
COVER FE ATURE

37JANUARY 2011Published by the IEEE Computer Society0018-9162/11/$26.00 © 2011 IEEE

To provide for this future, the Apoptotic Computing
project has been working since 2002 toward the long-term
goal of programmed death by default for computer-based
systems.2-6 Motivated by the apoptosis mechanisms in
multicellular organisms, apoptotic computing can be
considered a subarea of bio-inspired computing, natural
computing, or autonomic systems. Two example applica-
tions are autonomic agent-based environments and swarm
space exploration systems.

BIOLOGICAL APOPTOSIS
Developing a self-managing computer system is the

vision of autonomic computing.7-9 As the “Autonomic
System Properties” sidebar explains, an autonomic com-
puting system is analogous to the biological nervous
system, which automatically maintains homeostasis
(metabolic equilibrium) and controls responsiveness to
external stimuli. For example, most of the time you are
not consciously aware of your breathing rate or how fast
your heart is beating, while touching a sharp knife with
your finger results in a reflex reaction to move the finger
out of danger.10

If you cut yourself and start bleeding, you treat the
wound and carry on without thinking about it, although
pain receptors will induce self-protection and self-
configuration to use the other hand. Yet, often the cut will
have caused skin cells to be displaced down into muscle
tissue.11 If the cells survive and divide, they have the po-
tential to grow into a tumor. The body’s solution to this
situation is cell self-destruction (with mounting evidence

A t the 2009 International Joint Conference on Arti-
ficial Intelligence, researchers warned that the
nightmare scenarios depicted in sci-fi films such
as 2001: A Space Odyssey, the Terminator and

Matrix series, Minority Report, and I, Robot could come
true. “Scientists fear a revolt by killer robots” proclaimed
the UK’s Sunday Times,1 which highlighted alarming find-
ings at the conference that mankind might lose control of
computer-based systems that carry out a growing share of
society’s workload, from chatting on the phone to waging
war, and have already reached a level of indestructibility
comparable with the cockroach. For instance, unmanned
predator drones, which can seek out and kill human tar-
gets, have already moved out of the movie theatre and
into the theatre of war in Afghanistan and Iraq. While
presently controlled by human operators, these drones
are moving toward more autonomous control. Similar
devices may also soon appear above city streets to carry
out domestic surveillance. Samsung, the South Korean
electronics giant, has developed autonomous sentry
robots with “shoot to kill” capability to serve as armed
border guards.1

Inspired by the cellular self-destruct
mechanisms in biological apoptosis, apop-
totic computing offers a promising means
to develop self-managing computer-based
systems.

Roy Sterritt, University of Ulster

Apoptotic
Computing:
Programmed
Death by Default
for Computer-
Based Systems

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ulster University's Research Portal

https://core.ac.uk/display/287022904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

COVER FE ATURE

compUteR 38

that some forms of cancer are the result of cells not dying
fast enough, rather than multiplying out of control, as pre-
viously thought).

Biologists believe that cells are programmed to commit
suicide through a controlled process known as apoptosis.12
The term is derived from the Greek word for “to fall off,” in

reference to dead leaves falling from trees in autumn; like-
wise, cells “fall off” the living organism and die. As Figure
1a shows, a cell’s constant receipt of “stay alive” signals
turns off the self-destruct sequence.3 When these signals
cease, the cell starts to shrink, internal structures decom-
pose, and all internal proteins degrade; thereafter, the cell
breaks into small, membrane-wrapped fragments to be
engulfed by phagocytic cells for recycling. Figure 1b con-
trasts apoptosis, also known as “death by default,”11 with
necrosis, the unprogrammed death of a cell due to injury—
inflammation and the accumulation of toxic substances.13

Recent research indicates that cells receive orders to
kill themselves when they divide.12 The reason appears
to be self-protection. An organism relies on cell divi-
sion for maintenance and growth, but the process is also
dangerous: if just one of the billions of cells in a human
body locks into division, the result is a tumor. The suicide
and reprieve controls can be likened to the dual keys of
a nuclear missile: the suicide signal (first key) turns on
cell growth but at the same time activates a sequence
that leads to self-destruction, while the reprieve signal
(second key) overrides the self-destruct sequence.14

