
Copyright Notice:

©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any copyrighted component of this work in other works

must be obtained from the IEEE."

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287022841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 11, NOVEMBER 2010 1817

SWAT: A Spiking Neural Network Training
Algorithm for Classification Problems

John J. Wade, Liam J. McDaid, Jose A. Santos, and Heather M. Sayers

Abstract— This paper presents a synaptic weight association
training (SWAT) algorithm for spiking neural networks (SNNs).
SWAT merges the Bienenstock–Cooper–Munro (BCM) learn-
ing rule with spike timing dependent plasticity (STDP). The
STDP/BCM rule yields a unimodal weight distribution where
the height of the plasticity window associated with STDP is
modulated causing stability after a period of training. The SNN
uses a single training neuron in the training phase where data
associated with all classes is passed to this neuron. The rule
then maps weights to the classifying output neurons to reflect
similarities in the data across the classes. The SNN also includes
both excitatory and inhibitory facilitating synapses which create
a frequency routing capability allowing the information presented
to the network to be routed to different hidden layer neurons.
A variable neuron threshold level simulates the refractory period.
SWAT is initially benchmarked against the nonlinearly separable
Iris and Wisconsin Breast Cancer datasets. Results presented
show that the proposed training algorithm exhibits a convergence
accuracy of 95.5% and 96.2% for the Iris and Wisconsin training
sets, respectively, and 95.3% and 96.7% for the testing sets,
noise experiments show that SWAT has a good generalization
capability. SWAT is also benchmarked using an isolated digit
automatic speech recognition (ASR) system where a subset of
the TI46 speech corpus is used. Results show that with SWAT as
the classifier, the ASR system provides an accuracy of 98.875%
for training and 95.25% for testing.

Index Terms— Automatic speech recognition, Bienenstock–
Cooper–Munro, dynamic synapses, spike timing dependent plas-
ticity, spiking neural networks.

I. INTRODUCTION

IT IS WIDELY accepted that the brain’s computational
ability is distributed across a connectionist system of neu-

rons which communicate with each other using a complex
web of synaptic connections. Much research has focused on
emulating the functionality of the brain by building networks
of neurons which can be trained to assign meaning to complex
data patterns. However, these networks are limited in their
computational ability because the level of understanding of
brain functionality is still very much at the embryo stage.
Despite this, a range of useful computations are possible with
spiking neural networks (SNNs), even with relatively primitive
coding and learning techniques. This realization has stimulated

Manuscript received March 18, 2010; revised July 2, 2010 and August 23,
2010; accepted August 25, 2010. Date of current version November 3, 2010.
This work was supported in part by a Vice-Chancellor’s Research Scholarship
at the University of Ulster, Magee Campus.

The authors are with the Intelligent Systems Research Center, University
of Ulster, School of Computing and Intelligent Systems, Derry, Northern Ire-
land BT48 7JL, U.K. (e-mail: jj.wade@ulster.ac.uk; lj.mcdaid@ulster.ac.uk;
ja.santos@ulster.ac.uk; hm.sayers@ulster.ac.uk).

Digital Object Identifier 10.1109/TNN.2010.2074212

significant research on the development and deployment of
SNN architectures that can be implemented in either hardware
or software and used to inspire new computing paradigms.
However, critical to the development of brain inspired comput-
ing is the ability of SNNs to learn from experience. This paper
presents the learning algorithm, synaptic weight association
training (SWAT), which is based on earlier work [1] where
spike timing dependent plasticity (STDP) is combined with
Bienenstock–Cooper–Munro (BCM) theory to implement a
learning rule. The rule overcomes the need to cap synaptic
weights because weight stabilization is achieved using the
sliding threshold associated with the BCM model. The sliding
threshold controls the magnitude of potentiation/depression
using the activity history of the postsynaptic neuron. This, in
essence, stops the neuron becoming unstable because, as its
firing rate approaches its threshold frequency, the plasticity
window is adjusted to ensure long term depression (LTD)
dominates over long term potentiation (LTP) for subsequent
weight updates. A similar approach to this has been reported
[2], where the learning rule correlates weight updates with
the current synaptic strength. However, this approach virtually
eliminated competition between synapses and, to overcome
this problem, activity-dependent synaptic scaling was intro-
duced. Furthermore, it has also been shown that the parameters
of STDP and BCM can be linked to result in a clearer
understanding of how these two forms of plasticity are related
[3]. However, this paper does not investigate how BCM can
be combined with STDP to remove the need for capping the
weights.

The SNN presented in this paper uses the merged
STDP/BCM rule to train a network of spiking neurons and
its performance is benchmarked using several benchmark
problems. The SNN uses a feed-forward loop topology to
connect the input to the hidden layer, similar topologies have
been reported to exist in the hippocampus to facilitate adap-
tive filtering. The loop consists of inhibitory and excitatory
facilitating synapses where their frequency transition from
facilitation to depression is used to filter information, thereby
routing it to different neurons in the hidden layer. A single-
layer training neuron is used to determine the weights for all
output neurons using the above rule. The weights are then
mapped to the appropriate output neurons according to the
relative occurrence of similar data across the classes.

Section II presents a brief review of the subject domain
while Section III describes the SNN topology. This section also
presents the STDP/BCM learning rule. Section IV discusses
the neuron model used in the SNN, while Section V presents

1045–9227/$26.00 © 2010 IEEE

1818 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 11, NOVEMBER 2010

experimental results using the Iris and Wisconsin Breast
Cancer (WBC) datasets. Section VI discusses the robustness of
SWAT, while Section VII benchmarks SWAT using an isolated
digit automatic speech recognition (ASR) system. Finally,
Section VIII draws conclusions to this paper.

II. REVIEW

To underpin the research presented in this paper, Part A of
this section presents a brief review of SNN training algorithms,
while Parts B and C review short- and long-term plasticity.

A. Training Algorithms

The first supervised training algorithm for SNNs [4], called
SpikeProp, was an adaptation of the gradient-descent-based
error-backpropagation method [5]. SpikeProp overcame the
problems inherent to SNNs using a gradient-descent approach
by allowing each neuron to fire only once. However, since
the neurons are allowed to fire only once, the algorithm can
only be used in a time-to-first spike coding scheme. Therefore,
training the network using patterns which consist of multiple
spikes is not feasible. Further to this [6], a learning algorithm
similar to the error-backpropagation method was presented,
which trained a network of neurons based on their mean output
firing rates. Although this method was found to generalize
well with several engineering tasks, the network structure
and method of input encoding lacked biological realism. In a
different approach [7], a probabilistic gradient-descent method
was employed that consisted of a biological-like learning
window and an injected supervisory teacher signal. Again,
this approach utilizes single spikes and therefore cannot learn
patterns represented using spike trains.

Evolutionary strategies (ESs) have also been used to train
SNNs. One such method [8] used ESs to optimize the weight
and delay values of a three-layer fully connected feed-forward
network. It outperformed the SpikeProp algorithm when tested
on the XOR and Iris benchmark problems. However, since
the algorithm was based on an ES, it was extremely time
consuming to train. More recently, an online evolving SNN
was implemented [9], which adds a new neuron to the output
layer for each sample. If the weights of the new neuron are
similar to any of the previously added neurons, then the two
neurons are merged. In this way, the output is evolved to
reflect the spatiotemporal patterns within the data. The main
advantage of this algorithm is that training is completed in
a single epoch and, whenever new data is presented to the
network, the data can be included through another neuron and
no retraining is necessary.

From a biological perspective, a training algorithm should
update synaptic weights based on the temporal correlation of
pre and postsynaptic spikes in keeping with Hebbian theory
[10]. A supervised Hebbian learning (SHL) algorithm [11],
which included a training signal, was used to ensure that the
output neuron would fire at the desired time. It was shown that
the algorithm could learn to successfully reproduce the firing
patterns of Poisson spike trains. However, even after learning
the target pattern, the algorithm still continued to train, and
therefore limits must be added to ensure stability [12].

