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Abstract 

Novel disinfection methods are being sought to provide additional means of protection in a number 

of areas where disease outbreaks could lead to illness or fatalities.  For example, the risk of 

contamination arising from contact with surfaces and medical devices has received much attention 

due to the rise in incidence of healthcare acquired infections.  It is possible that reducing bio-burden 

on these sites may supplement the disinfection protocols currently in place and help reduce risk of 

infection.  Photocatalytic surfaces offer promise as innovative and cost-effective biocidal engineering 

solutions which address these specific problems whilst maintaining stringent health and safety 

controls. 

A method was developed to assess the disinfection efficiency of photocatalytic surfaces allowing a) 

determination of pathogen viability as a function of treatment time; b) assessment of the surface for 

viable surface bound organisms following disinfection; c) measurement of the re-growth potential of 

inactivated organisms.  This method was used to demonstrate the inactivation of extended-

spectrum beta-lactamase Escherichia coli, methicillin resistant Staphylococcus aureus, Pseudomonas 

aeruginosa and Clostridium difficile spores using immobilised films of commercial titania 

nanoparticles.  99.9% reduction in viability (a 3-log kill) was observed for all bacterial cells within 80 

minutes of photocatalytic treatment.  Complete surface inactivation was demonstrated and bacterial 

re-growth following photocatalytic treatment was not observed.  Greater than 99% inactivation (2.6 

log reduction) was observed when the photocatalytic surfaces were challenged with Clostridium 

difficile spores. 

The efficacy of photocatalytic disinfection to inactivate Staphyloccocus epidermidis cells within a 

biofilm was also demonstrated, with 3 hours treatment rendering 96.5% ± 6 of the biofilm cells on 

the TiO2 coated substrate non-viable.  Disinfection of cells throughout the 3-4 m thick biofilm was 

observed. 



1.0 Introduction 

Pathogens can be spread to humans by a number of routes of transmission including air, water, food 

and through contact with contaminated surfaces.  Disinfection strategies are widely practiced to 

inactivate pathogens and therefore minimise the risk of outbreaks of disease.  It is not possible, nor 

desirable, to create completely sterile environments, however, novel disinfection methods are being 

sought to provide additional means of protection in a number of areas where disease outbreaks 

could lead serious illness or fatalities, e.g. food preparation areas, pharmaceutical manufacturing 

plants and healthcare facilities.  The risk of contamination arising from contact with surfaces and 

medical devices has received much attention due to increased incidence of healthcare acquired 

infections (HAI).  Between 8 and 12% of patients entering UK hospitals contract an infection during 

their treatment [1].  A rise in the incidence of so called “super bugs”, including methicillin resistant 

Staphylococcus aureus (MRSA) and Clostridium difficile, in healthcare facilities across the world has 

been recorded [2].  In addition to patient trauma and, in extreme cases, fatalities, the financial 

burden attributed to HAI’s within the National Health Service in England has been estimated to be 

£1 billion [3]. 

Microorganisms, such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and 

Clostridium difficile spores, can survive for weeks and even months on dry surfaces [4]. Although the 

complex relationship between environmental pathogen loading and incidence of HAI is not fully 

understood, a reduction in bio-burden through cleaning, with, or without, disinfectants, is associated 

with reduced patient infection rates [5].  Surfaces that are frequently touched by hands are thought 

to provide the greatest risk within healthcare facilities, and those situated in close proximity to 

patients provide the greatest risk.  It is possible that reducing bio-burden on these sites may 

supplement the disinfection protocols currently in place and further reduce the risk of infection [6]. 

Antimicrobial agents, such as silver, copper, zinc, antibiotics and biocides, are currently 

incorporation into and onto the surfaces of a range of medical devices, solid surfaces and paints [7].  



However, the efficacy of these products with regards to timely disinfection of bacterial spores [8], 

the development and the identification of microbial resistance mechanisms to metal ion eluting 

coatings [9] and the high-cost of these products have led to research into alternative solutions.  To 

provide long term solutions, innovative and cost-effective biocidal engineering solutions are 

required.  Potential solutions must also meet stringent health and safety controls. 