AUTONOMIC AGENTS
Autonomic computing depends on many disci-

plines for its success; not least of these is research in
agent technologies. There are no assumptions that an
autonomic architecture must use agents, but agent prop-
erties—adaptability, autonomy, cooperation, and so
on—complement the paradigm’s objectives. In addition,
there are arguments for designing complex systems with
multiple agents,15 providing such systems with inbuilt
redundancy and greater robustness,16 and for retrofitting
legacy systems with autonomic capabilities that may ben-
efit from an agent-based approach.17

Figure 2 shows a basic autonomic element (AE), which
consists of a managed component (MC) and an autonomic
manager (AM).18 The AM can be a stationary agent—for
instance, a self-managing cell19 that contains functional-
ity for measurement and event correlation and provides
support for policy-based control. AMs communicate via
means such as self-* event messages.

Mobile agents can also play a role in autonomic systems.
Their ability to reduce network load, overcome network
latency, encapsulate protocols, execute asynchronously
and autonomously, adapt dynamically, reflect natural het-
erogeneity, and maintain robustness and fault tolerance
can make it easier for AMs within different systems to
cooperate.

APOPTOSIS IN AGENT-BASED
AUTONOMIC ENVIRONMENTS

Michael S. Greenberg and colleagues first proposed
agent destruction to facilitate security in mobile-agent

AUtoNomic SYStem pRopeRtieS

t he general properties of an autonomic, or self-managing,
computing system consist of four objectives that represent

broad system requirements, and four attributes that identify basic
implementation mechanisms.1,2

An autonomic system has the following objectives:

•	 Self-configuration. The system must be able to readjust itself
automatically, either to support a change in circumstances or
to assist in meeting other system objectives.

•	 Self-healing. In reactive mode, the system must effectively
recover when a fault occurs, identify the fault, and, when pos-
sible, repair it. In proactive mode, the system monitors vital
signs to predict and avoid health problems, or to prevent their
reaching undesirable levels.

•	 Self-optimization. The system can measure its current perfor-
mance against the known optimum and has defined policies
for attempting improvements. It can also react to the user’s
policy changes within the system.

•	 Self-protection. The system must defend itself from accidental
or malicious external attacks, which requires an awareness of
potential threats and the means to manage them.

To achieve these self-managing objectives, a system must be

•	 self-aware—aware of its internal state;
•	 self-situated—aware of current external operating conditions

and context;
•	 self-monitoring—able to detect changing circumstances; and
•	 self-adjusting—able to adapt accordingly.

Thus, to be autonomic a system must be aware of its available
resources and components, their ideal performance characteris-
tics, and current status. It must also be aware of interconnection
with other systems, as well as rules and policies for adjusting as
required. Operating in a heterogeneous environment requires rely-
ing on open standards to communicate with other systems.

These mechanisms do not exist independently. For example, to
successfully survive an attack, the system must exhibit self-healing
abilities, with a mixture of self-configuration and self-optimization.
This not only ensures the system’s dependability and continued
operation but also increases self-protection from similar future
attacks. Self-managing mechanisms must also ensure minimal dis-
ruption to users.

References
 1. R. Sterritt, “Towards Autonomic Computing: Effective Event

Management,” Proc.	27th	Ann.	IEEE/NASA	Software	Eng.	Work-
shop (SEW 02), IEEE CS Press, 2002, pp. 40-47.

 2. R. Sterritt and D. Bustard, “Autonomic Computing—A Means of
Achieving Dependability?” Proc.	10th	IEEE	Int’l	Conf.	and	Work-
shop	Eng.	of	Computer-Based	Systems (ECBS 03), IEEE CS Press,
2003, pp. 247-251.

Managed component

Autonomic element (agent or other)

Self-monitor Self-adjuster

Environment monitor AM ↔ AM
communications

Adapter/plannerKnowledge

Autonomic communications channel

Re�ex signal

Self-aware

Environment-
aware

Autonomic manager (AM)

39JANUARY 2011

systems.20 They described an event
in which network operators de-
commissioned a computer named
omega.univ.edu and moved its work
to other machines. A few years
later, the operators assigned a new
computer the old name and, to ev-
eryone’s surprise, e-mail arrived,
much of it three years old; the mail
had survived “pending” on Inter-
net relays waiting for omega.univ.
edu to come back up. Greenberg’s
team considered a similar scenario
in which mobile agents—not rogue
agents but ones carrying proper
authenticated credentials—carried
out work that was out of context
rather than the result of abnormal
procedures or system failure. In this
circumstance, the mobile agents
could cause substantial damage—
for example, deliver an archaic
upgrade to part of the network op-
erating system, bringing down the
entire network.

