
Parameterisable QR Core

Gaye Lightbody, Richard Walke*, Roger Woods, John McCanny
The Queen’s University of Befis t , Ashby Building, Stranmillis Road,

Belfhst BT9 5AH, Northern Ireland
* Defence, Evaluation and Research Establishment, Malvern , Worcs, WR14 3PS, England

Abstract

The design of a generic QR core for adaptive
beamforming is presented. The work relies on an
existing mapping technique that can be applied to a
triangular QR m y in such a way to allow the
generation of a range of QR architectures. All scheduling
of data inputs and retiming to include processor latency
has been included within the generic representation.

1. Introduction

Adaptive filters play a key role in applications where
the statistics of the incoming signals are unknown or
changmg. They are self-designing through the use of a
recursive algorithm to calculate updates for the filter
weights. such as the Recursive Least Squares (RLS)
algorithm [1:2]. Although the RLS algorithm has a fast
convergence rate it is considered highly computational, a
factor that has hindered its use in real-time applications.
A considerable body of work has been devoted to
algorithms and VLSI architectures for RLS filtering with
the aim to reduce this complexity. In particular, methods
based on QR decomposition have been popular as they
remove the computational bottleneck caused by the
matrix inversion requred to solve for the weights (e.g.
using Givens rotation [3,4,5,6,7]). In addition, they may
be implemented on a highly parallel triangular array
processor [4,5], with the characteristics of a systolic
array.

In ttus paper the design of a generic architecture is
presented that offers a rapid implementation of the RLS
algorithm solved by QR decomposition using the
Squared Givens rotation (SGR) algorithm [6,7 - a
derivative of the conventional Givens rotation algorithm
[4:5]. This was chosen as it eliminated the square root
operation from the boundary cell along with two of the
four multiplications from the internal cells. However,
even with this level of computation, the QR cells are
complex and the number of processors within the QR
array increases quadratically with the number of inputs.

An N-input system would require (N2+N)/2 QR
processors. Typical applications such as adaptive
beamforming require in excess of 40 inputs which would
thus require a 20 chip solution [SI. Implementing the full
QR amy, i.e. a processor for each cell. would offer data
rates far greater than those required by most
applications. Consequently. the whole objective is to
determine an efficient QR architecture which meets the
desired performance criteria, in the minimum area and
lowest power consumption possible. Therefore. an
effective method of hardware reduction needs to be
employed.

The focus of the work is primarily on the use of a
novel hardware mappmg used to develop a QR
architecture which will meet the desired performance
specification. Aspects of timing and scheduling are
included in the analysis. The mappmg used differs from
a previous method, [9] in that both types of QR
operation are performed on distinct processors. AI1
processors are locally interconnected and used with
100% efficiency: thus retaining the qstolic
characteristics of the original triangular QR arrav. The
QR operations were manipulated so that they formed a
locally connected rectangular array, referred to as the
processor amy. Each column of operations were then
assigned to an individual processor resulting in the h e a r
architecture [7,8]. By partitioning this array in Merent
ways, various levels of hardware reduction are achieved
resulting in Merent sizes of hear or rectangular QR
architectures (section 2). The effects of retiming and
latency on the generic architecture is analysed in section
3 and a generic relationship is devised between the level
of hardware reduction, latency and sample rate. The
discussion is given in section 4.

2. Generic QR architecture

The signal flow graph (SFG) in figure 1 is a graphcal
representation of the SGR QR algorithm. It consists of
two principle operations referred to as the boundary and
internal cells. The QR decomposition transforms the
input matrix X and vector y into an upper triangular

0-7803-5700-0/99/$10.0001999 IEEE
120

matrix R and a vector U by a series of 2-Qmensional
Givens rotations, Q. The weights can then be solved by
backsubstitution. The inputs enter the array at the top
and are processed down through the cells on each clock
cycle. Two rotation parameters, a and 6, are calculated
within a boundary cell to eliminate the input XBC In the
process, the R and U values are updated to account for
the rotation. The values a and 6, are then passed
unchanged along the row of internal cells continuing the
rotation. The output values of the internal cells, XOW,

become the input values for the next row. The elements
of the R matrix and U vector are stored within each of the
processors until updated by the next rotation process.
Meanwhile, new inputs are fed into the top of the array
and the process repeats.

2m+l inputs

1 (Note: in *e SGR Output Cell e(n)
algorithm D =

Figure 1: 7-input SGR QR array

Each cell withm the SFG refers to a specfic part of
the QR operation (as denoted by the co-ordinate (ij)).
The cell position in the diagram shows the sequential
relationship between parts of the algorithm and the
position of the element of the R matrix and U vector held
in the memory of each QR cell. It should be noted that
the multiplier at the bottom of the array is considered as
a boundary cell (labelled 7,7) for this explanation but
would be implemented externally to the QR array.

Administering an efficient mapping procedure is
complicated by the triangular shape and the position of
the boundary cells along the diagonal. Consider the
simple projection of operations of an N-input QR array
from left to right onto a column of N processors. l k s
leads to an architecture where the processors are
required to perform both QR operations. Whilst the first
processor is used 100% efficiently, this usage decreases
down the column of processors such that the N”
processor is only used once every N cycles. This results
in an overall efficiency of about 50%. Rader [9] solved
the low processor usage, but in his solution, both QR

operations still needed to be performed on the same type
of processor. The mapping used in this paper enables the
QR operations to be kept to distinct processors which are
all locally interconnected and used 100% efficiently.