Biological experiments [13], [14] showed that Hebbian
correlation takes place in the form of STDP where the exact
timing of pre and postsynaptic events are responsible for
changes in synaptic efficacy. The remote supervision method
[15] is very closely related to the SHL algorithm but manages
to counteract the stability problems. In this method, two
STDP-like windows are used to adjust the synaptic weights.
The first window increases the weight whenever the input is
temporally correlated with the desired output (teaching signal).
The second decreases the weight based on the correlation of
the input against the actual output. In an alternative approach
[16], STDP was used with a two-layer network topology in-
terconnected by multiple delay pathways. The weight updates
for the network are based on the cross-correlation of data
presented to the network and a similar correlation is proposed
here, the weights are changed based on the relative occurrence
of spikes across all classifications. STDP has also been used to
train a SNN to perform a 2-D coordinate transformation, from
polar to Cartesian coordinates, to produce a virtual map of
haptic inputs [17]. This network was found to be more robust
with better noise immunity than its classical counterparts.

An issue when developing a learning algorithm using STDP
is that the outputs of the neurons can become increasingly
unstable as the network learns [18], [19]. To remove this
instability, the weights can be capped, which implies that the
maximum value of the weight vector is predetermined and
therefore bears no relation to the temporal characteristics of
the input data. One such learning algorithm [20] that used the
capping of weights between a maximum and minimum value
was developed. It was tested on several benchmark problems
and produced excellent results. However, this algorithm only
used single spike event encoding. Stability issues were also
addressed in other work [21] by implementing a ‘stop learning’
criteria which was based on the weighted sum of the input
synapses and the activity of the neuron.

B. Use Dependency

Use dependency depends on the amount of resources avail-
able for the generation of postsynaptic potentials (PSPs) [22],
where each time a presynaptic spike arrives at the synapse, a
fraction of these resources is used. For a regular spike train,
the PSPs generated will successively decrease in magnitude
until they reach a level known as the stationary amplitude.
When the frequency of the input is increased beyond a limit,
the magnitude of the stationary amplitude decreases inversely
with frequency. Therefore, the limiting frequency restricts
the range over which the synapse can effectively transmit
information. If all synaptic resources are activated at the same
time, a PSP with a magnitude relative to the absolute synaptic
strength can be generated, otherwise, the PSP is proportional
to the percentage of resources activated. This type of synapse
is known as a depressing synapse, the opposite of which
is a facilitating synapse [23], [24]. A popular model for a
depressing synapse [24] is described by

dx

dt
= z

τrec
− US E x(tsp − 0)δ(t − tsp) (1)

WADE et al.: SPIKING NEURAL NETWORK TRAINING ALGORITHM FOR CLASSIFICATION PROBLEMS 1819

dy

dt
= − y

τin
+ US E x(tsp − 0)δ(t − tsp) (2)

dz

dt
= y

τin
− z

τrec
(3)

where x , y, and z are the fractions of resources in the recov-
ered, active, and inactive states of the synapse, respectively.
τrec and τin are the recovery and inactive state time constants
respectively. tsp is the arrival time of an action potential and
US E is the utilization of synaptic efficacy. The current I i

syn
that is received by the postsynaptic neuron from synapse i
is proportional to the fraction of resources remaining in the
active state and is given by

I i
syn = AS E yi (t) (4)

where AS E is the absolute synaptic efficacy and yi (t) is
the fraction of resources available to the synapse at time t .
Equation (4) suggests that AS E can be interpreted as the
weight and a formulation relating this parameter to LTP is used
in the proposed learning algorithm. Equations (1)–(3) model
the characteristics of a depressing synapse where the level of
US E remains constant. To model a facilitating synapse, US E

is allowed to grow every time there is an input spike at the
synapse. U1

S E is therefore a running total of US E over time.
This evolution is given by (5), where U1

S E is the evolving state
of US E , US E is the step increase of U1

S E for each spike, and
τ f acil is the relaxation time constant for a facilitating synapse.
This model of a facilitating synapse is used throughout SWAT

dU1
S E

dt
= − U1

S E

τ f acil
+ US E

(
1 − U1

S E

)
δ(t − tsp). (5)

C. STDP and Activity Dependency

Traditional STDP-based learning algorithms calculate
synaptic weight values associated with LTP using (6) and (7)
where δω is the synaptic weight change, A+ and A− are
the maximum value of weight potentiation and depression,
respectively, τ+ and τ− reflect the width of the plasticity
window, and �t is the difference between pre and post firing
times [18], [19], [25]. For �t < 0 we have

δω = A+ exp

(
�t

τ+

)
(6)

and for �t ≥ 0

δω = −A− exp

(−�t

τ−

)
. (7)

These equations implement long-term weight potentia-
tion/depression according to the temporal distribution of the
pre and postsynaptic spikes. In the next section, we merge
LTP/LTD with use dependency, which allows the training
algorithm to modify the level of facilitation of the output layer
synapses.

In addition to the STDP training rule, biological evidence
exists to support the theory that synaptic plasticity depends
on the history of activity of the postsynaptic neuron. This
led to the development of the BCM model [26] and we
use this rule to achieve convergence during training. BCM
assumes a synaptic modification threshold θm , which leads to

Input Layer

Hidden Layer

Class n

Training Neuron

Class 1

1

s

1

Arrays
s

EI
fs
 Synapse

Fig. 1. Network topology consisting of s input and n output neurons with
a single training neuron.

either potentiation or depression depending on the postsynaptic
activity at any given instant. As the output frequency of the
neuron increases beyond θm , the synaptic weight is potentiated
and, if the frequency is less than θm , the weight is depressed.
Also, the activation threshold is not fixed but can be changed
based on the prior average output activity of the postsynaptic
neuron. Therefore, θm becomes a sliding value depending
on the activity history of the postsynaptic neuron [27], for
increasing activity, θm adjusts to ensure LTD and vice versa
for decreasing activity. This mechanism for negative feedback
is used here to modulate the height of the plasticity window
associated with STDP, ensuring convergence during training.

The theory of synaptic plasticity underpins the work pre-
sented in the next section where we introduce a novel SNN
topology which uses facilitating synapses. A STDP/BCM-
based learning rule is developed and used to adjust the level
of facilitation during the training period.

III. SNN TOPOLOGY AND TRAINING

Part A of this section proposes a SNN topology that can
be trained by a STDP/BCM-based rule to reflect similarities
in the training data, across all the classes, in the post trained
weight distribution. Part B describes the STDP/BCM learning
rule.

A. SNN Topology

The SNN topology shown in Fig. 1 accommodates n data
classes where each class can have a different number of
samples, mn , and each sample has s variables. The network
therefore has s input and n output neurons and all input data
values are mapped to the frequency domain. Hence each data
sample will yield an output spike train from each of the s
input neurons and we detect these different firing patterns in
the hidden layer. A tradeoff between computational effort and

1820 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 11, NOVEMBER 2010

E
fs

I
fs

Neuron A Neuron B

Fig. 2. Feed-forward loop implementation: a spike train at frequency f from
neuron A passes to neuron B via the E f s (Excitatory) and I f s (Inhibitory)
facilitating synapses.

biological plausibility is made here, where we use linear spike
train encoding (constant interspike interval) of the input data.
While we accept that biological networks use Poisson-like
spike trains, the computational overhead for large networks
would be excessive. However, the SNN presented in Fig. 1
can be extended to process information encoded in Poisson
spike trains.

The hidden layer comprises identical arrays of neurons
whose synapses act as frequency-selective filters, an array is
assigned to each of the s input neurons and therefore there
are s arrays. If the frequency selectivity of a particular “filter”
synapse (its receptive field) associated with a neuron in the
array is narrow and centered at f1 with a pass band ±δ f ,
then only that neuron will fire if the spike train frequency from
the input neuron is within δ f from f1. However, if the spike
train frequency changes by more than δ f , then this neuron
will cease firing and another neuron in the array is stimulated,
and so on. Hence, at least one of the neurons in each array
fires continuously for the duration of the stimulus. If the pass
band of the entire array, which is the sum of all synaptic filter
pass bands in the array, is broad enough, then as the input
spike train frequency changes, different neurons in the array
are stimulated and therefore one neuron in each of the s arrays
will fire for any of the samples. This process segregates the
input data according to frequency and is a key processing step
in the proposed topology.

To develop the ability to filter presynaptic inputs, the
synapse is required to be sensitive to a band of frequencies. To
achieve this, we propose a parallel combination of facilitating
synapses consisting of an excitatory (E f s) and an inhibitory
(I f s) synapse, as shown in Fig. 2. We propose this because
the topology is very similar to feed-forward loops commonly
found in the hippocampus [28] where excitatory and inhibitory
synapses can selectively amplify high-frequency bursts, CA3
cells branch to have an excitatory input to CA1 cells and
also activate inhibitory inter-neurons that provide a feed-
forward inhibition onto the same CA1 cells. The feed-forward
inhibition is locked in with the excitatory input from the CA3
and this locked property results in an excitatory/inhibitory
postsynaptic response sequence in the CA1 cells that acts like
an adaptive filter. The filtering occurs because both E f s and
I f s switch from facilitation to depression where the switch has
either a temporal dependency (in some cases) or a frequency
dependency [28]–[31]. In the present case we investigate the
latter.