Misuse involving mobile agents
can occur in several forms. Agents
can accidentally or unintention-
ally misuse hosts due to, say, race
conditions or unexpected emergent
behavior in those agents. In addi-
tion, external bodies acting upon
agents, either deliberately or acci-
dentally, can lead to their misuse by
hosts or other agents—for example,
due to damage, breaches of privacy,
harassment, social engineering,
event-triggered attacks, or compound attacks.

Encryption can prevent situations in which portions
of an agent’s binary image—monetary certificates, keys,
information, and so on—could be copied when visiting
a host. However, agent execution requires decryption,
which provides a window of vulnerability.20 This situa-
tion is analogous to the body’s vulnerability during cell
division.3

Figure 3 shows a high-level view of a simple autonomic
environment with three AEs (a typical system has hun-
dreds, thousands, or even millions of AEs). Each AE is an
abstract view of Figure 1, and in this case the MCs rep-
resent self-managing computer systems. These AEs can
have many other lower-level AEs—for example, an auto-
nomic manager for the disk drive—while at the same time
residing within the scope of a higher-level AM such as a
system-wide local area network domain’s AE.

Within each AM, heartbeat monitors (HBMs) send “I am
alive” signals to ensure the continued operation of vital
processes in the MC and to immediately indicate if any
fail. The AM has a control loop that continually monitors
and adjusts, if necessary, metrics within the MC, yet vital
processes in the MC can also be safeguarded by an HBM
that emits a heartbeat signal as opposed to its being polled
by the AM, avoiding lost time (time to next poll) by the AM
to notice a failure (note in Figure 3 that the left-hand AE
has an HBM between the AM and a process on the MC).

Because each AM is aware of its MC’s health via the
continuous control loop, it can share this information
by sending a pulse signal (“I am un/healthy”) to another
AM—in Figure 3, for example, from the left-hand AE to
the middle AE. This not only allows self-managing options
if the machines are, say, sharing workload as a cluster
but protects the AM itself as the pulse signal also acts as

Normal cell

Apoptosis

Necrosis

Stay
alive

(a) (b)

Figure 1. Biological apoptosis. (a) A cell’s constant receipt of “stay alive” signals turns
off its programmed self-destruct sequence. (b) Apoptosis versus necrosis due to
injury.

Figure 2. An autonomic element consists of a managed component and an autonom-
ic manager, which can be a stationary agent. The AM ↔ AM communications module
includes heartbeat monitoring and pulse monitoring. AMs communicate through an
autonomic channel via such means as self-* event messages.

COVER FE ATURE

compUteR 40

an HBM signal from one AM to another. Thus, if an AE’s
vital process fails, the neighboring AM will immediately
become aware of it and, for example, try to restart the
failed AE or initiate a failover to another AM. This pulse
signal can also act as a reflex signal between AMs warning
of an immediate incident—a more direct solution than the
AM’s processing numerous event messages to eventually
determine an urgent situation.

Because AMs also monitor the external environment
(the second control loop), they have a view of their local
environment’s health. They can encode such information
into the pulse signal along with self-health data (just as
our hearts have a double beat). The double-pulse signals
between the right-hand and center AEs in Figure 3 repre-
sent this situation.

AMs can dispatch mobile agents to work on their
behalf—for example, to update a set of policies. To help
provide self-protection in these situations, AMs can send
apoptosis signals (“stay alive/self-destruct”) to such agents
by either authorizing continued operation or by with-
drawing such authorization—for example, if the policies
become out of date. Figure 3 depicts both scenarios.

We refer to the absence of a “stay alive” signal resulting
in agent self-destruction as strong apoptotic computing,
or programmed death by default, while weak apoptotic
computing involves an explicit self-destruct signal—similar
in principle to the garbage collection method first used
by Lisp and by many languages since or the destructor
method in object orientation. The differences in these ap-
proaches are subtle but important. Only a built-in default
death can guarantee true system safety. For example, you

would never rely on a self-destruct signal getting through
to an agent containing system password updates in a
hostile environment. Likewise, a robot with adaptive ca-
pabilities could learn to ignore such a signal. That said,
clearly not all circumstances require a death-by-default
mechanism. However, we believe that many researchers
using programmed death under the apoptosis descriptor
should be using programmed death by default.

