

Expert Agents in Knowledge Based Systems

MAURICE D. MULVENNA, JOHN G. HUGHES

Department of Information Systems, University of Ulster at Jordanstown,
Shore Road, Newtownabbey, Co. Antrim BT37 0QB
email: {cbma23,jgh} @uk.ac.ulster.ujvax

ABSTRACT
The concept of expert as agent is introduced in this paper. The expert resides in an
object-oriented environment that models a problem domain, and has access to particular
rules sets, which can infer expert level knowledge about the domain. The purpose of the
expert as agent is to enhance the usability of resulting knowledge systems, and to
promote technology transfer. A prototype developed in the domain of aeronautical
engineering is used to present the ideas outlined in the paper.

1 INTRODUCTION
The scope of software tools and programming paradigms currently available are a great
advancement on those available when expert systems technology first became accessible
to many with the coincidental arrival of rule-based systems and low-cost personal
computing in the early 1980's.

Knowledge-Based System (KBS) development environments now in use have become
much more flexible than their 'shell' predecessors. Currently such systems are capable of
addressing large problem areas, and provide a comfortable mixed environment,
combining user interface design, KBS techniques, and proven coupling with external
software, especially 'efficient' languages such as C / C++, and databases.

Object-Oriented Programming (OOP), with its roots in simulation, has been accepted as a
powerful aid to information systems development. This is primarily because the software
developers recognise the ability of OOP to model entities and events naturally. This
benefit is particularly appreciated by developers who use object-oriented KBS, because
of the resultant increase in the speed of prototyping applications. Indeed, it is primarily
for this reason that object-oriented KBS have been recommended as the most suitable
tool in which to prototype any application [Graham91].

A logical extension to the use of OOP is to make objects persistent. In effect, to create
object bases. The term object-oriented databases is not truly applicable as object bases
may contain complex inter-related and composite objects as opposed to simple data. The
ability to store and manipulate objects in multi-user environments provides greater scope
to developers using OO software. Contemporary OO KBS environments such as
ProKappa do not provide the facilities needed for object management. Object-orientation
is pervading most areas of computing today. It is common in:

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ulster University's Research Portal

https://core.ac.uk/display/287022731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• Languages - C++ / Smalltalk V
• KBS tools - ProKappa / NExpert Object
• User Interface Development - ObjectVision / Visual Basic
• Databases - ONTOS / ObjectStore
• Multimedia & Computer-Based Training (CBT) - KnowledgeProWin

Object-oriented KBS and object bases give the KBS developer the tools to build large,
complex knowledge bases containing rules (rules can be objects too!) and objects.
However, some method of combining expertise (in the form of rules) to objects is
needed, to bind the rule-based formalism to object-orientation in such a way that both can
be used easily. A way to do this entails imbuing objects with knowledge.

2 MERGING OF KBS WITH OBJECT-ORIENTED SYSTEMS
The merging of KBS with OO systems has been driven by those in the KBS camp, and
by those who perceive object-orientation as a 'good thing'. The two camps are not
mutually exclusive. The merging of these technologies is best exemplified by looking at
two particular areas; embedding of OO concepts into KBS development software, and the
coupling of KBS to object bases.

2.1 Embedding OO in KBS
Despite many vendor's claims, the integration of OO into KBS has not been completed.
Some systems, for example, ProKappa (from Intellicorp Inc.), provide the developer with
a rich working environment that mixes object-orientation, production rules, and
procedural programming. However, ProKappa does have the following problems:

• The rules violate the encapsulation tenet of object-orientation. That is, they can

directly access the attributes of an object, thus bypassing the public methods of such
objects. This can be programmatically overcome, by providing accessor methods for
all attributes - at the expense of the resulting rule syntax.

• Rule are not objects. The rules exist as separate entities. Again, this can be worked

around by providing rule group objects that have attributes with multiple cardinality.
These attributes contain lists of relevant rules. Methods may be written for such
objects, and in a resulting system, particular rule groups can infer knowledge as a
result of messages being passed to them.

The above example is typical of such systems, where a particular aspect of object-
orientation is missing. Such problems can often be overcome, usually with a loss of
coherence to the development process.

