 32*31 frame of temperature readings for the area directly below at a rate of 

6Hz. This sensor has an extremely wide field of view of 86° by 83°, allowing percep-

tion of a large area; at a deployment of height of 2.5 meters the viewable areas is ap-

proximately 6 meters by 5.6 meters . This sensor is shown in Figure 1 (a) and its per-

ception of the world is shown in Figure 1 (b). 



                       
                                   (a)                                              (b) 

Fig. 1. The thermal vision sensor used in this study (a). The environment as perceived by the 

sensor and presented in a web interface, the hot readings are represented by white pixels (b). 
 

Frames are read from the sensor through a listener program placed on the local 

network. This listener reads raw frame data from this sensor and interleaves it to gen-

erate frames with usable values  in Celsius, to 2 decimal places. The listener then for-

wards these usable frames to a web service endpoint. This web service endpoint then 

stores the frame in a Time Series Database (TSDB) and an in-memory cache. 

A computer vision process retrieves the frame data from the endpoint and performs 

blob and entity detection. Initially, the process filters thermal pixels which are outside 

of the likely range of human emissive temperatures or occurred through gradually 

raised temperature. These filtered readings are subsequently used to identify thermal 

pixels that are significantly above unfiltered background temperatures through com-

parison with previous frame data. These identified thermal pixels are then grouped as 

blobs, representing occupants, and a number of metrics are generated. These metrics 

include thermal pixel count, blob location, blob emissive temperature, blob width, 

blob height and blob aspect ratio. Finally, blobs that have a thermal pixel count less 

than 6 are discarded, as these would be too small to represent a human at the intended 

sensor deployment height, as determined though a small number of evaluations. Fur-

ther information on this process can be obtained in [26, 27]. 

This blob detection process then stores these blob in the TSDB and memory cache. 

A Fall Detection Process (FDP) subsequently consumes these recorded blob1. If the 

FDP detects a fall, it is recorded in a Relational Database which is presented in a web 

interface. The overall architecture of this approach is presented in Figure 2 and is 

followed by a description of the FDP.  
 

 
Fig. 2. The architecture of the developed fall detection platform. 

                                                                 
1  It should be noted that this detection process is designed to operate within a single occupant 

environment, when a fall is most dangerous and there is no immediate assistance available. 

REST Web-Serv ice Endpoint 



The FDP reasons upon the blob records generated by the computer vision process. 

Central to this process is the hypothesis that rapid and significant expansion of a blob 

in a localized area could indicate a fall.  

Blobs under consideration are those within body temperate range, 26C - 41C. Only 

blobs that have fully entered the frame are considered, as the rapid blob expansion 

from an inhabitant entering a scene could mislead the FDP. Blobs are considered to be 

in scene when they are not touching the outer pixels of the frame. Although this re-

duces the usable area of sensor frames, uncertainty related to partial observability is 

reduced. Events in which multiple blobs converge into one, potentially representing 

close conversation, are ignored by the FDP to reduce false positives . 

When a single, unconverged and in scene blob is present the FDP is eligible and so 

performed. The FDP operates on a window of 4 frames; where fn is the current frame 

and fn-3 is the 4th most current frame. A reference blob size value, blobrs, is produced 

by averaging the size of a blob from fn-3 and fn-2. Averaging over 2 frames introduces 

a smoothing factor, reducing the impact of anomalous readings  and accommodating 

movement. blobrs is assumed to initially indicate the size of a blob in a non-fall state, 

such as standing. If at any point, the blob size in fn expands more than 1.8 times larger 

than blobrs it will be assumed that a fall has occured. Frame fn-1 is not considered to 

facilitate transitioning from a normal posture to a fall. The value of 1.8 was arose 

through sequential analysis  of values between 1.2 and 3.4 incremented in steps of 0.2.  

This analysis incorporated 4 test cases , involving one subject; 2 test falls and 2 

postural changes incorporating sitting to seating and vice versa. 1.8 was the lowest 

value to reliably detect test falls and not be triggered on posture transitions. Higher 

values may reduce false positives, however, not detect falls. If other blobs enter the 

scene, this process is reset and halted until its eligibility is restored. Following this 

initial development, this FDP was then evaluated; the scenario and results of which 

are presented in the following Section. 
 

4 Evaluation 

In order to evaluate the suitability of this approach it was necessary to evaluate fall 

detection rates and false positives. To achieve this, a sensor was deployed in a test 

area for two 4-hour evaluation periods. During these periods a test subject performed 

their daily tasks, occasionally interacted with other occupants, and performed two sets 

of simulated falls. Daily tasks included working at a computer, reading, and making 

coffee. During performance of daily tasks and interaction a manual record of fall 

events served as a ground truth during performance of the simulated falls. Thirty Pos-

tural Changes (PC) were performed to gain insight into false positives and false nega-

tives. PCs are significant changes in blob size through normal activity, such as reach-

ing across a desk or moving from seated to standing. The results of this evaluation are 

presented in Table 1. 
 

Table 1. Accuracy of fall detection through the thermal vision-based FDP devised in this study. 

Set 
Simulated 

Falls 

Detected 

Falls 

Detection 

Rate 

PC 

Count 

PC 

Errors  

True Positive/False Positive/True 

Negative/False Negative 

Sensitivity/ 

Specificity 

I 15 10 66.7% 20 4 10 / 4 / 16 / 5 66.7%/80.0% 

II 10 7 70% 10 3 7 / 3 / 7 / 3 70.0%/70.0% 



The preliminary results show that this approach has promise, though a number of 
issues were highlighted. In some cases, PCs were incorrectly identified as falls. Incor-

rectly classified PCs included reaching across a desk with a leg extended for balance, 
which is not likely to be performed by an elderly person in the home, and quickly 

transitioning from standing to seated while arms were simultaneously being fully 
extended. Some falls were not correctly identified when the subject limbs where par-

tially obscured by desks and other fixtures . In another case a slow fall was not detect-
ed where the subject partially stopped their fall by pushing against a support. Potential 

mechanisms to address these errors are presented in the conclusion of this paper. 
 

5 Conclusion  

In this paper we present a novel approach to fall detection that utilizes thermal vi-

sion sensors and a computer vision based FDP. This approach addresses some issues 

with previous fall detection works  by respecting privacy, not requiring an extensive 

retrofitting process and eliminating the need for wearable devices. Although this 

study is in its early stage, preliminary evaluation shows accuracy of 68%, comparing 

favorably with previous thermal vision fall detection that was 35% accurate [25]. 

A number of deficiencies have been identified and efforts are underway to address 

these. Specifically, edge and shape detection will be added to the computer vision  

process to reduce misclassification of unusual PCs. Additional work, will investigate 

use of shape detection to help address issues with falls where the subject becomes 

partially obscured. Finally, adaptive generation of blobrs across a dynamic frame 

window will be investigated to accommodate variance in fall rates.  

Following development of these improvements, a more thorough evaluation will be 

undertaken involving a number of subjects and a larger sample size. Following evalu-

ation, trialing this approach in a suitable population will be investigated .  
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