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Abstract 

The design of a generic QR core for adaptive 
beamforming is presented. The work relies on an 
existing mapping technique that can be applied to a 
triangular QR m y  in such a way to allow the 
generation of a range of QR architectures. All scheduling 
of data inputs and retiming to include processor latency 
has been included within the generic representation. 

1. Introduction 

Adaptive filters play a key role in applications where 
the statistics of the incoming signals are unknown or 
changmg. They are self-designing through the use of a 
recursive algorithm to calculate updates for the filter 
weights. such as the Recursive Least Squares (RLS) 
algorithm [ 1:2]. Although the RLS algorithm has a fast 
convergence rate it is considered highly computational, a 
factor that has hindered its use in real-time applications. 
A considerable body of work has been devoted to 
algorithms and VLSI architectures for RLS filtering with 
the aim to reduce this complexity. In particular, methods 
based on QR decomposition have been popular as they 
remove the computational bottleneck caused by the 
matrix inversion requred to solve for the weights (e.g. 
using Givens rotation [3,4,5,6,7]). In addition, they may 
be implemented on a highly parallel triangular array 
processor [4,5], with the characteristics of a systolic 
array. 

In ttus paper the design of a generic architecture is 
presented that offers a rapid implementation of the RLS 
algorithm solved by QR decomposition using the 
Squared Givens rotation (SGR) algorithm [6,7 - a 
derivative of the conventional Givens rotation algorithm 
[4:5]. This was chosen as it eliminated the square root 
operation from the boundary cell along with two of the 
four multiplications from the internal cells. However, 
even with this level of computation, the QR cells are 
complex and the number of processors within the QR 
array increases quadratically with the number of inputs. 

An N-input system would require (N2+N)/2 QR 
processors. Typical applications such as adaptive 
beamforming require in excess of 40 inputs which would 
thus require a 20 chip solution [SI. Implementing the full 
QR amy, i.e. a processor for each cell. would offer data 
rates far greater than those required by most 
applications. Consequently. the whole objective is to 
determine an efficient QR architecture which meets the 
desired performance criteria, in the minimum area and 
lowest power consumption possible. Therefore. an 
effective method of hardware reduction needs to be 
employed. 

The focus of the work is primarily on the use of a 
novel hardware mappmg used to develop a QR 
architecture which will meet the desired performance 
specification. Aspects of timing and scheduling are 
included in the analysis. The mappmg used differs from 
a previous method, [9] in that both types of QR 
operation are performed on distinct processors. AI1 
processors are locally interconnected and used with 
100% efficiency: thus retaining the qstolic 
characteristics of the original triangular QR arrav. The 
QR operations were manipulated so that they formed a 
locally connected rectangular array, referred to as the 
processor amy. Each column of operations were then 
assigned to an individual processor resulting in the h e a r  
architecture [7,8]. By partitioning this array in Merent 
ways, various levels of hardware reduction are achieved 
resulting in Merent sizes of hear or rectangular QR 
architectures (section 2). The effects of retiming and 
latency on the generic architecture is analysed in section 
3 and a generic relationship is devised between the level 
of hardware reduction, latency and sample rate. The 
discussion is given in section 4. 

2. Generic QR architecture 

The signal flow graph (SFG) in figure 1 is a graphcal 
representation of the SGR QR algorithm. It consists of 
two principle operations referred to as the boundary and 
internal cells. The QR decomposition transforms the 
input matrix X and vector y into an upper triangular 
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matrix R and a vector U by a series of 2-Qmensional 
Givens rotations, Q. The weights can then be solved by 
backsubstitution. The inputs enter the array at the top 
and are processed down through the cells on each clock 
cycle. Two rotation parameters, a and 6, are calculated 
within a boundary cell to eliminate the input XBC In the 
process, the R and U values are updated to account for 
the rotation. The values a and 6, are then passed 
unchanged along the row of internal cells continuing the 
rotation. The output values of the internal cells, XOW, 

become the input values for the next row. The elements 
of the R matrix and U vector are stored within each of the 
processors until updated by the next rotation process. 
Meanwhile, new inputs are fed into the top of the array 
and the process repeats. 

2m+l inputs 

1 (Note: in *e SGR Output Cell e(n) 
algorithm D = 

Figure 1: 7-input SGR QR array 

Each cell withm the SFG refers to a specfic part of 
the QR operation (as denoted by the co-ordinate (ij)). 
The cell position in the diagram shows the sequential 
relationship between parts of the algorithm and the 
position of the element of the R matrix and U vector held 
in the memory of each QR cell. It should be noted that 
the multiplier at the bottom of the array is considered as 
a boundary cell (labelled 7,7) for this explanation but 
would be implemented externally to the QR array. 