Over the past two decades, the inactivation/disinfection of microorganisms using photocatalytic 

materials has been widely studied.  The majority of this work has focused upon the disinfection of a 

wide range of pathogens suspended in water, comprehensively reviewed by McCullagh et al [10], 

however, recent attention has focused on the development of photocatalytic biocidal, or “self-

cleaning”, surfaces [11–15]. 

Photocatalytic disinfection is achieved by the production of reactive oxygen species (ROS) resulting 

from redox reactions occurring at the surface of photo-excited semiconductor, most commonly 

titanium dioxide.  The proposed mechanism of bacterial inactivation centres on the peroxidation and 

disruption of lipo-polysaccharides and phospholipids within the cell wall and cell membrane, coupled 

with leakage of cellular components and direct ROS attack of organelles and genetic material [16-

22].  Goulhen-Chollet and co-workers recently reported that the emergence of resistance to 

photocatalytic treatment is very unlikely given the non-specific nature of ROS attack on the 

structural proteins found within the outer surface of microbial pathogens [23]. 

The lack of standard methods to assess the biocidal efficacy of photocatalytic coatings has prevented 

the direct comparison of published research in this field.  In addition to variations in the operational 

parameters employed during photocatalytic experiments, such as reactor configuration, UV source, 

intensity of incident photons etc, a range of pathogens, and experimental techniques to assess the 

viability of the microorganism following treatment, have been reported.  Cushnie et al highlighted 

the importance, and implications of, a range of basic microbiological parameters on the observed 



photocatalytic disinfection [24].  Whilst the recently adopted ISO standard [25] may address a 

number of these fundamental issues, the following points have not been considered: 

a) Typically, the concentration of the challenge organisms used in photocatalytic disinfection 

experiments is in the order of 106 – 109 colony forming units per mL (CFU/mL), which is deposited 

onto small surface areas.  This level of contamination is several orders of magnitude above the 

density of pathogens commonly observed on many surfaces which requiring cleaning and therefore 

represents an unrealistic challenge.  For example, Neely and Maley describe that contamination 

levels of 105 CFU/cm2 could be expected in/on a diabetic would dressing, however, within the 

environmental vicinity of a patient, a microbial density of 102 CFU/cm2 could be anticipated [26]. 

b) The majority of researchers, including the authors, carry out disinfection experiments using 

laboratory strains of microorganisms, for example E. coli K-12.  This does provide proof-of-principle, 

demonstrating that photocatalytic coatings exhibits a biocidal effect, but it does not provide robust 

evidence related to the efficiency of the coatings when challenged with a diverse range of 

problematic pathogens typically encountered in, for example, healthcare facilities.  In addition, 

bacterial organisms do not contain the structural components found in microbial spores, cysts and 

biofilms which have a much greater resistance to disinfection treatments. 

In this work, we report the development of robust microbial viability assays designed to assess the 

efficacy of photocatalytic surfaces towards the disinfection of a range of clinically relevant bacterial 

cells and spores, at concentrations typically observed in clinical settings.  The photocatalytic 

inactivation of cells within a biofilm was also investigated. 

 

 

 



2.0 Methods and Materials 

2.1 Preparation of the photocatalytic coatings 

Thin films of titanium dioxide were produced by immobilisation of Evonik Aeroxide P25 (1% in 

methanol) onto 76 x 26 mm borosilicate glass substrates (Instrument Glasses, UK) [27].  Substrates 

were masked to ensure deposition of two circular films, each of 1 cm2, for bacterial disinfection 

experiments, or formation of a coating on one half of the slides for biofilm disinfection experiments.  

Prior to coating, glass substrates were washed in Decon 90 and rinsed three times with distilled 

water.  TiO2 films were deposited onto glass substrates by dip coating using a withdrawal rate of 0.5 

mm s-1.  Five layers of titania were coated onto the substrates with each titania layer dried under a 

current of warm air (45-50 oC).  Following coating all films were annealed at 450 oC for 1 hour and 

autoclaved prior to disinfection experiments. 

 

2.2 Preparation of microbial pathogens 

Escherichia coli K-12 (E. coli) (ACTC 23631), extended-spectrum beta-lactamase Escherichia coli (ESBL 

E. coli) (CAH 57, a clinical isolate taken at Craigavon Area Hospital, UK), methicillin resistant 

Staphylococcus aureus (NCTC 10788), Pseudomonas aeruginosa (NCTC 10662) and Clostridium 

difficile (NCTC 11204) were supplied by the Food Microbiology Research Group, University of Ulster.  