δf
sj

δf
sk

δf
sl

Array

k

l

j

s

Fig. 3. SNN fragment containing an input neuron s, which is connected to
each of the j , k, and l neurons using the feed-forward loop modeled as an
E I f s synapse.

Consider the case where the transition from facilitation
to depression (switching) occurs at f1 for I f s and f2 for
E f s , where f1 < f2. In the situation where f < f1, the
postsynaptic responses from E f s cancel with that from I f s

and no facilitation occurs. With f1 < f < f2, I f s is
depressing with E f s facilitating, resulting in a facilitation
postsynaptic response. For f > f2, both I f s and E f s are
depressing and consequently there is no postsynaptic response.
Hence the feed-forward loop shown in Fig. 2 will only route
information to neuron B if the spike train frequency f of
neuron A lies between f1 and f2. Essentially, our proposed
combination of synapses in Fig. 2 (termed E I f s) implements
frequency filtering with a pass band of δ f = f2 − f1. In our
implementation, both E f s and I f s are modeled using (1)–(5),
when f is below f1 or f2, (1)–(5) are used, and above f1 or
f2, (1)–(4) are used. Experimental evidence has been reported
[32] that shows synaptic switching in the hippocampus occurs
at 1 Hz, while other publications [29]–[31] have reported
the switching from facilitation to depression is possible over
the frequency range 10–100 Hz. Therefore, we can make the
approximation that this switching activity occurs at different
frequencies for different synapses and we use this concept to
implement frequency filtering as follows.

Consider the network fragment in Fig. 3, where neuron s
is one of the input neurons and is presynaptic to an array
consisting of the postsynaptic neurons j , k, and l. Each
pathway contains a feed-forward loop, modeled as an E I f s

synapse that facilitates over a frequency band: pathways s − j ,
s −k, and s − l facilitate over δ fs j , δ fsk , and δ fsl , respectively.
Therefore, spike trains from neuron s will be routed to one of
the j , k, or l neurons depending on its frequency and it is this
routing capability that is central to the computational ability
of the proposed SNN. With reference to Fig. 1, each of the s
input neurons is connected to an array of hidden layer neurons
where every neuron in the array is sensitive to a frequency
band. Consequently, for each of the samples we have at least
one neuron from each array firing and these firing patterns
stimulate the training neuron in the output layer of Fig. 1.

WADE et al.: SPIKING NEURAL NETWORK TRAINING ALGORITHM FOR CLASSIFICATION PROBLEMS 1821

B. Learning Rule

A training algorithm, specific to the SNN topology pre-
sented in Fig. 1, was previously presented [33], [34], where
we combined the sliding threshold of BCM with STDP. The
height of the plasticity window of all synapses connected to
the training neuron was modulated according to

θm (ct) =
(

ct

co

)α

ct (8)

where ct is the average firing frequency of the training neuron
t and co and α are constants, which dictate the dependency of
θm (ct) on ct . The height of the plasticity window is related
to θm (ct) by

A+ (θm) = A p
1

1 + θm (ct)
(9)

where A+ (θm) replaces A+ in (6) for all synapses connected
to the training neuron and approximates to A p for θm (ct) ≈ 0.
A p is the maximum possible amplitude of the potentiation
window. The magnitude of the depression window is found
from

A− (θm) = A p − A+ (θm) (10)

where A− (θm) replaces A− in (7) for all synapses connected
to the training neuron, and A p is the maximum possible
amplitude of the depression window. Note that, if ct is much
greater than co, then A+ (θm) will approach zero and the
height of the depression window A− (θm) will approach A p,
thus leading to LTD. Alternatively, if ct is much less than
co, then A+ (θm) will tend toward A p and LTP occurs. This
competition between LTP and LTD implements the BCM rule,
yielding a mechanism for negative feedback that stabilizes the
output firing frequency after a period of training. However a
bimodal weight distribution will result from this rule, whereas
a unimodal weight distribution is characteristic of real biolog-
ical systems [2]. This bimodal distribution can be understood
if we consider the case where a neuron’s output frequency has
reached the desired rate, which results in the STDP modulation
stopping. One input may continue to further potentiate while
the other continues to depress. The resulting updates lead to
the same approximate output frequency, and therefore there
is no change to the STDP window. This continues until one
input is completely depressed while the other accounts for the
total output.

In this paper, a modified form of (8) is used. Given that
the output firing frequency of the training neuron is related
to the aggregate of all the synaptic responses, then the weight
values of each synapse contributes to the output activity of the
training neuron. Consequently, each synapse can be assigned
a θm (ωt) value based on its weight according to

θm (ωt) =
(

ωt

co

)α

ωt (11)

where θm (ωt) is again used to adjust the STDP window for
the synapse and replaces θm (ct) in (9), ωt is the absolute
synaptic efficacy, and co and α(= 2) are constants used to
vary the dependency of θm (ωt) on ωt . Note that co was found

Array

i 1

2

A
i1

δω
it

A
i2

A
in

n

t

s

Fig. 4. Two-layer SNN fragment with a training neuron t and n classifying
neurons.

experimentally and this will be discussed in Section VI. Equa-
tion (11) is preferred over (8) because it not only implements
BCM but also results in a unimodal distribution of weights.

An important aspect of any classification network is its
ability to select attributes of the input data that are more
strongly associated with a particular class. A localized training
rule such as STDP lacks the ability to reflect similarities
in the data, across all classes, in the weights of a network.
Consequently, our approach is to extend the conventional
STDP rule to assign absolute synaptic efficacy to classification
of neurons based on the relative occurrence of similar data
patterns across all the classes. Thus, we provide a global
learning mechanism that reflects the similarities in the data
and reintroduces synaptic competition which is lost as a result
of the unimodal STDP/BCM rule. Such an association was
demonstrated to be effective in classification problems in an
earlier publication [16], and we therefore adopt this approach
here. Essentially, we are proposing that the relative occurrence
is found by the training neuron and subsequently mapped to
the classifying neuron in Fig. 1, neuron-to-neuron signaling
via astrocytes [35]–[39] could be the mechanism by which
this mapping process occurs.

We now develop a STDP-based training rule that operates
on all synapses associated with the training neuron during the
training period only. The resulting weight updates calculated
by this rule are continually mapped to the classifying neurons,
the proportion of the weight update mapped to each classifying
neuron reflects the relative occurrence of similar data patterns
across classes.

Consider a fragment of the SNN in Fig. 1, shown in Fig. 4,
where n output neurons (1, 2, ..., n) classify data from neuron
i , neuron i is any one of the neurons in the hidden layer
arrays of Fig. 1. This neuron is stimulated by one of the s
input neurons and will repeatedly fire at a frequency f for
the duration of the applied stimulus, neuron i will also fire
a frequency burst at f for similar inputs from all classes.
Assume that there are p samples at frequency f in class 1, q
samples at f in 2, and r samples again at f in class n. The

1822 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 11, NOVEMBER 2010

p samples of class 1 will yield a total weight update over 1
epoch, δωi1, given by

δωi1 =
p∑
0

δω (12)

where δω is given by (6) and (7). For each output spike of
neuron t , we only consider the temporal difference between the
nearest before and after input spike [3] and δω is the average
weight obtained from the sum of the all potentiation (before)
and depression (after) weight changes. Convergence is assured
because of the combined STDP/BCM rule where the plasticity
window shifts vertically with increasing output activity of neu-
ron t until the level of potentiation and depression associated
with each output spike cancels with δω ∼ 0 (9), (10), and (11)
are used in this calculation. Similarly, for class 2 we can write

δωi2 =
q∑
0

δω (13)

and for class n we can write

δωin =
r∑
0

δω. (14)

With reference to (14), we note that the potentiating δωin ,
after a period of training, will reflect the number of samples
at frequency f in class n training data. This is also true
of (12) and (13), and consequently the post-trained weight
distribution across all classifying neurons will be a unimodal
representation of similar data patterns in the training samples.
If we assume unequal sample sizes for each class, where
classes 1, 2, and n have samples sizes of m1, m2, and mn ,
then the probability Pn that a particular sample belongs to
class n is given by