There is a concern that denial-of-service attacks could
prevent “stay alive” signals from reaching their target
and thereby induce unintentional agent self-destruction.
DoS attacks could likewise interrupt terminate signals,
resulting in potentially dangerous scenarios. DoS-immune
architectures are thus a critical part of next-generation
self-managing systems.

SWARM SPACE EXPLORATION SYSTEMS
Space exploration missions by necessity have become

increasingly autonomous and adaptable. To develop more
self-sustainable exploration systems, NASA is investigating
the use of biologically inspired swarm technologies.3 As
Figure 4 shows, the idea is that swarms of small spacecraft
offer greater redundancy (and, consequently, greater pro-
tection of assets), lower costs and risks, and the ability to
explore more remote regions of space than a single large
craft.

The Autonomous NanoTechnology Swarm mission
(http://ants.gsfc.nasa.gov), a collaboration between NASA’s
Goddard Space Flight Center and its Langley Research
Center, exploits swarm technologies and AI techniques
to develop revolutionary architectures for both space-

Figure 3. Simple autonomic environment consisting of AEs with autonomic agents (stationary and mobile), heartbeat monitors
(“I am alive”), pulse monitors (“I am un/healthy”), and apoptosis controls (“stay alive/self-destruct”).

AE

Autonomic communications channel

MC

AM

S*

S*

S*

S*

S*

S*S* S*S*

AE

MC

AM

AE

MC

AM

S*

S*

S*

S*

S*
S*

S*

S*

S*

S*

Pulse monitor

Key
Self-* event messages AE

MC

AMHeartbeat monitor

Managed component

Autonomic manager (stationary agent)

Autonomic element (AM+MC)

Autonomic agent (mobile agent) Autonomic agent apoptosis controls

41JANUARY 2011

craft and surface-based rovers. ANTS consists of several
submissions:

•• The Saturn Autonomous Ring Array consists of a
swarm of 1,000 pico-class spacecraft, organized as 10
subswarms with specialized instruments, to perform
in situ exploration of Saturn’s rings to better under-
stand their constitution and how they were formed.
SARA will require self-configuring structures for nu-
clear propulsion and control as well as autonomous
operation for both maneuvering around Saturn’s rings
and collision avoidance.

•• The Prospecting Asteroid Mission (PAM) also in-
volves 1,000 pico-class spacecraft but with the aim
of exploring the asteroid belt and collecting data on
particular asteroids of interest for potential future
mining operations.

•• The Lander Amorphous Rover Antenna (LARA) will
implement new NASA-developed technologies in the
field of miniaturized robotics, which could form the
basis of remote lunar landers launched from remote
sites, as well as offering innovative techniques to
allow rovers to move in an amoeboid fashion over
the moon’s uneven terrain.

The ANTS architecture emulates the successful division
of labor exhibited by low-level social-insect colonies. In
such colonies, with sufficiently efficient social interaction
and coordination, a group of specialists usually outper-
forms a group of generalists. To accomplish their specific
mission goals, ANTS systems likewise rely on large num-
bers of small, autonomous, reconfigurable, and redundant
worker craft that act as independent or collective agents.21
The architecture is self-similar in that ANTS system ele-
ments and subelements can be structured recursively,22
and it is self-managing, with at least one ruler (AM) per
ANTS craft.

NASA missions such as ANTS provide a trusted private
environment, eliminating many agent security issues and
enabling system designers to focus on ensuring that agents
are operating in the correct context and exhibiting emer-
gent behavior within acceptable parameters.

In considering the role of the self-destruct property in-
spired by apoptosis, suppose one of the worker craft in
the ANTS mission was operating incorrectly and, when
coexisting with other workers, was causing undesirable
emergent behavior and failing to self-heal correctly. That
emergent behavior could put the mission in danger, and ul-
timately the ruler would withdraw the “stay alive” signal.3
Likewise, if a worker or its instrument was damaged, either
by colliding with another worker or (more likely) an as-
teroid, or during a solar storm, the ruler would withdraw
the “stay alive” signal and request a replacement worker.
Another worker would then self-configure to take on the

role of the lost worker to ensure optimal balanced coverage
of tasks to meet the scientific goals. If a ruler or messenger
was similarly damaged, its ruler would withdraw the “stay
alive” signal and promote a worker to play its role.