E. coli K-12, ESBL E. coli, MRSA and Pseudomonas were individually cultured overnight at 37oC in 10 

mL of Luria-Bertani broth without shaking.  The suspensions were centrifuged at 5000 rpm, the 

pellet resuspended in ¼ strength Ringer’s solution and serially diluted to the required cell density (2 

x103 CFU/mL) [28].  Clostridium difficile was grown anaerobically in thioglycollate broth for one week 

at 37 oC. Vegetative C. difficile cell suspensions were centrifuged at 5000 rpm and the pellet 

resuspended in 70% ethanol to induce sporulation.  C. difficile spores were subsequently collected 



by centrifugation, resuspended in ¼ strength Ringer’s solution and serially diluted to the required 

cell density (1 x103 CFU/mL). 

 

2.3 Photocatalytic disinfection of bacterial cells and spores 

Two sterile silicone cell culture chambers (flexiPERM, Greiner Bio-One, USA) were adhered over the 

circular TiO2 coatings and onto the uncoated glass substrate, permitting duplicate treatment and 

control analysis on a single substrate (figure 1).  Silicone culture chambers were inoculated with 500 

L of test pathogen, typical microbial loading 1-2 x103 CFU/mL per cm2 surface.  Films were exposed 

to UVA radiation (Sylvania 15 W BLB, 3.0 mW cm-2, peak output 365 nm, (Gemini 180, Yobin Yvon, 

UK)) for a fixed period of time.  During exposure the temperature of the bacterial suspension within 

the silicone chambers did not increase by more than 5 oC and evaporation of the bacterial 

suspension, assessed by gravimetric analysis, was not observed. 

Experiments investigating pathogen viability as a function of UVA exposure time were undertaken.  

Substrates challenged with bacterial cells were exposed for a total 80 min with individual substrates 

removed for analysis at 20 minute intervals; when using bacterial spores, substrates were exposure 

for a total of 5 hours with individual substrates at hourly intervals.  Following exposure, triplicate 

100 L samples were removed for microbial analysis.  Control experiments, where uncoated glass 

substrates were exposed to only UVA radiation, and where the TiO2 coated and blank substrates 

were maintained in the dark, were also undertaken.  All substrates were analysed in duplicate. 

 

2.4 Analysis of microbial pathogens following photocatalytic disinfection 

E. coli K-12, ESBL E. coli, MRSA and Pseudomonas samples removed following photocatalytic 

experiments (100 L) were spread onto LB agar and incubated overnight at 37 oC.  C. difficile samples 



(100 L) were spread onto Braziers agar and grown anaerobically at 37 oC for 48 hours.  All samples 

were plated in triplicate.  Following incubation, colonies were visually identified and manually 

counted.  Data points on figures show the average number of colony-forming units per mL (CFU/mL); 

error bars represent standard errors; lines inserted through the data points are not mathematically 

derived but show the trend within the data series. 

To confirm disinfection of the substrate surface following photocatalytic treatment, each silicone 

culture chamber was filled with cooled molten agar (45-50 oC), LB agar for bacterial cells and 

Brazier’s agar for C. difficlie spores, and incubated appropriately.  Although individual colonies could 

be clearly identified following incubation, the contents of the silicone chamber was simply scored as 

positive, if bacterial growth could be identified, or as negative, if the samples were free from 

bacterial growth. 

 

2.5 Preparation of biofilm forming organisms 

Staphyloccocus epidermidis RP62A (ATCC 35984) was obtained from the American Type Culture 

Collection and stored at -80 °C.  The organism was resuscitated using Brain Heart Infusion (BHI) agar 

(Oxoid Ltd. UK) and incubated overnight at 37 °C.  Stock was also grown overnight at 37 °C on Congo 

red agar plates, prepared using BHI agar supplemented with 5% sucrose (Sigma, UK) and 0.8 mg/mL 

Congo red (Sigma, UK), to identify biofilm-positive (black, irregular-shaped, dry colonies) and biofilm-

negative (red, smooth colonies) phenotypes.  A single biofilm-positive colony was inoculated into 5 

mL of BHI broth and incubated overnight at 37 °C, with shaking at 200 rpm.  Half coated TiO2 coated 

slides were pre-sterilized by autoclaving and placed in a sterile petri dish.  BHI broth (10 mL) was 

added to the petri dish followed by 100 L of freshly prepared S. epidermidis culture.  Samples were 

incubated for 18 hours at 37 oC, removed from the growth media and washed three times with 

sterile deionised water, to remove non adherent cells. 