Pn =
δωin

mn
δωi1

m1
+ δωi2

m2
+ · · · · · · + δωin

mn

. (15)

The total weight increase across all classes (δωit) in one
epoch is given by

δωit =
n∑
1

δωin . (16)

Finally, referring to (4), (15), and (16), we can write a
generic learning rule for the synapse associated with the nth

output neuron Ain as

Ain = Kωin = K (ωin (pre) + Pnδωit) (17)

where ωin(pre) is the existing weight value and K
(= 10−12

)
is a scaling factor, Ain is assigned to the synapse of neuron n
through the mapping process. Note that for the situation where
all classes have equal sample sizes (m1 = m2 = · · · · · · = mn),
the rule in (17) reduces to

Ain = K (ω (pre) + δωin) . (18)

It is important to note that the training neuron is used to
ensure that the relative occurrence of samples at frequency
f across the classes is accurately reflected in the absolute

synaptic efficacy for each epoch. This is ensured because,
during any training epoch, the output firing frequency of
the training neuron will be the same for all classes, as will
all other parameters. This is not the case for the neurons
1 to n since their weights will be different after a period
of training, as predicted by (17) and (18). Therefore, our
training neuron uses the STDP/BCM rule to associate weight
updates with the number of times a particular neuron in any
of the arrays fires for each class and subsequently assigns
an absolute synaptic efficacy, through the mapping process
described by (17) and (18), to each of the synapses of the
associated classifying neuron to reflect that association. Hence
a high occurrence of particular input data values in one class
will be reflected, through the mapping, in the PSP of the
associated classifying neuron and consequently it will fire
faster. The training neuron also ensures that, after a period
of training, the network will reach a global minimum and
therefore overtraining is avoided. When all synapses reach
this condition, the average output frequency of the training
neuron will remain relatively constant with δωit → 0 because
δω → 0. Hence, stability of the output frequency is used as
the stopping condition for training. A further point to note is
that, because the proposed algorithm correlates commonality
across the input data, using the probability function in (15),
then for data with a small sample size (e.g., XOR problem) the
accuracy of the classification reduces. Equation (15) reflects
the probability that a particular sample belongs to a class and
therefore there must be a sufficiently large sample population
for this equation to become statistically meaningful.

C. Training Algorithm

We now discuss the training procedure for an n class
problem where each class has mn data patterns.

Each epoch of training starts by calculating the position
of the STDP window, using (9)–(11). Subsequently the entire
training data mn for each of the n classes is passed to the
SNN, and for each synapse associated with the training neuron,
the total weight value δωit is calculated using (6), (7), (14),
and (16), note that each sample is presented for a duration of
2 s. At the end of the epoch, these values are used to find
Ain , which is then mapped to the synapses associated with
the output neuron.

At the end of each epoch, we calculate both the classifi-
cation accuracy (CA) using the training data and the average
firing activity of the training neuron (ct), where the latter is
used to evaluate the stopping criteria for SWAT. Once this
condition is met, the weights are fixed and the testing data is
applied. The read-out function used in this paper is similar to
that presented in [21], where output neurons were grouped into
classes and classification is assigned by using a majority vote
system. However, since we employ only one neuron per output
class, the output neuron with the highest firing frequency
represents the class association.

While this approach to training does not suffer from over-
training because BCM acts to stabilize the output frequency of
t after a period of training, it is necessary to apply a stopping
criteria for the purpose of testing the network. This criteria is

WADE et al.: SPIKING NEURAL NETWORK TRAINING ALGORITHM FOR CLASSIFICATION PROBLEMS 1823

based on the average firing frequency ct associated with the
training neuron. Once ct has stabilized, the weights will also
have stabilized and the training is then stopped. We apply this
condition by continually monitoring ct and, when it remains
constant to within ±0.2 Hz for 100 consecutive epochs, the
training is stopped and the weights are then fixed.

IV. NEURON MODEL

The neuron model used in this paper is the leaky integrate
and fire model [40], the output of which is given by

τm
dv

dt
= −v (t) + Rm Itot (t) (19)

where τm is the membrane time constant, v is the membrane
potential, Rm is the membrane resistance, and Itot is the total
current generated by all synapses connected to the neuron.
This passive membrane model was chosen because it pro-
vides a good model for the biological neuron with minimal
computational overhead. In this paper, τm = 60 ms and
Rm = 1000 M� [24]. The firing threshold of the neuron is
implemented using [41]

V thNew = m × V thOrig exp

(
− t − ti

τdecay

)
(20)

where V thNew is the new value of the firing threshold after
the neuron has fired, m is a multiplication factor, V thOrig is
the original firing threshold, t is the current time, ti is the
time the neuron fired, and τdecay sets the rate at which the
threshold decays back to its equilibrium value. In the present
case τdecay = 20 ms, V thOrig = 9 mV [42] and m was set
to 11.1, this sets the threshold to 100 mV after firing. When
the neuron fires at time ti , the threshold is multiplied m times
and then decays back to its original value. This allows the
absolute and relative refractory periods to be modeled without
the information presented by the PSP being lost [41], [43].
Using dynamic synapses and variable thresholds in this way
also approximates the output of a biological neuron under
constant-current experiments [44].

V. BENCHMARKING

In this section, we use SWAT to classify both the Iris
and WBC datasets to facilitate benchmarking against existing
training algorithms.

A. Iris Dataset

The three-class Iris dataset problem (n = 3) was initially
used to benchmark SWAT. The three different classes represent
the different species of the Iris plant, i.e., Iris Setosa Canadeni-
sis (Class A), Iris Veriscolor (Class B), and Iris Virginica
(Class C). The full dataset consists of a total of 150 samples,
50 for each species [45]. Each sample contains four attributes:
sepal length, sepal width, petal length, and petal width.

Training and testing was achieved in these experiments by
the process described in Section III-C. To encode the data
while minimizing the number of neurons in each array in
the hidden layer, the squared cosine method [20] was used.
Using this method, the complete attribute range is multiplied

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

Epoch No.

Fr
eq

ue
nc

y
(H

z)

100 150 200 250 300 350 400 450 500

39

40

41

42

Fig. 5. Average output frequency of the training neuron vs. epoch for the
Iris data over the five training sets. The error bars are shown in more detail
on the inset, which reflects a standard deviation over epochs 100 to 500.

by a factor of 10, so that the new attributes are now integer
values. Each attribute is then passed through four squared
cosine functions (s = 16) with centers at 1, 20, 40, and 60 Hz.
The width of each function is 40 Hz with an output range of
25–66.6 Hz or an inter spike interval (ISI) of 15–40 ms. The
150 samples were split randomly into five groups of 30, with
each group containing 10 samples from each species, m = 10.
Fivefold cross-validation was then carried out where training is
performed five times, and each run uses four different groups
for training and the remaining group for testing. The mean
results for training and testing were then calculated.

The SNN topology in Fig. 1 was used in the following
experiments, where each input neuron was connected to an
array of 13 hidden layer neurons with associated filtering
E I f s , each synapse is sensitive to a band-pass equivalent to
an ISI of 2 ms and hence the requirement for 13 neurons
to account for a total frequency range of 25–66 Hz or an
ISI from 40 to 15 ms. The total number of neurons in the
hidden layer is therefore 208 (13 array neurons × 16 input
neurons). The “weights” for the hidden layer neurons are fixed
so that each neuron in the hidden layer fires at approximately
40 Hz for the corresponding input range, these values were
found experimentally. The hidden layer is then fully connected
to a single training neuron whose synaptic weight updates
are governed by the STDP/BCM rule. In addition, weights
associated with the output layer neurons were initialized to a
constant value (1 pA). This is necessary to ensure that mapping
similarities in the input data, calculated by the STDP/BCM
rule, are not offset by an uneven initial weight distribution.
This initialization is similar to other work [46] and does not
degrade the network’s ability to generalize. Note that in this
experiment the maximum height of the plasticity window A p

was 0.5, which is equivalent to δAS E of 0.5 pA (K = 10−12),
and co was 4000.

Fig. 5 shows an average of the training neuron’s output
activity over the five training runs along with the standard
deviation of the data every 25 epochs. From this, it can be
seen that the firing rate of the training neuron stabilized at
approximately epoch 500.