THE EVOLVING STATE OF THE ART
Several researchers have investigated the apoptotic

computing concept and its potential applications.
Christian Tschudin initially suggested using apoptosis

in highly distributed systems.23
James Riordan and Dominique Alessandri proposed

apoptosis as a means to automatically counter the in-
creasing number of security vulnerabilities that hackers
publish and exploit before systems administrators can
close them.24 They described an apoptosis service pro-
vider that, should a system vulnerability be found, could
release a message into the environment to trigger various
preconfigured responses to shut down the system or warn
a responsible party.

Leszek Lilien and Bharat Bhargava argued for apoptosis
as a means to secure atomic bundles of private data, in
which the process is activated when detectors determine a
credible threat exists to the bundle by any host, including
the bundle’s destination.25

In drawing parallels between biology and computing,
Steve Burbeck proposed four interconnected principles for
managing evolving systems, one of which is apoptosis.26
As an example of this principle, he cited the Blue Screen
of Death, a programmed response to an unrecoverable
error. Burbeck argued that a computer, like a metazoan
cell, should be able to sense its own rogue behavior, such
as downloading uncertified code, and disconnect itself
from the network.

M.M. Olsen, N. Siegelmann-Danieli, and H.T. Siegelmann
developed a multiagent system called HADES that can
protect itself via “life” protocols—which control the repli-
cation, repair, movement, and self-induced death of each
agent—and a “rescue” protocol.27

Madihah Mohd Saudi and colleagues researched
apoptosis with respect to security systems, focusing on

Figure 4. NASA’s new space exploration paradigm calls for
missions involving thousands of small spacecraft rather than
a single large craft. Image courtesy of NASA.

COVER FE ATURE

compUteR 42

network problems, and later applied it specifically to worm
attacks.28,29

Finally, David Jones implemented apoptotic self-destruct
and “stay alive” signaling while investigating memory re-
quirements in inheritance versus an abstract-oriented
approach.30

The majority of these applications fall into the weak
apoptotic computing (programmed death) category, and
would likely benefit from, instead, utilizing a strong (pro-
grammed death by default) approach. They also highlight
the strong need for standards and trust requirements, with
the immediate challenge of developing a DoS-resistant
architecture.

T he human body regulates vital functions such as
heartbeat, blood flow, and cell growth and death,
all without conscious effort. We must develop com-

puter-based systems that can perform similar operations
on themselves without constant human intervention.

Promising apoptotic computing applications have been
developed for data objects, highly distributed systems,
services, agent systems, and swarm systems. However,
more applied work is needed in other areas, and research-
ers must address the challenges around trust—until then,
users are not likely to embrace a system with self-destruct
capabilities.

The case has been made that all computer-based sys-
tems should be autonomic.31 Likewise there is a compelling
argument that all such systems should be apoptotic, es-
pecially as computing becomes increasingly pervasive
and ubiquitous. Apoptotic controls should cover all levels
of human-computer interaction from data, to services,
to agents, to robotics. With recent headline incidents of
credit card and personal data losses by organizations and
governments, and scenarios once relegated to science fic-
tion becoming increasingly possible, programmed death
by default is a necessity.

We are rapidly approaching the time when new autono-
mous computer-based systems and robots should undergo
tests, similar to ethical and clinical trials for new drugs,
before they can be introduced. Emerging research from
apoptotic computing could guide the safe deployment of
such systems.

Acknowledgments
The author is supported by the University of Ulster’s Com-
puter Science Research Institute and School of Computing
and Mathematics. Some of the research described in this
article is patented and patent-pending by Roy Sterritt
and Mike Hinchey (Lero—the Irish Software Engineering
Research Centre) through NASA and assigned to the US
government. In memory of our dear friend and colleague
Scott Hamilton.

References
 1. J. Arlidge, “Scientists Fear a Revolt by Killer Robots,” The

Sunday Times, 2 Aug. 2009; http://technology.timesonline.
co.uk/tol/news/tech_and_web/article6736130.ece.