2.2 Coupling of KBS to Object Bases
KBS have been linked to (relational) databases using some form of coupling mechanism
[Torsun89], but both KBS and DBMS have evolved rapidly over the past decade. The
frame-based systems [Minsky75] that AI researchers have used for many years now
have their counterparts in the database world, in OO data models. Although production
rules may be used to represent knowledge, they may now be encapsulated within objects,
and activated upon by methods. Most of these systems are still in the research
laboratories.

A system which doesn't really fit the OO tag, but is worth mentioning, is the MegaLog
system (from ICL Ltd.). This provides tight coupling between a Prolog-like logic
system, and persistent data storage, using BANG file structures to store the data.

3 THE AGENT-BASED PARADIGM
An extension of the object-oriented paradigm is Agent-Oriented Programming (AOP)
[Shoham93]. Yoav Shoham summarises AOP as:

The state of an agent consists of components such as beliefs, decisions, capabilities,
and obligations; for this reason the state of an agent is called its mental state. The
mental state of agents is described formally in an extension of standard epistemic
logics: besides temporalizing the knowledge and belief operators, AOP introduces
operators for obligation, decision, and capability. Agents are controlled by agent
programs, which include primitives for communicating with other agents. In the
spirit of speech act theory, each communication primitive is of a certain type:
informing, requesting, offering, and so on.

 This concept of personification of an aspect of an information system is not new. Actors
have been used in AI before [Hewitt85], and it could be argued that blackboard systems
[Nii86] fit in this category. Blackboard systems originated in AI, and in such systems,
co-operating experts 'pass on' their inferred knowledge to a blackboard, a kind of
bulletin board where new knowledge is available for use by all other experts.

But it is the coupling of the concept of personification with object-orientation that has
exciting implications for KBS and user interface design. In this paper we introduce the
concept of expert as agent.

3.1 Our Working Definition of Agent Based Systems
Currently, the ideal of AOP as defined by Shoham is set aside for our systems. It is
expected that part of Shoham's work, and aspects of speech act theory will be
incorporated into future systems. However, what is needed immediately is the means to
relate the knowledge of a domain (in the form of production rules) to the more static
knowledge (best stored as objects, ultimately as persistent objects in an object base)
about that domain. We feel that the agent metaphor provides that link. The agent is
given the title expert because they are the experts - they reason and infer things about
complex knowledge.

In the prototype system that has been developed, only one expert is present. This related
naturally to the problem domain of aeronautical engineering, where knowledge was
elicited from only one expert. If employing more than one expert as agent in a system,
there are two main research routes to follow, one complex, the other relatively simple to
implement:

• co-operating experts. This is the complex path, where components of Shoham's work

must be implemented. An alternative way to accommodate co-operating experts is to
fall back on the idea of blackboard systems.

• expert opinions. This approach is analogous to database views, where the user is

presented with different views of the data as a result of calling various sub-programs
in a database system. In a KBS, expert opinions would not co-operate, and could
infer different knowledge commensurate with their role. Although quite simple, this

concept has great potential when applied to KBS. Different levels of expertise could
be modelled as expert opinions. Systems that provide user modelling could decide
which expert opinion most suited the user.

4 THE TUCANO DEMONSTRATOR
The Tucano System was developed as a demonstrator, to publicise KBS within Shorts
Plc. It provides a trouble-shooting function by assisting the technicians in diagnosing
faults and incorrect connections when assembling aircraft. This releases the engineers to
concentrate on their main tasks.

4.1 Problem Outline
The Shorts Tucano aircraft is a single engined (turbo-prop) trainer aircraft, in use world-
wide. When the aircraft is being assembled, and prior to flight tests, the engine is
connected to various electronic and mechanical components, and readings are taken at
various engine running settings. Over a period of time the total number of readings that
need to be taken to give a good diagnostic capability has been narrowed down by the
engineers working on the aircraft to eighty-one. These readings have been compiled onto
a paper data sheet, which is used by the technicians for every aircraft tested. When
building the aircraft, some problems occur more frequently than others, and the
technicians usually identify such faults immediately. But rarer faults are more difficult
for the technicians to trace, and frequently the engineers need to be consulted. The
engineers draw on their more in-depth knowledge of the aircraft to solve the rare and
difficult faults, but their availability is not always guaranteed.