 

2.6 Photocatalytic disinfection of biofilm 

Duplicate S. epidermidis biofilm coated samples were placed in a custom made Perspex cell 

containing distilled water.  Substrates were and irradiated through a quartz window using two UVA 

lamps (PL-S 9W/10, Philips, UK).  The UVA intensity incident upon the samples was calculated to be 

1.4 mW cm-2, peak output 365 nm, (Gemini 180, Yobin Yvon, UK).  Substrates were exposed to UVA 

radiation for 1.5 and 3 hours prior to viability analysis.  Control samples were maintained in the dark 

and experiments were carried out in triplicate. 

 

2.7 Analysis of biofilm following photocatalytic disinfection 

Biofilm viability was assessed using Live-Dead staining (BacLight Bacterial Viability kit L-13152 

Molecular Probes, Netherlands) in conjunction with confocal laser scanning microscopy (LSM510 

META Axoplan (Carl Zeiss Ltd., UK) (CLSM).  The Live-Dead assay consisted of two nucleic acid stains: 

SYTO 9 (excitation maximum, 508 nm; emission maximum, 527 nm), a lipophilic membrane 

permeable cationic stain which labelled viable bacteria with green fluorescence and propidium 

iodide (excitation maximum, 536 nm emission maximum, 620 nm) a membrane impermeable 

anionic stain which labelled membrane-compromised (non-viable) bacteria with red fluorescence. 

When used alone, SYTO 9 labels both live and dead bacteria green, in contrast propidium iodide 

penetrates those cells with compromised cell membranes labelling cells red.  A ratio of 75:25 SYTO 

9:propidium iodide was used in this work. 

Microscopy was performed using x63 magnification objective with a 1.4 numerical aperture. 

Confocal illumination was provided by either an argon-ion laser (excitation wavelength of 488 nm) 

fitted with a 505-550 nm band -pass emission filter, or a He-Ne laser (excitation wavelength of 543 

nm) fitted with a 585-615 nm band -pass emission filter. Images representing 70 m x 70 m were 



acquired using the LSM 5 imaging software. The images of the stained bacteria were segmented 

using colour thresholding to separate the green and red fluorescence signals.  Images were obtained 

at random from both coated and uncoated parts of the treated substrate.  In general, images were 

acquired towards the surface of the biofilm, and thus furthest from the photocatalytic coating.  

Control samples, not exposed to UVA radiation, were analysed to negate non-specific staining, signal 

due to auto-fluorescence and signal cross-over between channels.  Images were acquired from at 

least three frames taken across the sample with a typical cell density of between 800 – 1000 cells 

per image, and were manually processed to determine the percentage viability (ratio of total cells to 

alive (green) or dead (red) cells.  Statistical analysis of the results was carried out using Instat version 

3 (Graphpad Software Inc).  Data was analyzed by one-way ANOVA with P values of less than 0.05, 

0.01 or 0.001 considered to be significant, highly significant or extremely significant respectively. 

 

3.0 Results 

3.1 Photocatalytic inactivation of bacterial cells and spores 

A 99.9% reduction (3-log) in E. coli K12 viability was observed following 60 min photocatalytic 

treatment (figure 2).  In addition, there was no evidence of bacterial growth on the agar overlaid 

onto the substrate following 60 minutes photocatalytic treatment.  This demonstrated complete 

disinfection of the initial bacterial challenge and confirmed that bacterial re-growth had not taken 

place, within 24 hours.  90% inactivation (1-log) was observed in the UVA only control, i.e. in the 

absence of the TiO2 coating.  Inactivation was not observed following exposure of E. coli K12 cells to 

the TiO2 surface in the absence of UVA or in the dark control. 

