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Abstract. This paper introduces a knowledge based approach to assistive living 
in smart homes. It proposes a system architecture that makes use of knowledge 
in the lifecycle of assistive living. The paper describes ontology based 
knowledge engineering practices and discusses mechanisms for exploiting 
knowledge for activity recognition and assistance. It presents system 
implementation and experiments, and discusses initial results.  
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1   Introduction 

Smart Home (SH) [1] has emerged as a mainstream approach to providing assistive 
living and supporting ageing-in-place. A SH is considered to be augmented living 
environments equipped with sensors and actuators, within which monitoring of 
Activities of Daily Living (ADL) and personalised assistance can be facilitated. 
Though a number of Lab-based or real living SHs has been developed and an 
abundance of supportive technologies provide fragments of the necessary 
functionality [2], existing SH technologies and solutions suffer from major 
drawbacks, including data heterogeneity, lack of interoperability, reusability and 
applicability of technologies and solutions as well.  

To address these problems, this paper introduces a knowledge based approach to 
evolving current smart home technologies towards the future infrastructure that is 
needed to support the application and large-scale deployment of smart homes in real 
world context. The approach is motivated by the observations that ADLs as daily 
routines are full of commonsense knowledge and heuristics providing rich links 
between environments, events and activities. The proposed approach aims to exploit 
semantic technologies to engineer SH domain knowledge. Specifically, SH resources, 
i.e., sensors, sensor data, actuators, inhabitants, ADL and services, will be formally 
modelled and explicitly represented with well-defined meaning, rich contextual 
and/or heuristic knowledge. As such, the approach can support resource 
interoperability and reusability through semantic descriptions, realise advanced 
features in the lifecycle of assistive living by making extensive use of 
semantic/knowledge-based intelligent processing techniques.  
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The paper is organised as follows. Section 2 introduces a knowledge based system 
architecture. Section 3 describes knowledge engineering and management practices. 
Section 4 outlines some typical knowledge use scenarios. We present system 
implementation and experiments in Section 5 and conclude the paper in Section 6. 

2   A Knowledge Enabled Approach to Assistive Living 

Fig. 1 shows the proposed system architecture for a SH. The Physical Layer consists 
of physical hardware such as sensors, actuators, and various devices including 
medical equipment, household appliances and network components. This layer 
provides the means to monitor and capture the events and actions in a SH. The Data 
Layer collects and stores raw data in a number of data stores. These stores are usually 
disparate in data formats and access interfaces, with each of them being dedicated to 
individual application scenarios. The Application Layer contains application 
dependent services and systems for assistive living. Within this layer applications can 
process sensor data from the Data Layer and control actuators and/or devices in the 
Physical Layer to offer assistance. These three layers have so far been the major 
components underpinning existing SH application design and development. While 
each layer is indispensable for any SH application, the close coupling among sensors, 
data and applications, often having one to one, ad hoc relationships. 
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Fig. 1. The conceptual system architecture  

 
The proposed approach incorporates a Semantic Layer, a RDF1 Data Bus and an 

Intelligent Service Layer into the systems architecture. The goal of the Semantic 
Layer is to provide a homogeneous view over heterogeneous data, thus enabling 
seamless data access, sharing, integration and fusion across multiple organisations, 

                                                           
1 RDF, OWL, HTTP, SPARQL are W3C standards, refer to W3C web site - www.w3.org. 



providing interoperability and machine understandability. It achieves this by using SH 
ontologies as a unified conceptual backbone for data modeling and representation. 
Semantic modelling allows the markup of various data with rich metadata and 
semantics to generate semantic content. Multiple SHs in geographically distributed 
locations supported by various organisations can then aggregate and fuse their SH 
data. The uniform data models and representation, e.g., RDF or OWL, allow seamless 
data access through the RDF Bus based on the standard communication protocol 
HTTP and RDF query language SPARQL. The Semantic Layer is also responsible for 
providing tools and APIs for semantic data retrieval and reasoning.  