 2. R. Sterritt and M. Hinchey, “SPAACE IV: Self-Properties
for an Autonomous & Autonomic Computing Environ-
ment—Part IV: A Newish Hope,” Proc. 7th IEEE Int’l Conf.
and Workshops Eng. of Autonomic and Autonomous Sys-
tems (EASe 10), IEEE CS Press, 2010, pp. 119-125.

 3. R. Sterritt and M. Hinchey, “Apoptosis and Self-Destruct: A
Contribution to Autonomic Agents?” Proc. 3rd Int’l Work-
shop Formal Approaches to Agent-Based Systems (FAABS
04), LNCS 3228, Springer, 2004, pp. 262-270.

 4. R. Sterritt and M. Hinchey, “Engineering Ultimate Self-
Protection in Autonomic Agents for Space Exploration
Missions,” Proc. 12th IEEE Int’l Conf. and Workshops Eng.
of Computer-Based Systems (ECBS 05), IEEE CS Press, 2005,
pp. 506-511.

 5. R. Sterritt and M. Hinchey, “From Here to Autonomicity:
Self-Managing Agents and the Biological Metaphors That
Inspire Them,” Proc. 8th Int’l Conf. Integrated Design and
Process Technology (IDPT 05), Soc. for Design and Process
Science, 2005, pp. 143-150.

 6. R. Sterritt and M. Hinchey, “Biologically-Inspired Concepts
for Autonomic Self-Protection in Multiagent Systems,”
M. Barley et al., eds., Safety and Security in Multi-Agent
Systems: Research Results from 2004-2006, LNCS 4324,
Springer, 2009, pp. 330-341.

 7. J.O. Kephart and D.M. Chess, “The Vision of Autonomic
Computing,” Computer, Jan. 2003, pp. 41-52.

 8. M.G. Hinchey and R. Sterritt, “Self-Managing Software,”
Computer, Feb. 2006, pp. 107-109.

 9. S. Dobson et al., “Fulfilling the Vision of Autonomic Com-
puting,” Computer, Jan. 2010, pp. 35-41.

 10. R.A. Lockshin and Z. Zakeri, “Programmed Cell Death
and Apoptosis: Origins of the Theory,” Nature Reviews
Molecular Cell Biology, July 2001, pp. 542-550.

 11. Y. Ishizaki et al., “Programmed Cell Death by Default in
Embryonic Cells, Fibroblasts, and Cancer Cells,” Molecular
Biology of the Cell, Nov. 1995, pp. 1443-1458.

 12. J. Klefstrom, E.W. Verschuren, and G. Evan, “c-Myc Aug-
ments the Apoptotic Activity of Cytosolic Death Receptor
Signaling Proteins by Engaging the Mitochondrial Apop-
totic Pathway,” J. Biological Chemistry, 8 Nov. 2002, pp.
43224-43232.

 13. M. Sluyser, ed., Apoptosis in Normal Development and
Cancer, Taylor & Francis, 1996.

 14. J. Newell, “Dying to Live: Why Our Cells Self-Destruct,”
Focus, Dec. 1994; http://members.fortunecity.com/
templarseries/Yahoo/Omegaman/apoptosi.html.

 15. N.R. Jennings and M. Wooldridge, “Agent-Oriented Soft-
ware Engineering,” J. Bradshaw, ed., Handbook of Agent
Technology, AAAI/MIT Press, 2000.

 16. M.N. Huhns, V.T. Holderfield, and R.L.Z. Gutierrez, “Robust
Software via Agent-Based Redundancy,” Proc. 2nd Int’l
Joint Conf. Autonomous Agents and Multiagent Systems
(AAMAS 03), ACM Press, 2003, pp. 1018-1019.

 17. G. Kaiser et al., “Kinesthetics eXtreme: An External In-
frastructure for Monitoring Distributed Legacy Systems,”
Proc. Autonomic Computing Workshop—5th Ann. Int’l
Workshop Active Middleware Services (AMS 03), IEEE Press,
2003, pp. 22-30.

NEW from

UNDERSTANDING
AND IMPLEMENTING
GREEN IT
Edited by San Murugesan
With an original introduction and an
annotated list of supplementary resources,
this new anthology from IT Professional’s San
Murugesan captures the current conversation
on Green IT, its adoption, and its potential.