Photocatalytic disinfection experiments using ESBL E. coli as the challenge organism followed slower 

disinfection kinetics than that observed during the inactivation of E. coli K12 with 80 min required to 

achieve 99.9% reduction (3-log) in viable organisms (Figure 3).  At this time point, there was no 



evidence of bacterial growth following incubation of the agar overlaid substrate.  Following 80 min 

exposure to UVA radiation 46% (0.5-log) inactivation was observed.   Significant levels of inactivation 

were not observed in the control experiments. 

Photocatalytic disinfection was demonstrated to be effective for the inactivation of MRSA, a gram 

positive bacterial organism (Figure 4).  A 99.8% reduction (> 2-log) was observed following 40 min 

photocatalytic treatment, with 99.9% (3-log) observed following 60 min treatment.  Bacterial growth 

was not observed following overnight incubation of agar overlay onto the sample confirming that re-

growth of MRSA following photocatalytic treatment had not occurred.  Exposure to UVA irradiation 

alone resulted in ~60% inactivation. 

Pseudomonas aeruginosa was relatively quickly inactivated by exposure to both UVA irradiation and 

photocatalytic treatment (Figure 5).  A treatment time of 60 min with required to inactive 99.9% (3-

log) inactivation of this organism on the TiO2 coated surface with a 90% (1-log) kill observed in the 

UVA only experiment.  Significant levels of inactivation were not observed in the dark control 

experiments. 

The resistance of Clostridium difficile spores to photocatalytic treatment warranted a marked 

increase in exposure time, from minutes to hours (Figure 6).  Five hours photocatalytic treatment 

was required to achieve 99.7% (> 2-log) inactivation.  Clostridium difficile spores were susceptible to 

UVA irradiation with 80% of exposed spores rendered non-viable following 5 hours UVA exposure.  A 

small decrease in cell density was observed in the control experiments, but this may be due to the 

difficulty and variability associated with culturing this organism. 

 

3.2 Photocatalytic inactivation of biofilm 

S. epidermidis biofilm was uniformly produced across both the TiO2 coating and the uncoated half of 

the glass substrate.  Confocal laser microscopy images taken during S. epidermidis biofilm 



disinfection are shown in figure 7.  Exposure of TiO2 coated substrates to 1.5 hours of UVA radiation 

resulted in a very significant (P < 0.01) reduction in viability (55% ± 13), in comparison to un-coated 

samples (11% ± 1) (Table 1).  After 3 hours exposure, 45% ± 6 of the cells on the uncoated portion 

were non-viable with 96.5% ± 6 non-viable on the TiO2 coated substrate. This result demonstrates 

that the presence of the TiO2 coating is extremely significant (P< 0.001) when compared to un-

coated samples. Disinfection was not observed in the dark control experiments (a decrease in 

viability of 5.1% ± 3 following 3 hours).  Confocal images acquired at a range of depths, within a 

thicker section of biofilm, demonstrated a high proportion of cell permeability to the propidium 

iodide throughout the 3-4 m biofilm, figure 8.  Greater inactivation was observed at the titania 

surface, however, significant inactivation was confirmed at a range of distances within the biofilm 

and also at the top of the film. 

 

4.0 Discussion 

The reported method, developed to assess the disinfection efficiency of photocatalytic surfaces, not 

only allows the quantification of viable organisms from samples withdrawn from the suspension 

above the exposed test substrate, as a function of treatment time, but also permits examination of 

the surface following treatment.  The latter therefore confirms complete inactivation of the 

microbial challenge and, in addition, permits examination of the re-growth potential of inactivated 

organisms remaining on the surface.  Inactivation levels of 99.9% (a 3 log reduction) were observed 

for Escherichia coli, methicillin resistant Staphylococcus aureus and Pseudomonas aeruginosa, within 

80 minutes photocatalytic treatment.  For Clostridium difficile spores, complete photocatalytic 

inactivation could not be confirmed, however, < 99.7% inactivation was still regarded as a significant 

level of inactivation for an extremely resistant challenge organism. 



The results in figures 2 and 3 demonstrate that a clinically isolated strain of E. coli was more resistant 

to both UVA and photocatalytic treatment than the model E. coli K-12 strain.  Model microbial 

organisms, typically used in teaching, have been genetically selected/modified to ensure they are 

non pathogenic.  As a result these strains do not possess enhanced resistance mechanisms towards 

environmental stress or biocide attack.  This suggests that caution should be exercised when 

extrapolating data obtained from experiments using model organisms to application of 

photocatalytic technology in clinical settings. 