The Intelligent Service Layer is built upon the semantic content and functionalities 
of the Semantic Layer. Its purpose is to exploit semantics and descriptive knowledge 
to provide advanced processing and presentation capabilities and services. The former 
provides added-values to the query interfaces of the RDF Bus through further analysis 
and reasoning over recorded SH data. The latter essentially visualises the contents of 
the repositories and the outputs of the processing services. The selection and use of 
such services will depend on the nature and availability of collected data as well as 
the personal needs of inhabitants and care providers, hence allowing for 
personalisation. They are accessible to third party developers, thus interoperable and 
reusable at both the service and application level.  

3   Ontology-based Knowledge Engineering and Management 

A SH is a home setting where ADLs are usually performed in specific circumstances, 
i.e., in specific environments with specific objects used for specific purposes. For 
example, brushing teeth usually takes place two times a day, in a bathroom, normally 
in the morning and before going to bed. This activity usually involves the use of 
toothpaste and a toothbrush. As humans have different life styles, habits or abilities, 
individuals’ ADLs and the way they perform them may vary one from another. Even 
for the same type of activity, e.g., making white coffee, different people may use 
different ingredients, and in different orders, e.g., adding milk first and then sugar, or 
vice versa. As such ADLs can be categorized as generic ADLs applicable to all and 
personalised ADLs with subtlety of individuals. In addition, ADLs can be 
conceptualized at different levels of granularity. For example, Grooming can be 
considered to be comprised of sub-activities Washing, Brushing and Applying Make-
up. There are usually a “is-a” and “part-of” relationships between a primitive and 
composite ADL. All these observations can be viewed as prior domain knowledge 
and heuristics that can facilitate assistive living. The key is how to formally capture, 
encode and represent such domain knowledge.     

We carry out knowledge acquisition through interviews, questionnaires and by 
studying existing documents from which we derive the conceptual models for 
describing activities and their relations with sensors and objects. Based on SH 
characterization and the conceptual activity model we develop ADL ontologies using 
Protégé [3] as shown in Fig. 2. The ADL ontology consists of an activity hierarchy in 
which each node, also called a class, denotes a type of ADL. Each class is described 
with a number of properties. In a similar way we develop SH context ontologies that 



 
Fig. 2. A fragment of the ADL ontologies 

consist of classes and properties for describing SH entities such as Device, Furniture, 
Location, Time and Sensor, and their interrelationships with an activity class. Each 
sensor monitors and reflects one facet of a situation. By aggregating individual sensor 
observations the contextual snapshots at specific time points, or say a situation, can be 
generated, which can be used to perform activity recognition. 
    Given the nature of sensor data in SH we develop a two phase semi-automatic 
approach to generating semantic descriptions. In the first phase data sources such as 
sensors and devices are manually semantically described. In the second phase 
dynamically collected sensor 
data are first converted to 
textual descriptors. They are 
then automatically attached to 
semantic instances of the 
corresponding ontological 
classes to create a semantic 
knowledge repository. All 
these operations are performed 
through demon-like style 
software tools embedded in the 
implemented system. the 
generated semantic data and 
metadata are archived in a 
knowledge repository. 

4   Using Knowledge for Assistive Living 

Once knowledge is modeled, captured and stored in knowledge repositories, it can be 
exploited in a diversity of ways. Three key use cases in the context of assistive living 
are described below.   
    Activity Recognition - In ontological SH modeling, activities are modeled as 
activity classes in the ADL ontologies and contextual information such as time, 
location and the entities involved is modeled as properties for describing activity 
classes. As such, a situation at a specific time point is actually a concept description 
created from SH contextual ontologies, denoting an unknown activity. In this case, 
activity recognition can be mapped to the classification of the unknown activity into 
the right position of the class hierarchy of the activity ontologies and the identification 
of the equivalent activity class. This can be mapped to the subsumption problem in 
Description Logic, i.e., to decide if a concept description C is subsumed by a concept 
description D, denoted as C v D.  
    Activity Model Learning - As activity models play a critical role in mining real-
time sensor data for activity recognition, complete and accurate activity models are of 
paramount importance. While ADL ontologies have the advantage of providing 
knowledge-rich activity models, it is difficult to manually build comprehensive ADL 
ontologies. In particular, given the complexity of ADLs, the differences of ways and 
capabilities of users carrying out ADLs and also the levels of granularity that an ADL 