The Tucano Engine Ground Running Data Sheet System is a diagnostic system which
assists technicians by identifying faults when the engine is first fitted to the airframe. It
is designed to replace the manual paper data sheet, and free the time that the aircraft
engineers spend in identifying faults.

4.2 Design Goals
In designing the Tucano system, it was soon apparent that more than a diagnostic KBS
was required. The technicians needed visual re-enforcement when it was necessary for a
failed component to be changed, and various manuals had also to be available in the
system for consultation. In addition, some faults could be common to particular batches
of engines, so an additional facility was required to compare datasheets of engine
performances. Consequently, the Tucano System was designed to operate in four modes.
As a:

• Computer-Based Training (CBT) System. To be useful, the system should provide a

learning environment where the technicians can increase their skills in identifying
faults.

• Validation tool. All the data entered into the Tucano system needs to be validated.

• KBS that models the engine. These rules encapsulate the aircraft engineer's problem-

solving expertise, and govern the diagnostic process.

• Specific engine test manager. The technican must be able to load previous test data

pertaining to older engine trials, and to perform the modelling and diagnostic tests on

this data. This can be viewed as an extension to the CBT mode, as it provides the
technician with a library of information with which to compare and contrast results.

The four modes are designed to operate together, providing a failsafe environment where
faults are identified, and the technician's level of understanding of the underlying
processes is raised.

4.3 Methodology, Elicitation & Design
Early knowledge-based systems were built with ad hoc methodologies where a part of
the system was prototyped to illustrate the intended functionality of the finished system.
Contemporary KBS methodologies are more complex. The most popular is KADS
[Wielinga92]. Unfortunately KADS is large and unwieldly, and unsuitable for use in
small to medium size software developments. This problem has been partly addressed by
pragmatic KADS [Kingston92], yet the core aspects of KADS remain complex. In
addition KADS does not refer to the use of prototyping, or, in detail, to the
implementation phase. Prototyping KBS systems in an OO environment such as
ProKappa is very useful, both to the developers of the software, and to end users. It can
also provide positive feedback to the backers of KBS projects.

So what methodology could be employed? The design methodology selected for the
Tucano project was based on simple object modelling concepts. This object model base
provided a foundation to represent the static components of the system. The expert as
agent, as a special kind of object, governs and mediates the use of the expert knowledge,
represented as sets of rules. Thus, an agent represented internally in the system acts as
focus when combining knowledge as rules with data / information as objects.

Knowledge elicitation in the problem area was conducted primarily through 3 phases of
interviews, and by reference to specialist manuals, authored by the Tucano engineer. The
interviews were conducted over a period of six weeks (Table 1), and each lasted 2-3
hours. Usually four people were present; two knowledge engineers, one Tucano engineer,
and an observer from Shorts Plc.

 Interviews Type Outcome
Phase I 3 Open Problem understanding

Phase II 4 Structured OO Prototype
Phase III 3 Structured Rule base

Table 1. Knowledge elicitation through interviews.

Knowledge elicitation began with a series of three open interviews. The interviews were
transcribed, edited, and used as the basis of discussion for the next series of four
interviews, which were more structured, with the goals and objectives of each meeting
agreed at the beginning of interviews. From this second stage, a prototype was produced,
which employed a user interface not radically different from the paper data sheet familiar
to the technicians. The third stage of three interviews focused on rule elicitation. This
progressed through the use of example problems, and the introduction of what if
scenarios.

All of the relevant entry points on the data sheet were built into the system as objects.
Each object could be referenced through a Unique IDentity (UID) label, and had a direct

link to its User Interface (UI) component. The four operation modes were incorporated
into the design of the system. The CBT System, providing various context-specific
information, was made available to users by clicking with the right mouse button on any
of the yellow-marked areas of the data sheet. The technician can access the relevant
manuals, which depict information in both textual and graphical form. A standard help
system provided search facilities. Validation may be carried out on some system
parameters using the Validate menu, although the main workload of validation is carried
out by constraint rules, initiated through an Expert menu. The validation rules are low-
level rules which enforce constraints in the form of equations. For example, there is a
simple relationship between the engine RPM expressed as a percentage, and RPM as a
frequency. Some of the constraints have been derived from empirical tests, for example,
the equation representing oil temperature versus oil pressure. The constraint-enforcing
rules capture entries with incorrectly-placed decimal points, for example, and encourage
technician's understanding of what the values actually represent. The diagnostic KBS
component has been designed to use the expert as agent metaphor to relate rule sets to
particular objects. The engine test manager enables the user to save the data entered, as
objects, in binary file format, for later retrieval.