Examination of the agar overlaid onto the substrate following disinfection at the final time point, 

confirmed complete surface inactivation for Escherichia coli (K-12 and ESBL), methicillin resistant 

Staphylococcus aureus and Pseudomonas aeruginosa.  In addition, bacterial re-growth following 

photocatalytic disinfection was not observed for these pathogens.  Bacterial re-growth following 

disinfection can be a significant problem and is not considered or examined by the methods 

currently used to evaluate photocatalytic surfaces.  Gelover et al reported that following 

photocatalytic disinfection of total coliforms in water samples re-growth was not observed, 

however, in experiments without the photocatalyst significant levels of re-growth were evident 

within 24 hours [29]. 

The resistance of pathogens to disinfection treatments can be attributed to the structural 

components in the outer layers of the microbial cell. Traditionally, microbial susceptibility to 

antiseptics and disinfectants has been classified based on these differences with descending order of 

resistance to antiseptics and disinfectants as follows:  Coccidian cysts (Cryptosporidium) > spores 

(Bacillus sp., C. difficile) > gram negative bacteria (Pseudomonas sp., E. coli) > gram positive bacteria 

(Staphylococcus) [30].  The photocatalytic disinfection of clinical relevant organisms followed a 

similar pattern with C. difficile spores requiring significantly longer treatment that Pseudomonas and 

ESBL E. coli.  MRSA inactivation required the shortest treatment time with 99.8% inactivation 

observed following 40 minutes treatment. We have previously demonstrated that increased 



photocatalytic treatment time is required to inactivate Clostridium perfringens spores [31] and 

Cryptosporidium parvum oocysts [32], in comparison to model organisms and bacterial cells using 

immobilised titania films. 

C. difficile spore inactivation using immobilised photocatalytic material has not been previously 

reported and demonstrates significant potential for this technology within clinical settings.  The 

resistance of bacterial spores, including C. difficile, to a range of chemical disinfectants commonly 

used in healthcare facilities is well known and exposure to a number of these agents can promote 

bacterial sporulation [33].  Due to this inherent resistance, C. difficile is now considered to be one of 

the most important healthcare associated pathogens [34].  Resistance to biocides has been 

attributed to the complex multi-layer construction of the bacterial spore, which consisting of a 

protoplast (a core of genetic material and low-molecular-weight basic proteins which are rapidly 

degraded during germination) surrounded by a peptidoglycan cortex and an inner and outer protein 

spore coat [33]. 

Other workers have previously examined the efficiency of immobilised photocatalytic films towards 

the disinfection of a range of microbial pathogens, including clinically relevant organisms.  Early work 

by Kuhn et al examined the use of P25 coated Plexiglas substrates as light-guides to disinfect 

Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecium 

suspensions exposed to UVA radiation [13]. A 6-log reduction in bacterial viability was observed in 

approx. 60 min.  Experiments using Candida albicans as a test pathogen demonstrated 2-log 

inactivation following 60 min treatment.  Images acquired via scanning electron microscopy 

suggesting hydroxyl radical damage of the cell wall.  Photocatalytic disinfection of MRSA on apatite-

tiania coated textiles was reported following 24 hours irradiation using a black light blue source [34].  

Kubacka et al report the inactivation of clinical isolates of P. aeruginosa and E. faecalis using 280 nm 

excitation of anatase polymer composites [36]. 



In a bid to enhance the disinfection rate observed on photocatalytic surfaces, and develop surfaces 

for specific applications, a number of strategies have been examined.  The inclusion of silver 

nanoparticles within titania films has been reported, however, the biocidal effect of Ag+ may 

dominate the observed inactivation kinetics [37, 38].  Recently, Mitoraj et al reported the visible 

light induced photocatalytic inactivation of Escherichia coli, Staphylococcus aureus, Enterococcus 

faecalis, Candida albicans and Aspergillus niger on carbon doped and platinum(IV)chloride modified 

titania in suspensions and on immobilised films [39].  The order of resistance exhibited by the range 

of microorganisms investigated was related to the inclusion of structural components in the outer 

layers of the organisms, as previously described.  Potential application of photocatalytic technology 

in healthcare settings was demonstrated by Caballero et al and Dunnill et al who described the 

inactivation of E. coli using a commercial photocatalyst (Millennium PC105) and sulphur-doped 

titania films irradiated by a fluorescent light akin to those commonly found in UK hospitals [40, 41]. 