can be modeled, building complete one-for-all ADL ontologies is not only infeasible 
but also inflexible for adapting to various evolving use scenarios. To address this 
problem, we can use the manually developed ADL ontologies as the seed ADL 
models. The seed activity models are, on one hand, used to recognize activities as 
described above. On the other hand, we developed learning algorithms that can learn 
activity models from sensor activations and the classified activity traces. As such, 
ADL ontologies can grow naturally as it is used for activity recognition. This is 
actually a self-learning process in order to adapt to user ADL styles and use scenarios.  
    Activity Assistance - With activity ontologies as activity models, and activity 
instances from a specific inhabitant as the inhabitant’s activity profile, the propose 
approach can support both coarse-grained and fine-grained activity assistance. The 
former is directly based on subsumption reasoning at concept (or class) level, while 
the latter on subsumption reasoning at instance level, i.e., based on an inhabitant’s 
ADL profile. For coarse-grained activity assistance, the process is nearly the same as 
activity recognition. The extra step is to compare the properties of the recognized 
activity with the properties identified by sensor observations. The missing 
property(ies) can then be used to suggest next action(s). For fine-grained personalized 
activity assistance, it is necessary to identify how an inhabitant performs the 
recognized type of activity in terms of its ADL profile. The discovered ADL instance 
can then be compared with what has already been performed to decide what need to 
be done next in order to accomplish the ongoing ADL.  

5   System Implementation and Evaluation 

We have implemented a feature-rich context-aware assistive system, as shown in Fig. 
3. The system is developed with C# while the front-end is developed using ASP.NET 
with Ajax and Silverlight support for audio and graphical user experience. We use the 
SemWeb semantic technologies for C# [4] to create and manage semantic data in 
persistent storage, and use SPARQL to query persistent storage via simple graph 
matching. We use the Euler inference engine to implement logic-based proof 
mechanism for reasoning. The implemented system has been deployed in a physical 
kitchen environment in our SmartLab [5]. We conducted two types of experiment for 
evaluation purposes. The first type of experiment is aimed to evaluate the 
performance and accuracy of activity recognition. To do this, we design a number of 
activity scenarios, e.g., performing MakeTea activity, and then ask an actor to perform 
an activity following the corresponding scenario. Each time the actor uses an object, 
the sensor attached to the object activated. The generated sensor observations are, on 
one hand, collected and passed onto the system for activity recognition. On the other 
hand, they are manually recorded and labelled. In this way, each time a sensor is 
activated during the activity performance, both the system and a human evaluator can 
produce potential activities that might be performed by the actor. By comparing the 
recognition results from the system and the evaluator step by step during the 
performance of a designated activity scenario we are able to evaluate the accuracy of 
activity recognition. The second type of experiment is aimed to evaluate the 
applicability and robustness of the system. To do this, we used the same activity 



scenarios but changed the system setting using system configuration tools. Then we 
ask an actor to perform an identical activity twice in different system settings. We 
compare the recognition results from the two same-activity-scenario but different-
system-setting experiments to evaluate how different system configuration can affect 
its performance and applicability.  

All experiments have 
yielded desired 
satisfactory results 
demonstrating that the 
system is fully working 
and the approach is 
viable. The system is also 
evaluated by healthcare 
professionals from local 
health Trusts. From 
users’ perspectives, they 
have thoroughly tested 
the system with very 
positive feedback and 
constructive suggestions.    

6   Conclusions 

In this paper we have applied ontology based knowledge engineering into the 
lifecycle of assistive living. We have discussed the system architecture, core 
functionalities, methodologies and technologies. Specifically we described the use of 
knowledge engineering and management for activity recognition, learning and 
assistance, and further detailed implementation, experiments and evaluation. Initial 
results have been positive and promising. While real world deployment of the system 
and large-scale evaluation of a diversity of use scenarios can be investigated in the 
future, the work has laid a solid architectural and methodological foundation. 
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Fig. 3. The system interface in real time mode 