Administering an efficient mapping procedure is 
complicated by the triangular shape and the position of 
the boundary cells along the diagonal. Consider the 
simple projection of operations of an N-input QR array 
from left to right onto a column of N processors. l k s  
leads to an architecture where the processors are 
required to perform both QR operations. Whilst the first 
processor is used 100% efficiently, this usage decreases 
down the column of processors such that the N” 
processor is only used once every N cycles. This results 
in an overall efficiency of about 50%. Rader [9] solved 
the low processor usage, but in his solution, both QR 

operations still needed to be performed on the same type 
of processor. The mapping used in this paper enables the 
QR operations to be kept to distinct processors which are 
all locally interconnected and used 100% efficiently. 

This mapping is achieved as follows. A cut is made in 
the trim- array after the m+l& boundary cell 
forming two triangles, A and B (figure 1). Triangle B is 
then mirrored in the x-axis and moved up along the y- 
axis resulting in a parallelogram shape shown in figure 
2. Triangle B is moved to above A, forming the 
rectangular array shown in figure 3. A diagonal division 
is drawn so that equal numbers of cells are on either side 
(figure 3). The array is folded to interleave the 
processors placing the boundary cell operations down 
back on one diagonal. This results in the processor array 
(figure 4) from which a range of architectures with 
reduced number of processors can be obtained by 
dividing the array into partitions and then assigntng each 
of the partitions to an individual processor. 

* 
2 W l  

Figure 2: Modified array 

Figure 3: Folded array 

By projecting down the diagonal it is possible to 
assign all the boundary cell operations to one boundary 
cell process and all the internal cell operations to a row 
of internal cell processors, resulting in the linear 
architecture shown in figure 6. Multiplexers present at 
the top of the array control the external system x inputs 
and the internal x values into the array. The rest control 
the Merent directions of data flow that occur between 
rows of the origmal array. 
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The processor array in figure 4 shows the sequence of 
operations to be performed on the linear architecture and 
represents the schedule. After 7 cycles of the linear 
architecture, a new QR update begins. Thls value is 
referred to as TQR ,and is the number of cycles between 
the start of successive QR updates, which for the linear 
array was 2ni+l cycles. 

Architecture 
Processor 

projected onto linear 

connected processors 

Figure 4: Processor Array 
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Figure 5: 4 cell linear architecture 
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The hardware level can be reduced fwrther by 
assigning multiple columns of internal cell operations to 
each processor in a linear array. The example, (figure 6a) 
shows the three columns of operations assigned to one 
internal cell processor. The QR operations are scheduled 
onto the processors by using the schedule lines shown in 
the diagram. The sparse linear architecture is used 21 
times to implement all the operations in the processor 
array, therefore, the next QR update starts 2 1 cycles after 
the previous update begins i.e. TQR = 21. When multiple 
columns of internal cell operations are assigned to each 
processor (denoted as NI=) then the number of iterations 
of the architecture is increased by this factor. Hence, for 

the sparse linear array, TQR is expressed as the product of 
(2m+l) and NIc.. 

Alternatively, the operations could be performed on 
two linear arrays as depicted in figure 6(b). To balance 
the number of rows for each linear array, a dummy row 
of operations has been applied. On each clock cycle the 
rectangular array processor executes two rows of the 
o r i p l  processor array therefore TQR is 4. For the 
rectangular array, TQR is determined by the number of 
rows of operations assigned to each row of processors. 
denoted as N,,,. The sparse rectangular array is a 
combination of the sparse linear and rectangular array. 
These derivations are summarised in table 1 .  The term. 
NI=, is the number of columns of internal cell operations 
assigned to each processor, and N,,, is the number of 
rows of QR cell operations assigned to each line of 
processors 

C 
c 

I 
rejection 

U 
(a) Sparse Linear amy 

f=------ 
j QRUpdate 

Figure 6: Example architecture mappings 

recursive loop 
1 BC and rn ICs. 

Sparse linear: 

11 11 m/Nrc columns 
Table 1: Summary of generic mapping applied to a 

QR array with (2mtl) inputs 
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3. Retiming the generic architecture 

The QR architectures so far have assumed that the 
QR cells have a latency of one clock cycle and the 
mapping is based on this factor; hence there will be no 
conflicts of the data inputs. However the inclusion of 
actual timing details within the QR cells may affect this 
guarantee of a valid data schedule. Embedding processor 

.blocks with specific timing and pipelining information, 
coupled with the impact of truncation and internal word 
!growth means that detailed retiming of the origmal SFGs 
of the QR cells must be performed before the 
.architectures can be used to implement the QR 
architectures. The overall effect of retiming incurs 
latencies in the QR cells. For the purpose of this analysis 
it is not necessary to look at the retiming of the QR cells. 
Instead, generic latencies are assigned to the QR 
processors, and the scheduling analysis camed out 
accordingly, (figure 7). To maintain a regular data 
schedule, such as those shown in figures 4 and 6, the 
latencies of the QR cells need to be adjusted so that the x 
values and rotation parameters are output from the QR 
cells at the same time. The latency of the internal cell in 
producing these outputs can be expressed generically 
using a term LzC. The latencies of the boundary cell in 
producing the rotation parameters, a and b, are also set 
to Lzc to keep outputs in synchronism. The latency of the 
boundary cell in producing the S,, is set to double this 
value, i.e. 2LIc. This relates back to the original 
scheduling of the full QR array, whereby no two 
successive boundary cell operations are performed on 
successive cycles. By keeping the structure of the data 
schedule, so that the outputs of the QR cells appear in 
the same time instant, (except S,,), then the retiming 
process comes down to a simple relationship, which 
shall be discussed next. 