1824 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 11, NOVEMBER 2010

0 100 200 300 400 500

Epoch No.

0

20

40

60

80

100
E

rr
or

 (
%

)

Fig. 6. Convergance plot for Iris training data for all five folds.

0 100 200 300 400 500 600

Synapse Number

50

100

150

200

250

Fi
na

l W
ei

gh
t (

ω
)

Fig. 7. Post-trained weight distribution for the Iris dataset.

In these experiments, the classification is determined by
the output neuron with the highest firing rate, the firing
frequency for each output neuron is determined by counting
the number of spikes over a fixed duration. Fig. 6 shows the
average percentage error and standard deviation against the
number of epochs over the five sets of training data, where, at
approximately epoch 500, the training reaches and stabilizes
at a minimum. For this dataset, the CA for the training data
is 95.5% and for testing data it is 95.3%. Also note that,
after a minimum error has been reached and the network has
stabilized, there is no overtraining and the error remains at a
global minimum.

Fig. 7 shows the post-training weight distribution for all
synapses associated with the output neurons. It can clearly
be seen that a unimodal weight distribution results from the
training and that a significant proportion of the weights are
untrained. Therefore the post-trained SNN is only partially
connected between the hidden and output layers. Also, from
the weight distribution it is clear that the mapping process as-
sociated with the training neuron causes competition between
synapses.

Table I compares the convergence accuracy of SWAT
against existing algorithms for the Iris dataset [20]. Mat-
labBP and MatlabLM are built-in functions used by MATLAB
that implement the backpropagation and Levenberg–Marquardt
training algorithms, respectively. It should be noted that, while

TABLE I

COMPARISON OF TRAINING ALGORITHM: RESULTS FOR IRIS DATASET

Algorithm Training set Testing set

SpikeProp 97.4% ± 0.1 96.1% ± 0.1

MatlabBP 98.2% ± 0.9 95.5% ± 2.0

MatlabLM 99.0% ± 0.1 95.7% ± 0.1

Weight Limit Learning 100% 96.6%

SWAT 95.5% ± 0.6 95.3% ± 3.6

the training accuracy falls slightly short of other approaches,
the test data is comparable, which suggests that SWAT can
generalize better.

B. WBC Dataset

The two-class (n = 2) WBC dataset was also used to
benchmark SWAT. This dataset uses breast cytology gained
by fine needle aspirations obtained from the University of
Wisconsin Hospital and classifies the results into benign or
malignant tumors [47]. The complete dataset contains 699
samples, however, 16 samples have missing data so these
have been removed for these experiments. The remaining
683 comprise of 444 and 239 benign and malignant tumors,
respectively [48]. These samples are again randomly split into
five groups for fivefold cross-validation training and testing.
To achieve five equally sized groups, four random samples
have been removed from each class and therefore each group
contains 88 benign and 47 malignant samples. Because of
the unequal class size, the rule described by (17) is applied
to train this dataset. Each sample has nine attributes, which
measure different features of the cytology with integer values
in the range 1–10. Therefore, it is not necessary to use the
squared cosine method to encode the data as in the previous
experiments. Each value can be mapped directly to a linear
spike train in the range of 34–50 Hz (29–20 ms ISI), where a
value of 1 is assigned to the lowest frequency and a value of
10 to the highest.

The same network topology and training regime as in
the last experiments were used. The input layer comprises
nine neurons, one for each attribute. To ensure consistency
between experiments, the same number and type of hidden
layer neurons were used in each array, hence the hidden layer
contains 117 neurons (13 array neurons × 9 input neurons).
Note that, in this experiment, co remains the same as in
the previous experiment, while the maximum height of the
plasticity window A p is 0.1, which is equivalent to δAS E of
0.1 pA. This reduction in δAS E is due to the greater number
of samples, compared to the Iris dataset, used for training,
the greater number of training samples per epoch correlates
with the relative firing rate of the classifying neurons after
training. Results gained from these experiments showed that,
again, after a period of training, the firing frequency of the
training neuron stabilizes at epoch 500, as shown in Fig. 8,
which presents an average of the training neuron activity and
standard deviation over the five training sets.

WADE et al.: SPIKING NEURAL NETWORK TRAINING ALGORITHM FOR CLASSIFICATION PROBLEMS 1825

0

5

10

15

20

25

30
Fr

eq
ue

nc
y

(H
z)

200 250 300 350 400 450 500
27

27.5

28

28.5

0 100 200 300 400 500

Epoch No.

Fig. 8. Average output frequency of the training neuron vs. epoch for the
WBC dataset over the five training sets. Error bars on the inset show the
standard deviation over epochs 160 to 500.

0 100 200 300 400 500

Epoch No.

0

20

40

60

80

100

E
rr

or
 (

%
)

Fig. 9. Convergence accuracy (CA) for WBC training data for all five sets.

Fig. 9 shows the average percentage error and standard
deviation against the number of epochs over the five sets of
training data where, again, the training reaches and stabilizes
at a minimum for each of the training runs. Interestingly, the
error reaches a plateau at approximately epoch 50, but is driven
past it at around epoch 110. This is caused by attributes of the
input data that have a high occurrence across the classes. These
attributes initially cause a strong potentiation of some of the
weights assigned to the classifying neurons but, because of
the negative feedback implemented using (11), these weight
values saturate. However, attributes that occur less frequently
are still causing other weights to potentiate much more slowly,
and so ct in Fig. 9 begins to move toward a global minimum
again, note that the reduction in the rate of change of ct in
Fig. 8 corresponds with the plateau of Fig. 9.

Fig. 10 shows the post-training weight distribution for all
synapses associated with the output neurons, and again a
unimodal weight distribution results from the training. Note
also that a significant portion of the weights is untrained and
consequently the post-trained SNN is only partially connected
between the hidden and output layers. Also, the weight distri-
bution indicates that the mapping process associated with the
training neuron causes competition between synapses.

Table II compares the convergence accuracy of SWAT
against existing algorithms for the WBC dataset [20]. For this

0 200 400 600 800 1000 1400 1600 1800

Synapse Number

10

1

20

30

40

50

Fi
na

l W
ei

gh
t (

ω
)

Fig. 10. Post-trained weight distribution for the WBC dataset.

TABLE II

COMPARISON OF TRAINING ALGORITHM: RESULTS FOR WBC DATASET

Algorithm Training set Testing set

SpikeProp 97.6% ± 0.2 97.0% ± 0.6

MatlabBP 98.1% ± 0.4 96.3% ± 0.2

MatlabLM 97.7% ± 0.3 96.7% ± 0.6

Weight limit learning 100% 97.9%

SWAT 96.2% ± 0.4 96.7% ± 2.3

dataset, the test data accuracy is comparable to that of the
other approaches.

Although the training for both the Iris and WBC experi-
ments stabilized at 500 epochs, the experiments ran for more
than twice that number of epochs and it was observed that
the CA remained stable at around its minimum value. This is
due to the negative feedback mechanism associated with BCM
which stabilized the weights at a level that reflected similarities
in the input data, across all classes, in the absolute synaptic
efficacy. Therefore, no overtraining is possible with SWAT.

VI. ROBUSTNESS

The robustness of SWAT was explored by analyzing the
convergence accuracy across different plasticity windows. For
this experiment, three different shaped windows were used.
The first window (Standard) was symmetrical about the time
axis and was based on (9) and (10). where τ+ and τ− were set
to 15 ms. The second window (Bi and Poo) was asymmetrical
about the time axis and can also be described by (9) and (10),
where the parameters τ+ and τ− were set to 16.8 and 33.7 ms,
respectively [13], [25]. The final window (Gerstner) [49] was
an asymmetrically skewed “sinusoidal” shaped window where
τ+ and τ− were set to 12 and 24 ms, respectively. Both
datasets were trained using the three plasticity windows, and
the classifying accuracy is shown in Table III. It can clearly
be seen that results are very similar for the three windows,
however, the Bi and Poo shaped window performed the best
during testing and was used for the generation of results in
Tables I and II.