In addition to disinfection of general surfaces in healthcare environments, contamination of medical 

devices is a significant problem.  Biofilm forming organisms frequent colonise implant and device 

surfaces resulting in the formation of complex and resistant microbial “communities”.  

Contaminated devices and implants frequently require removal and replacement causing patient 

discomfort, increased demand on surgical facilities and an additional financial burden on the 

healthcare system.  Biofilms are composed of an extracellular polysaccharide matrix which protects 

the bacterial cells from the host’s defence mechanisms and antimicrobial agents [42]. Furthermore, 

the altered physiology of cells within a biofilm results in changes in growth rates, which can impair 

the effectiveness of growth rate-dependent-antibiotics.  Antibiotic resistant Staphylococcus 

epidermidis is frequently isolated from implant surfaces [43, 44]. 

The results presented in figure 7 demonstrate ROS produced during photocatalysis can inactivate 

cells within the biofilm structure.  Significantly higher rates of photocatalytic disinfection were 

observed, in comparison to treatment using UVA irradiation.  In addition to disinfection at the titania 



surface, where production of ROS will be highest, figure 8 demonstrates inactivation of cells 

throughout the 3-4 m structure of the biofilm.  We propose that the range of reactive oxygen 

species generated at the surface of irradiated tiania, including hydroxyl radicals, superoxide radical 

anion and hydrogen peroxide, contribute to the disinfection of the biofilm cells.  Kikuchi et al 

investigated the role of a range of ROS during the disinfection of E. coli [11].  Addition of increasing 

concentration of mannitol, a hydroxyl radical scavenger, suppressed the observed level of 

photocatalytic disinfection.  The presence of catalase also reduced the levels of disinfection implying 

involvement of hydrogen peroxide in the biocidal mechanism.  When the bacterial cells and the 

titania film were separated by 50 m (using a porous PTFE membrane), disinfection was still 

observed.  The long range biocidal effect was attributed to the production of hydrogen peroxide and 

the potential to produce additional ROS by photosensitization of cellular components, such as 

riboflavin. 

Irradiated photocatalytic surfaces have been shown to prevent adhesion of biofilm forming 

organisms on cement and glass surfaces [44, 46], however, the photocatalytic disinfection of biofilm 

has not been widely researched.  The susceptibility of Pseudomonas aeruginosa (PA01) to 

photocatalytic treatment using thin films of TiO2 deposited on glass slides was investigated by Gage 

at al [47].  Disinfection of planktonic cells was observed, with a 4-log reduction in viable cells 

reported following 3 hours UVA-TiO2 treatment; whereas UVA light alone produced a 1-log 

reduction.  For biofilm forming bacteria, photocatalytic treatment did not enhance the observed 

inactivation using only UVA treatment.  A directly comparable study to the research presented in this 

paper was carried out by Mosnier et al, who report UVA-assisted disinfection of Staphylococcus 

epidermidis biofilm using 2 m thick ZnO films deposited onto glass substrates via pulsed laser 

deposition [48]. Following 2 hours exposure 70% ± 12 of the cells in the biofilms were determined to 

be inactivated, however, photocorrosion of the ZnO films was observed with the possible release of 

Zn2+ ions contributing to the observed disinfection. 



5.0 Conclusion 

Conventional methods of manual disinfection within healthcare facilities are laborious, expensive, 

and due to the introduction of stringent health and safety concerns now require the use of less 

effective biocidal agents, for example, the use of hypochlorite solutions in many areas is no longer 

permitted.  The results of this work, and others, demonstrate that photocatalysis could play a role in 

the inactivation of pathogens on surfaces along side regular and effective manual cleaning, and 

assessment of cleaning. 