Xin 

% I 
Xin 

I 

LKand 24c are generic latencies for the QR cells, measured in dock cycles 

Figure 7: Generic latency of the QR cells 

The latency has a major effect on the scheduling of 
the linear architecture. It stretches out the schedule of 
operations for each QR update, as shown in figure 8 for 
the linear array example, such that the n=2 iteration 
begins after (2rn+l)LIc clock cycles. This is obviously 
not an optimum use of the architecture as it is only used 
every L,," clock cycle, resulting in a low utilisation. 
New data samples need to be input at a much faster rate. 

time 
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li 

Figure 8: Stretched schedule 
The factor, TQR, is determined by the level of 

hardware reduction that is used to derive the 
architecture. It can be shown that a valid schedule which 
results in a 100% utilisation can be achieved by setting 
the latency to a value that is relatively prime to TQR. That 
is: if the two values do not share a common factor other 
than 1 then their lowest common multiple will be their 
product. The time instance TQRXLZC does not represent a 
data collision. By choosing the value of TQR to be equal 
to 2m+l, then the QR operation that was on line to 
collide with a new QR operation will have just been 
completed. Figure 9 shows an example schedule for the 
7-input linear array where Lzc is 3 and TQR is 7. The 
shaded cells represent the QR operations from different 
updates that are interleaved with each other and fill the 
gaps left by the highlighted QR update. This diagram 
shows a 100% efficient schedule. The same relationship 
between Lzc and TQR applies to the other QR architecture 
variants. 
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Figure 9: Schedule for a linear array with an 
internal cell latency of 3 

A MATLAB program was written to mathematically 
model the time the inputs enter each cell of the linear 
array. Tests were then camed out for input collisions and 
processor usage over a range of values of Lzc and TQR. 
Then a software model of the linear architecture built 
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using Cadence’s SPWM tool was updated to include 
latency. Simulations were performed to validate the 
retimed architecture proving that the linear architecture 
operates identically to the original triangular QR array. 

4. Discussion 

The details of a mapping has been presented which 
offers a means of generically deriving highly efficient 
arclutectures meet specific pexforxnance requirements. 
The architecture derivation can be applied to allow a 
m g e  of resulting architectures with varied levels of 
hardware reduction. These architectures may be defined 
in four classes; hear. sparse linear. rectangular and 
sparse rectangular. Each type is a regular architecture 
with only local interconnections. Both the boundary and 
internal cell operations are performed on distinct 
processors. For the linear array the processors are used 
with 100% efficiency. For the sparse arrays the internal 
cell processors are used with 100% efficiency, while the 
usage of the boundary cell processor depends on the 
leyel of reduction in the sparse variant. 

The derivation of the range of architectures begins 
with the formation of a processor array. This is a 
rectangular array of cells consisting of all the operations 
required by one QR update. It has the dimension, (2m+l) 
rows by (m+l) columns, where (2m+l) is the number of 
inputs of the origtnal triangular array. The processor 
array is then used to derive the QR architectures. 

The simple relationship between TQR and L ~ c  is a key 
factor in acheving a hgh utilisation for these structures. 
The relationship gives a concise mathematical 
expression that is vitally important in the automatic 
generation of a generic QR archtecture. Thls also 
addresses scheduhg and retiming issues. 

Table 2 shows example architectures derived from a 
QR array. The value for TQR for the full QR array 
implementation is determined by the latency in the 
mxrsive loop of the QR cells (consisting of a floating 
point addition and a shift multiply function). For the 
example shown, the QR array needs to wait for 4 clock 
cvcles for the calculation of the value in the recursive 
loop. Therefore h s  latency determines the sample rate 

return of perforxnance of the full QR implementation at 
such a high cost of hardware. 

A key outcome of this research is the elimination of 
the dependence of the latency withm the recursive loops 
of the QR cells and the sample me. If a QR array is to 
be implemented in full then the delay in the feedback 
loops will determine the sample rates and has therefore 
been a principal factor in the choice of QR algorithm 
However. due to the level of hardware reduction in 
deriving the linear and rectangular QR architectures. the 
input sample rate is now controlled by the term T, This 
value in turn is governed by the level and method of 
hardware reduction. Table 2 shows the performance 
aclueved by implementing the full QR array can be met 
using about a quarter of the hardware. 
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Table 2: Example QR architectures with (2m+1=45) inputs 
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