PDF edition • $29 list / $19 members • 64 pp.

Order Online:
COMPUTER.ORG/STORE

43JANUARY 2011

 18. R. Sterritt and D. Bustard, “Towards an Autonomic Com-
puting Environment,” Proc. 14th Int’l Workshop Database
and Expert Systems Applications (DEXA 03), IEEE CS Press,
2003, pp. 694-698.

 19. E. Lupu et al., “AMUSE: Autonomic Management of Ubiqui-
tous Systems for e-Health,” Concurrency and Computation:
Practice and Experience, Mar. 2003, pp. 277-295.

 20. M.S. Greenberg et al., “Mobile Agents and Security,” IEEE
Comm. Magazine, July 1998, pp. 76-85.

 21. P.E. Clark et al., “ANTS: A New Concept for Very Remote
Exploration with Intelligent Software Agents,” Eos, Trans.,
American Geophysical Union, vol. 82, no. 47, 2001.

 22. S. Curtis et al., “ANTS (Autonomous Nano Technology
Swarm): An Artificial Intelligence Approach to Asteroid
Belt Resource Exploration,” Proc. 51st Int’l Astronautical
Congress, Int’l Astronautical Federation, 2000; http://ants.
gsfc.nasa.gov/documents.d/iaf2000-ants.pdf.

 23. C. Tschudin, “Apoptosis—The Programmed Death of
Distributed Services,” J. Vitek and C. Jensen, eds., Secure
Internet Programming: Security Issues for Mobile and Dis-
tributed Objects, LNCS 1603, Springer, 1999, pp. 253-260.

 24. J. Riordan and D. Alessandri, “Target Naming and Service
Apoptosis,” Proc. 3rd Ann. Workshop Recent Advances in
Intrusion Detection (RAID 00), LNCS 1907, Springer, 2000,
pp. 217-225.

 25. L. Lilien and B. Bhargava, “A Scheme for Privacy-Preserv-
ing Data Dissemination,” IEEE Trans. Systems, Man, and
Cybernetics, Part A: Systems and Humans, May 2006, pp.
503-506.

 26. S. Burbeck, “Complexity and the Evolution of Computing:
Biological Principles for Managing Evolving Systems,” v2.2,
white paper, 9 Apr. 2007; http://evolutionofcomputing.
org/Complexity%20and%20Evolution%20of%20Computing%
20v2.pdf.

 27. M.M. Olsen, N. Siegelmann-Danieli, and H.T. Siegelmann,
“Robust Artificial Life via Artificial Programmed Death,”
Artificial Intelligence, Apr. 2008, pp. 884-898.

 28. M.M. Saudi et al., “An Overview of Apoptosis for Computer
Security,” Proc. Int’l Symp. Information Technology (ITSim
08), IEEE Press, 2008, pp. 2534-2539.

 29. M.M. Saudi et al., “An Overview of STAKCERT Framework
in Confronting Worms Attack,” Proc. 2nd IEEE Int’l Conf.
Computer Science and Information Technology (ICCSIT 09),
IEEE Press, 2009, pp. 104-108.

 30. D. Jones, “Implementing Biologically-Inspired Apoptotic
Behaviour in Digital Objects: An Aspect-Oriented Ap-
proach,” MSc dissertation, Open University, UK, 2010;
http://www.apoptotic-computing.org/media/Apoptotic-
Computing-MSc-Dissertation.pdf.

 31. R. Sterritt and M. Hinchey, “Why Computer-Based Systems
Should be Autonomic,” Proc. 12th IEEE Int’l Conf. Work-
shops Eng. Computer-Based Systems (ECBS 05), IEEE CS
Press, 2005, pp. 406-414.

Roy Sterritt is a faculty member in the School of Comput-
ing and Mathematics and a researcher in the Computer
Science Research Institute at the University of Ulster,
Northern Ireland. His research focuses on the engineering
of computer-based systems, in particular self-managing/
autonomic systems. Sterritt received a BSc in computing
and information systems and an MA in business strat-
egy from the University of Ulster. He is a member of IEEE
and the IEEE Computer Society. Contact him at r.sterritt@
ulster.ac.uk.

 Selected CS articles and columns are available
 for free at http://ComputingNow.computer.org.