Further experiments were also carried out to explore how
the variance of co and A p would affect the performance of

1826 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 11, NOVEMBER 2010

TABLE III

COMPARISON OF STDP WINDOWS FOR IRIS AND WBC DATA SETS

Training set Testing set
Window Iris WBC Iris WBC

Standard 95.5% 96.6% 94.7% 96.4%

Bi and Poo 95.5% 96.2% 95.3% 96.7%

Gerstner 96% 96.2% 94.7% 96.64%

SWAT. It was found that, if co is reduced significantly, then CA
is also reduced because the maximum weight values tend to
stabilize at lower values and the resulting PSP, associated with
the output classifying neurons, fails to exceed the threshold
level for some test samples. Alternately, an upper limit on co

is set by the maximum firing rate (set by the refractory period)
of the output classifying neurons, a more realistic upper limit
on co is the convergence time, which for our network was
limited to approximately 500 epochs. A similar observation
was reported elsewhere [27]. The lower limit on A p is set by
the training time, but care must be exercised when choosing
the upper limit to avoid oscillations in ct and consequently the
weight distribution. This effect is very similar to that reported
for the backpropagation algorithm when the learning rate is
too large [50]. In this paper, the optimum values for A p and
co reported earlier were found experimentally.

SWATs immunity to noise was also investigated, whereby
varying levels of additive white Gaussian noise were added to
the Iris and WBC datasets and the average CA was measured
for each dataset, note that the SNN was trained on the
“noiseless” data as explained in Section V and the resulting
post-trained topology and weights were used to classify the
noisy data. Fig. 11 presents the results of these experiments,
where it can be seen that the CA remains above 90% up to a
signal-to-noise ratio (SNR) of 18 dB for the Iris dataset and up
to a SNR of 8 dB for the WBC dataset. The difference in noise
robustness between the datasets is a result of the preprocessing
encoding scheme used. In the Iris dataset, four squared cosine
filters are used on each input, while for the WBC data no
preprocessing was used.

VII. ASR

In this section, SWAT is benchmarked in an ASR system.
The dataset used for this application is a subset of the TI46
speech corpus which contains isolated spoken words collected
by Texas Instruments in 1980. The complete TI46 corpus
contains 16 speakers: 8 male and 8 female, and each speaker
utters 46 words, where each utterance is repeated 26 times
[51]. In these experiments, we use a subset of this corpus
consisting of the digits 0–9, and all eight speakers are used
with five utterances of each digit. This yields a total dataset
of 400 samples (10 digits × 8 speakers × 5 utterances).

A. ASR Front End

We developed a signal analysis (front end) stage for the ASR
system. This contained elements that allowed us to extract

5 10 15 20 25 30 35 40
40

50

60

70

80

90

100

SNR (dB)

C
A

 (
%

)

Training
Testing

Iris DatasetWBC Dataset

Fig. 11. SWAT noise immunity for the post-training SNN parameters from
Section V.

Endpoint
Detection

Pre-
Emphasis

Windowing LPC
Spike Train
Generation

Fig. 12. ASR front end used for the generation of input spike trains from
the speech data.

features from the speech signal and convert them to a series
of inputs for processing by SWAT.

Fig. 12 illustrates the front end which is described as
follows.

1) Endpoint detection. An important feature of any recog-
nition system is the ability to locate the start and end
of a word. This isolates the signal from the silence that
is located before and after the utterance and reduces the
amount of processing time required, the sample lengths
are shortened dramatically. This is achieved by using the
endpoint detection algorithm implemented by [52].

2) Pre-emphasis. Within speech signals, there is a typical
roll off of −6 dB/octave. To eliminate this, the signal
is processed by a high-pass first-order FIR filter with a
6 dB/octave gain [53] and is described as

y(n) = x(n) − αx(n − 1) (21)

where x(n) is the original signal, y(n) is the pre-
emphasized signal, and α is the filter coefficient. In these
experiments, α = 0.94.

3) Windowing. The pre-emphasized signal is now divided
into quasi-stationary frames. The normal technique is
to use a window with a fixed width and crossover.
However, the speech samples are of various lengths,
and this method would result in a wide ranging number
of windows, depending on the sample length, since the
topology of SWAT has a fixed number of input neurons,
this is undesirable as there must be an input for every
extracted coefficient from each window. To combat this,
we used a variable window width of N samples given by

N = fs · sl

W f
(22)

WADE et al.: SPIKING NEURAL NETWORK TRAINING ALGORITHM FOR CLASSIFICATION PROBLEMS 1827

0 50 100 150 200 250
0

50

100

150

200

250

300

Epoch No.

Fr
eq

ue
nc

y
(H

z)

140 160 180 200 220 240
245

250

255

260

Fig. 13. Average output frequency of the training neuron vs. epoch number
for the speech dataset over five training sets. Error bars on the inset show the
standard deviation over epochs 125 to 250.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Epoch No.

E
rr

or
 (

%
)

Fig. 14. Convergence accuracy (CA) for TI46 digits training data for all five
sets.

where fs is the sampling frequency, sl is the signal
length in time, and W f is the number of windows. The
frame step S f , which determines the overlap, is then
given by

S f = N

K
(23)

where K can be adjusted to give varying degrees of
overlap. In this paper K = 2, this provides a 50%
overlap. Variable window sizes have been used by [54]
and it was found that they provided better results than
fixed window sizes.

4) LPC feature extraction. Features are now extracted
from each of the frames using LPC coefficients, which
allow us to extract good features with a minimal sized
network. In this paper, the LPC coefficients were
extracted using the Auditory Toolbox [55].

5) Spike train generation. Finally, the extracted LPC
coefficients are now converted to linear spike trains
which can be processed by SWAT. Depending on the
number of coefficients extracted, the features are in the
range −2.5 to 2.5. To convert these values to spike

TABLE IV

CA OF THE 10 DIGITS

0 1 2 3 4 5 6 7 8 9 CA
(%)

0 37 2 1 92.5

1 40 100

2 40 100

3 1 1 36 1 1 90

4 39 1 97.5

5 2 3 2 33 82.5

6 1 1 38 95

7 1 39 97.5

8 40 100

9 1 39 97.5

trains, we offset all values by Os given by

Os = 1.3 − Lv (24)

where Lv is the lowest value. These values are then
multiplied by a factor of 10. This results in a series of
ISIs, which are then used to generate the spike trains.

B. Results

We then used SWAT as a component of the ASR to classify
a subset of the TI46 speech corpus using the digits 0–9
(n = 10). As with the previous experiments, we again
randomly split the data into five groups for fivefold cross-
validation. This results in five datasets of 80 samples, with
each dataset containing 8 samples of each digit. For each
of the five training and testing runs, there are 320 training
samples and 80 testing samples (four groups for training, one
group for testing). The optimal number of windows used and
features to extract were found experimentally to be 20 and
9, respectively. This results in an input layer of 180 neurons
(20 ×9). The hidden layer consists of 28 E I f s filters for each
input, each with an ISI of 2 ms, covering a frequency band of
14.5–77 Hz (ISI 13–69 ms). Therefore, the number of neurons
in the hidden layer is 5040 (180 × 28). The total network size
is therefore 180 × 5040 × 10. Other network parameters were
set as before: A p is 0.1, which is equivalent to δAS E of 0.1 pA
and co was set to 500.

Results gained from this experiment show that, after a
period of training, the firing frequency of the training neuron
stabilizes, as shown in Fig. 13. Note that the average firing fre-
quency is much higher than in the Iris and WBC experiments.
This is because there are more classes and, therefore, each
weight value calculated by the STDP/BCM is proportionally
segregated across many more synapses, making it harder for
the output neurons to fire, the greater the number of classes,
the higher the average firing frequency of the training neuron.

Fig. 14 shows the average percentage error and standard
deviation against the number of epochs over each of the five

1828 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 11, NOVEMBER 2010

0 200 400 600 800 1000 1200 1400 1600 1800

10

20

30

40

50

1

Synapse Number

Fi
na

l W
ei

gh
t (

ω
)

Fig. 15. Post-trained weight distribution of the first 1800 output synapses
of the ASR system.

training sets where, again, the training reaches and stabilizes
at a minimum for each of the sets. The CA over the five
training runs was 98.875%, while the CA for the testing data
was found to be 95.25%.

Table IV shows the breakdown of the CA for each of the
40 test samples for each digit during the five testing runs. The
rows represent the digit samples, and the columns represent
the result of the classification. For example, row 1 shows that
the digit 0 was correctly classified 37 times, was mistaken for
4 twice, and for 9 once, resulting in an overall CA for digit 0
of 92.5%.

Fig. 15 highlights the post-training weight distribution for
the first 1800 synapses associated with the output neurons.
These final weights again show that there is good competition
between the synapses.