A method was developed to assess the disinfection efficiency of photocatalytic surfaces allowing a) 

determination of pathogen viability as a function of treatment time; b) assessment of the surface 

following disinfection to determine the presence of surface bound microorganism; c) measurement 

of the re-growth potential of treated/inactivated organisms.  This method was used to demonstrate 

the inactivation of Escherichia coli, methicillin resistant Staphylococcus aureus, Pseudomonas 

aeruginosa and Clostridium difficile spores on immobilised films of commercial nanoparticle titania 

under UVA irradiation.  Inactivation levels of 99.9% (a 3 log reduction) were observed for ESBL E. coli 

following 80 minutes photocatalytic treatment.  Sixty minutes of photocatalytic treatment was 

required to achieve 99.9% inactivation of Pseudomonas and ESBL E. coli. MRSA inactivation required 

the shortest photocatalytic exposure time with 99.8% inactivation observed flowing 40 minutes.  

Complete surface inactivation of the bacterial cells used in this study was demonstrated and 

bacterial re-growth following photocatalytic treatment was not observed.  For Clostridium difficile 

spores, < 99% inactivation (2.6 log reduction) was observed following 5 hours photocatalytic 

treatment.  The efficacy of photocatalytic disinfection to inactivate Staphyloccocus epidermidis cells 

within the biofilm was also demonstrated.  Following 3 hours UVA exposure 96.5% ± 6 of the biofilm 

cells on the TiO2 coated substrate were shown to be non-viable. The presence of the TiO2 coating 

was demonstrated to extremely significant (P< 0.001) when compared to un-coated samples, i.e. 

inactivation by UVA alone.  Disinfection throughout the 3-4 m thick biofilm was also observed. 
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Table 1: Staphylococcus epidermidis biofilm cell viability following exposure to photocatalytic and 

UVA treatment. 

 

Treatment  Exposure time 
(hours) 

Percentage inactivation 
(%) 

UVA-TiO2 1.5 55 ± 13 

3 97 ± 6 

UVA 1.5 11 ± 1  

3 45 ± 6  

Dark control    
(no treatment) 

1.5 4.5 ± 3 

3 5.1 ± 3 

 



Figures: 

Figure 1: Schematic representation of the method used to assess disinfection on photocatalytic 

substrates. 

 

 

 

Figure 2:  Inactivation of E. coli K12.  No treatment (no TiO2, no UVA) ;  TiO2 , no UVA ; UVA  only 

(no TiO2) ; Photocatalysis (UVA and TiO2)  

 

 



Figure 3:  Inactivation of ESBL E. coli.  No treatment (no TiO2, no UVA) ;  TiO2 , no UVA ; UVA  

only (no TiO2) ; Photocatalysis (UVA and TiO2)  

 

Figure 4:  Inactivation of methicillin resistant Staphylococcus aureus (MRSA). No treatment (no TiO2, 

no UVA) ;  TiO2 , no UVA ; UVA  only (no TiO2) ; Photocatalysis (UVA and TiO2)   

 



Figure 5:  Inactivation of Pseudomonas aeruginosa. No treatment (no TiO2, no UVA) ;  TiO2 , no UVA 

; UVA  only (no TiO2) ; Photocatalysis (UVA and TiO2)  

 

 

Figure 6:  Inactivation of Clostridium difficile spores.  No treatment (no TiO2, no UVA) ;  TiO2 , no 

UVA ; UVA  only (no TiO2) ; Photocatalysis (UVA and TiO2)  

 

 



Figure 7: Fluorescence images of stained S. epidermidis cells within a biofilm recorded using confocal 

laser scanning microscopy. The green and red fluorescence indicate live and membrane 

compromised bacteria respectively: a) 1.5 hours exposure to UVA only; b) 1.5 hours exposure to 

photocatalytic treatment; c) 3 hours exposure to UVA only; d) 3 hours exposure to photocatalytic 

treatment; e) 3 hours exposure to TiO2 in the dark; f) 3 hours no treatment control (no TiO2, no UVA 

exposure). 

 



Figure 8:  Fluorescence images of stained S. epidermidis cells within a biofilm recorded using 

confocal laser scanning microscopy.  Images were acquired at a series of distances within the biofilm 

from a substrate exposed to photocatalytic treatment for 3 hours: a) 0.76 m; b) 1.52 m; c) 2.27 

m; d) 3.03 m (0 m represents the top of the biofilm furthest away from the TiO2 film). 

 