4.4 Functionality and the User Interface
The user interface (figure 5) of the system was carefully designed to facilitate the four
design goals. In addition to the usual Graphical User Interface (GUI) components, there
is a pictorial representation of the expert on-screen. The user can interact with this icon
by either clicking on it, or with the user of a touch screen, by simply touching the expert
icon, and selecting the task required from a menu. The system can be operated with a
touch screen and a numeric keypad, providing a friendly and intuitive interface to the
user. This mode of operation makes the integration of the computer hardware onto the
relatively hostile environment of the shop floor more feasible.

Figure 6 illustrates the relationship of the user interface to the agent, rules, and the object
hierarchy. When the user issues a command to the expert agent, the expert interprets this
command and selects the appropriate message, or messages to send to the inference
engine to initiate the interaction of relevant rule sets with the object hierarchy. The rule
sets have been prioritised to facilitate cost effectiveness when diagnosing faults. For
example, given that the expert agent may have two rule sets available to determine the
probable cause of a fault indication, it will use the set of rules which should pinpoint the
solution in the shortest time. The results of the inference process are sent back to the
user, through the expert agent. It decides what resources (i.e. in textual, pictorial, or
graph form) are relevant to best highlight the diagnosis, and sends that information to the
screen.

In addition to using the expert as agent metaphor, the user can browse through the
domain objects of the on-screen data sheet, and access technical references at each stage.

5 CONCLUSIONS

The simplification of the AOP paradigm into the expert as agent metaphor provides an
uncomplicated addition to the KBS tool kit, which, when combined with information
stored as objects, begins to address the problem of integrating knowledge bases with
object-based information.

Most important, however, is the resulting usability of such systems. The expert
metaphor is at its most helpful in the user interface. The user can browse through
objects, but the main load of interaction is carried out through the expert. Thus the
system mimics the real world, where the expert is consulted to solve a problem. In
addition, the expert can be a peer entity to the user, which provides an exciting method of
modelling the user through stereotypes. For example, if the user is an unskilled operator,
the agent on-screen will appear as an operator expert, whilst a manager using the same
system would interact with a manager expert agent.

In conclusion, systems that combine OOP and KBS using the expert as agent metaphor,
provide a knowledge browsing facility where the user can access textual and pictorial
information. This combination of Computer-Assisted Learning (CAL) and KBS assists
in technology transfer, and gives the user a flexible learning environment, where skills
and CAL-type material coexist.

References

Graham91 Graham, 1991. Ian. Object-Oriented Methods, Addison-Wesley

Minsky75 Minsky, M. A. 1975. Framework for Representing Knowledge. In: The
 Psychology of Computer Vision. Winston, P. (ed.) McGraw-Hill.

Torsun89 Torsun, I. S. & Ng, Y. M. 1989. Tightly-Coupled Expert Database
 Systems Interface In: Research and Development in Expert Systems V.
 Proc. Expert Systems 1988. Kelly, B & Rector, A (eds) Cambridge.

Shoham93 Shoham, Yoav. 1993. Agent-oriented Programming. Artificial
 Intelligence. 60, 51-92.

Hewitt85 Hewitt, C. E. 1985. Viewing Control Structures as Patterns of Passing
 Messages. J Artificial Intelligence. 8, 3.

Nii86 Nii, H. P. 1986. Blackboard Systems: The Blackboard Model of Problem
 Solving and the Evolution of Blackboard Architectures. AI Magazine 7, 2.

Wielinga92 Wielinga, B. J., Schreiber, A. T. and Breuker, J. A. 1992. KADS: A
 Modelling Approach to Knowledge Engineering. Knowledge Acquisition.
 4, 5-53.

Kingston92 Kingston, J. 1992. Pragmatic KADS: A Methodological Approach to a
 Small Knowledge-Based Systems Project. Expert Systems. 9, 4.