VIII. CONCLUSION

This paper presented a training algorithm specific to a
novel SNN topology which classifies data represented by
spike trains. The algorithm utilized a combined STDP/BCM
training rule which accounts for unequal sample sizes in the
training data and correlated commonality across the classes
in a post-trained unimodal weight distribution. The SNN
topology utilizes a frequency routing capability to segregate
the input data. This is achieved using a parallel combination
of excitatory and inhibitory facilitating synapses, which is
similar to feed forward loops found in the hippocampus. A
single training neuron is then used to assign weights to the
synapses associated with the classifying neurons according to
similarities or “relative occurrence of similar data values” in
the input data for all classes. Variable firing thresholds were
also used to emulate the absolute and relative recovery periods
inherent in a biological neuron. SWAT was benchmarked
using the Iris and WBC dataset problems, and the results
highlight the algorithm’s capability to classify these datasets.
Overall, the results were similar to other approaches and any
comparisons must be interpreted with caution. For example,
SpikeProp and WLL use single spike encoding, while other
algorithms use neuron models that are less representative of
real biological neurons. In contrast, SWAT is more realistic,
as it attempts to represent real neural systems by encoding

data in spike trains where the associated frequency is used
as a processing parameter. Moreover, by reflecting features
of the input data, common to all classes, in the post-trained
weights, SWAT demonstrates good generalization and noise
immunity. Results also show that SWAT can classify complex
datasets, whereby a subset of the TI46 speech corpus was used
to benchmark SWAT in an ASR system. The CA for this data
was 98.875% for training and 95.25% for testing.

REFERENCES

[1] L. Benuskova and N. Kasabov, “Modeling L-LTP based on changes in
concentration of pCREB transcription factor,” Neurocomputing, vol. 70,
nos. 10–12, pp. 2035–2040, Jun. 2007.

[2] M. C. W. van Rossum, G. Q. Bi, and G. G. Turrigiano, “Stable Hebbian
learning from spike timing-dependent plasticity,” J. Neurosci., vol. 20,
no. 23, pp. 8812–8821, Dec. 2000.

[3] E. M. Izhikevich and N. S. Desai, “Relating STDP to BCM,” Neural
Comput., vol. 15, no. 7, pp. 1511–1523, Jul. 2003.

[4] S. M. Bohte, J. N. Kok, and H. L. Poutré, “Error-backpropagation in
temporally encoded networks of spiking neurons,” Neurocomputing, vol.
48, nos. 1–4, pp. 17–37, Oct. 2002.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Processing,
J. L. McClelland and D. E. Rumelhart, Eds. Cambrige, MA: MIT Press,
1986.

[6] P. Rowcliffe and J. Feng, “Training spiking neuronal networks with
applications in engineering tasks,” IEEE Trans. Neural Netw., vol. 19,
no. 9, pp. 1626–1640, Sep. 2008.

[7] J.-P. Pfister, D. Barber, and W. Gerstner, “Optimal Hebbian learning: A
probabilistic point of view,” in Proc. ICANN/ICONIP, Istanbul, Turkey,
Jun. 2003, pp. 92–98.

[8] A. Belatreche, L. P. Maguire, T. M. McGinnity, and Q.-X. Wu, “A
method for supervised training of spiking neural networks,” in Proc.
IEEE Cybern. Intell.-Challenges Adv., Reading, U.K., Sep. 2003, pp.
39–44.

[9] S. Soltic, S. G. Wysoski, and N. K. Kasabov, “Evolving spiking neural
networks for taste recognition,” in Proc. IEEE Int. Joint Conf. Neural
Netw. (IEEE World Congr. Comput. Intell.), Hong Kong, China, Jun.
2008, pp. 2091–2097.

[10] D. O. Hebb, The Organization of Behavior: A Neuropsychological
Theory. New York: Wiley, 1949.

[11] B. Ruf and M. Schmitt, “Learning temporally encoded patterns in
networks of spiking neurons,” Neural Process. Lett., vol. 5, no. 1, pp.
9–18, 1997.

[12] R. Legenstein, C. Naeger, and W. Maass, “What can a neuron learn with
spike-timing-dependent plasticity?” Neural Comput., vol. 17, no. 11, pp.
2337–2382, Nov. 2005.

[13] G. Bi and M. Poo, “Synaptic modifications in cultured hippocampal neu-
rons: Dependence on spike timing, synaptic strength, and postsynaptic
cell type,” J. Neurosci., vol. 18, no. 24, pp. 10464–10472, Dec. 1998.

[14] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation
of synaptic efficacy by coincidence of postsynaptic APs and EPSPs,”
Science, vol. 275, no. 5297, pp. 213–215, Jan. 1997.

[15] A. Kasinski and F. Ponulak, “Experimental demonstration of learning
properties of a new supervised learning method for the spiking neural
networks,” in Proc. Int. Conf. Artificial Neural Netw., Warsaw, Poland,
Sep. 2005, pp. 145–152.

[16] T. J. Strain, L. J. McDaid, L. P. Maguire, and T. M. McGinnity, “A novel
mixed supervised-unsupervised training approach for a spiking neural
network classifier,” in Proc. Conf. Intell. Cybern. Syst., SMC UK-RI
Chapter, Londonderry, U.K., Sep. 2004, pp. 202–206.

[17] Q. Wu, T. McGinnity, L. Maguire, A. Belatreche, and B. Glackin,
“Adaptive co-ordinate transformation based on a spike timing-dependent
plasticity learning paradigm,” in LNCS: Advances in Natural Computa-
tion, vol. 3610, L. Wang, K. Chen, and Y. S. Ong, Eds. Berlin, Germany:
Springer-Verlag, 2005, pp. 420–428.

[18] L. F. Abbott and S. B. Nelson, “Synaptic plasticity: Taming the beast,”
Nat. Neurosci. Suppl., vol. 3, pp. 1178–1183, Nov. 2000.

[19] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity,” Nat. Neurosci., vol.
3, no. 9, pp. 919–926, Sep. 2000.

WADE et al.: SPIKING NEURAL NETWORK TRAINING ALGORITHM FOR CLASSIFICATION PROBLEMS 1829

[20] Q. X. Wu, T. M. McGinnity, L. P. Maguire, B. Glackin, and A.
Belatreche, “Learning under weight constraints in networks of temporal
encoding spiking neurons,” Neurocomputing, vol. 69, nos. 16–18, pp.
1912–1922, Oct. 2006.

[21] J. M. Brader, W. Senn, and S. Fusi, “Learning real-world stimuli in a
neural network with spike-driven synaptic dynamics,” Neural Comput.,
vol. 19, no. 11, pp. 2881–2912, Nov. 2007.

[22] A. M. Thomson and J. Deuchars, “Temporal and spatial properties of
local circuits in neocortex,” Trends Neurosci., vol. 17, no. 3, pp. 119–
126, Mar. 1994.

[23] M. V. Tsodyks and H. Markram, “The neural code between neocortical
pyramidal neurons depends on neurotransmitter release probability,”
Proc. Natl. Acad. Sci., vol. 94, no. 2, pp. 719–723, Jan. 1997.

[24] M. V. Tsodyks, K. Pawelzik, and H. Markram, “Neural networks with
dynamic synapses,” Neural Comput., vol. 10, no. 4, pp. 821–835, May
1998.

[25] R. C. Froemke and Y. Dan, “Spike-timing-dependent synaptic modifi-
cation induced by natural spike trains,” Nature, vol. 416, pp. 433–438,
Mar. 2002.

[26] P. Jedlicka, “Synaptic plasticity, metaplasticity and BCM theory,” Bratisl.
Lek. Listy, vol. 103, nos. 4–5, pp. 137–143, 2002.

[27] E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the
development of neuron selectivity: Orientation specificity and binocular
interaction in visual cortex,” J. Neurosci., vol. 2, no. 1, pp. 32–48, Jan.
1982.

[28] V. A. Klyachko and C. F. Stevens, “Excitatory and feed-forward in-
hibitory hippocampal synapses work synergistically as an adaptive filter
of natural spike trains,” PLoS Biol., vol. 4, no. 7, p. e207, Jul. 2006.

[29] A. J. Delaney and C. E. Jahr, “Kainate receptors differentially regulate
release at two parallel fiber synapses,” Neuron, vol. 36, no. 3, pp. 475–
482, Oct. 2002.

[30] J. S. Dittman, A. C. Kreitzer, and W. G. Regehr, “Interplay between
facilitation, depression, and residual calcium at three presynaptic termi-
nals,” J. Neurosci., vol. 20, no. 4, pp. 1374–1385, Feb. 2000.

[31] M. Mori, M. H. Abegg, B. H. Gähwiler, and U. Gerber, “A frequency-
dependent switch from inhibition to excitation in a hippocampal unitary
circuit,” Nature, vol. 431, no. 7007, pp. 453–456, Sep. 2004.

[32] C. Saviane, L. P. Savtchenko, G. Raffaelli, L. L. Voronin, and
E. Cherubini, “Frequency-dependent shift from paired-pulse facilitation
to paired-pulse depression at unitary CA3–CA3 synapses in the rat
hippocampus,” J. Physiol., vol. 544, no. 2, pp. 469–476, Oct. 2002.

[33] J. J. Wade, L. J. McDaid, J. A. Santos, and H. M. Sayers, “A biologically
inspired training algorithm for spiking neural networks,” in Proc. Irish
Signals Syst. Conf., Londonderry, U.K., Sep. 2007, pp. 7–12.

[34] J. J. Wade, L. J. McDaid, J. A. Santos, and H. M. Sayers, “SWAT: An
unsupervised SNN training algorithm for classification problems,” in
Proc. IEEE Int. Joint Conf. Neural Netw. (IEEE World Congr. Comput.
Intell.), Hong Kong, China, Jun. 2008, pp. 2648–2655.

[35] A. Araque, G. Carmignoto, and P. G. Haydon, “Dynamic signaling
between astrocytes and neurons,” Annu. Rev. Phys., vol. 63, no. 1, pp.
795–813, 2001.

[36] P. Kurosinski and J. Götz, “Glial cells under physiologic and pathologic
conditions,” Arch. Neurol., vol. 59, no. 10, pp. 1524–1528, Oct. 2002.

[37] G. Perea and A. Araque, “Properties of synaptically evoked astrocyte
calcium signal reveal synaptic information processing by astrocytes,”
J. Neurosci., vol. 25, no. 9, pp. 2192–2203, Mar. 2005.

[38] G. Perea and A. Araque, “Synaptic information processing by astro-
cytes,” J. Physiol.-Paris, vol. 99, nos. 2–3, pp. 92–97, Mar.–May 2006.

[39] G. Perea and A. Araque, “Astrocytes potentiate transmitter release at
single hippocampal synapses,” Science, vol. 317, no. 5841, pp. 1083–
1086, Aug. 2007.

[40] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge, U.K.: Cambridge Univ. Press, 2002.

[41] N. Kasabov and L. Benuskova, “Computational neurogenetics,” J. Com-
put. Theor. Nanosci., vol. 1, no. 1, pp. 47–61, Mar. 2004.

[42] R. F. Thompson, The Brain: A Neuroscience Primer, 2nd ed. San
Francisco, CA: Freeman, 1993.

[43] N. Kasabov, “Neuro-, genetic-, and quantum inspired evolving intelligent
systems,” in Proc. Int. Symp. Evolving Fuzzy Syst., Ambleside, U.K.,
Sep. 2006, pp. 63–73.

[44] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural
Science, 4th ed. New York: McGraw-Hill, 2000.

[45] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Ann. Eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[46] Z. Yang and A. F. Murray, “An artificial early visual model adopting
spike-timing-dependent plasticity,” Neurocomputing, vol. 69, nos. 16–
18, pp. 1904–1911, Oct. 2006.

[47] W. H. Wolberg and O. L. Mangasarian, “Multisurface method of pattern
separation for medical diagnosis applied to breast cytology,” Proc. Natl.
Acad. Sci., vol. 87, no. 23, pp. 9193–9196, Dec. 1990.

[48] Breast Cancer Wisconsin Dataset [Online]. Available:
http://archive.ics.uci.edu/ml/datasets/

[49] W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner, “A
neuronal learning rule for sub-millisecond temporal coding,” Nature,
vol. 383, no. 6595, pp. 76–78, Sep. 1996.

[50] I. A. Basheer and M. Hajmeer, “Artificial neural networks: Fundamen-
tals, computing, design, and application,” J. Microbiol. Methods, vol.
43, no. 1, pp. 3–31, Dec. 2000.

[51] G. R. Doddington and T. B. Schalk, “Speech recognition: Turning theory
to practice,” IEEE Spectrum, vol. 18, no. 9, pp. 26–32, Sep. 1981.

[52] L. R. Rabiner and M. R. Sambur, “An algorithm for determining the
endpoints of isolated utterances,” J. Acoust. Soc. Am. Bell Syst. Tech.,
vol. 54, no. 2, pp. 297–315, Feb. 1975.

[53] X. Zhang, Y. Guo, and X. Hou, “A speech recognition method of isolated
words based on modified LPC cepstrum,” in Proc. IEEE Int. Conf.
Granular Comput., Washington D.C., Nov. 2007, p. 481.

[54] R. Fernández-Lorenzana, F. Pérez-Cruz, J. M. García-Cabellos, C.
Peláez-Moreno, A. Gallardo-Antolín, and F. Díaz-de-María, “Some
experiments on speaker-independent isolated digit recognition using
SVM classifiers,” in Proc. ISCA Tutorial Res. Workshop Non-Linear
Speech Process., Le Croisic, France, May 2003, pp. 1–7.

[55] Auditory Toolbox Version 2 [Online]. Available:
http://cnmat.berkeley.edu/link/3630

John J. Wade was born in Derry, Northern Ireland,
U.K., in 1977. He received the B.Eng. (Hons) degree
in electronics and computing, the M.Sc. degree in
computing and intelligent systems, and the Ph.D.
degree in computational neural systems, all from the
University of Ulster, Derry, in 2004, 2005, and 2010,
respectively.

He is currently employed as a Researcher at the
Intelligent Systems Research Center, University of
Ulster, where he is a part of the Bio-Inspired and
Neuro-Engineering Teams. His current research in-

terests include developing computational models of neural and glial systems
to aid understanding of how the brain functions and learns.

Liam J. McDaid received the B.Eng. (Hons) degree
in electrical and electronics engineering from the
University of Liverpool, Liverpool, U.K., in 1985,
and the Ph.D. degree in solid-state devices from the
same institution.

He is currently employed as a Senior Lecturer at
the School of Computing and Intelligent Systems,
University of Ulster, Derry, Northern Ireland, U.K.
He has co-authored over 90 publications in his career
to present. His current research interests include
software/hardware implementations of neural-based

computational systems and modeling the mechanisms that underpin self-repair
in the human brain, thus providing the blueprint for advanced architectures that
exhibit a fault-tolerant capability well beyond existing computational systems.
He has received several research grants in this domain.

Dr. McDaid is a Founder of the Nanoelectronics Research Group within the
Intelligent Systems Research Center at the University of Ulster. He is currently
a Guest Editor for a special issue entitled “Advances in Spiking Neural
Networks and their Applications” to appear in the International Journal of
Neural Systems.

1830 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 11, NOVEMBER 2010

Jose A. Santos was born in Maracay, Venezuela,
in 1973. He received the B.E. degree from the
Electronics Department, Universidad Simon Bolivar,
Caracas, Venezuela, in 1998, and the Ph.D. degree in
electronic engineering from the School of Electrical
and Mechanical Engineering, University of Ulster,
Derry, Northern Ireland, U.K., in 2003.

He has been a Lecturer in computer science at
the School of Computing and Intelligent Systems,
University of Ulster, since 2002. His current research
interests include ambient intelligence and mobile

computing, wireless communication systems, neural networks and computa-
tional intelligence, biomedical engineering, sensor technology, and robotics.

Dr. Santos is a member of the Venezuelan College of Engineers. He is
a member of the Intelligent Systems Research Center, University of Ulster,
where he is part of the Ambient Intelligence Research Group.

Heather M. Sayers received the M.Sc. degree in
computing and information systems and the Ph.D.
degree in computer science (interacting in 3-D en-
vironments) from the University of Ulster, Derry,
Northern Ireland, U.K., in 1998 and 2004, respec-
tively.

She was employed as a Lecturer in 2000 and
is currently a Senior Lecturer at the School of
Computing and Intelligent Systems, University of
Ulster. She has published a number of research
papers in leading journals and in both national and

international conference proceedings. Her current research interests include
the integration of human–computer interaction and intelligent techniques for
usability.

Dr. Sayers is a member of the British Computer Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