This mapping is achieved as follows. A cut is made in
the trim- array after the m+l& boundary cell
forming two triangles, A and B (figure 1). Triangle B is
then mirrored in the x-axis and moved up along the y-
axis resulting in a parallelogram shape shown in figure
2. Triangle B is moved to above A, forming the
rectangular array shown in figure 3. A diagonal division
is drawn so that equal numbers of cells are on either side
(figure 3). The array is folded to interleave the
processors placing the boundary cell operations down
back on one diagonal. This results in the processor array
(figure 4) from which a range of architectures with
reduced number of processors can be obtained by
dividing the array into partitions and then assigntng each
of the partitions to an individual processor.

*
2 W l

Figure 2: Modified array

Figure 3: Folded array

By projecting down the diagonal it is possible to
assign all the boundary cell operations to one boundary
cell process and all the internal cell operations to a row
of internal cell processors, resulting in the linear
architecture shown in figure 6. Multiplexers present at
the top of the array control the external system x inputs
and the internal x values into the array. The rest control
the Merent directions of data flow that occur between
rows of the origmal array.

121

The processor array in figure 4 shows the sequence of
operations to be performed on the linear architecture and
represents the schedule. After 7 cycles of the linear
architecture, a new QR update begins. Thls value is
referred to as TQR ,and is the number of cycles between
the start of successive QR updates, which for the linear
array was 2ni+l cycles.

Architecture
Processor

projected onto linear

connected processors

Figure 4: Processor Array

Size I TOR

(2m+1) rows x(m+l) I Latency in

I '' ' r' I ' r'
MUX 1
I I

6' d l d U X .. I

tl&X 1 r'

a

MUX M
1

Sparse
rectangular:

General

output
_j a , b x . 6

Figure 5: 4 cell linear architecture

1 BC and rn ICs.

1 BC and < rn ICs.
<(2m+l) rows, each with Nrows~NIc

Nro, XNIC (2rn+l)INrows rows x

The hardware level can be reduced fwrther by
assigning multiple columns of internal cell operations to
each processor in a linear array. The example, (figure 6a)
shows the three columns of operations assigned to one
internal cell processor. The QR operations are scheduled
onto the processors by using the schedule lines shown in
the diagram. The sparse linear architecture is used 21
times to implement all the operations in the processor
array, therefore, the next QR update starts 2 1 cycles after
the previous update begins i.e. TQR = 21. When multiple
columns of internal cell operations are assigned to each
processor (denoted as NI=) then the number of iterations
of the architecture is increased by this factor. Hence, for

the sparse linear array, TQR is expressed as the product of
(2m+l) and NIc..

Alternatively, the operations could be performed on
two linear arrays as depicted in figure 6(b). To balance
the number of rows for each linear array, a dummy row
of operations has been applied. On each clock cycle the
rectangular array processor executes two rows of the
o r i p l processor array therefore TQR is 4. For the
rectangular array, TQR is determined by the number of
rows of operations assigned to each row of processors.
denoted as N,,,. The sparse rectangular array is a
combination of the sparse linear and rectangular array.
These derivations are summarised in table 1 . The term.
NI=, is the number of columns of internal cell operations
assigned to each processor, and N,,, is the number of
rows of QR cell operations assigned to each line of
processors

C
c

I
rejection

U
(a) Sparse Linear amy

f=------
j QRUpdate

Figure 6: Example architecture mappings

recursive loop
1 BC and rn ICs.

Sparse linear:

11 11 m/Nrc columns
Table 1: Summary of generic mapping applied to a

QR array with (2mtl) inputs

122

3. Retiming the generic architecture

The QR architectures so far have assumed that the
QR cells have a latency of one clock cycle and the
mapping is based on this factor; hence there will be no
conflicts of the data inputs. However the inclusion of
actual timing details within the QR cells may affect this
guarantee of a valid data schedule. Embedding processor

.blocks with specific timing and pipelining information,
coupled with the impact of truncation and internal word
!growth means that detailed retiming of the origmal SFGs
of the QR cells must be performed before the
.architectures can be used to implement the QR
architectures. The overall effect of retiming incurs
latencies in the QR cells. For the purpose of this analysis
it is not necessary to look at the retiming of the QR cells.
Instead, generic latencies are assigned to the QR
processors, and the scheduling analysis camed out
accordingly, (figure 7). To maintain a regular data
schedule, such as those shown in figures 4 and 6, the
latencies of the QR cells need to be adjusted so that the x
values and rotation parameters are output from the QR
cells at the same time. The latency of the internal cell in
producing these outputs can be expressed generically
using a term LzC. The latencies of the boundary cell in
producing the rotation parameters, a and b, are also set
to Lzc to keep outputs in synchronism. The latency of the
boundary cell in producing the S,, is set to double this
value, i.e. 2LIc. This relates back to the original
scheduling of the full QR array, whereby no two
successive boundary cell operations are performed on
successive cycles. By keeping the structure of the data
schedule, so that the outputs of the QR cells appear in
the same time instant, (except S,,), then the retiming
process comes down to a simple relationship, which
shall be discussed next.

Xin

% I
Xin

I

LKand 24c are generic latencies for the QR cells, measured in dock cycles

Figure 7: Generic latency of the QR cells

The latency has a major effect on the scheduling of
the linear architecture. It stretches out the schedule of
operations for each QR update, as shown in figure 8 for
the linear array example, such that the n=2 iteration
begins after (2rn+l)LIc clock cycles. This is obviously
not an optimum use of the architecture as it is only used
every L,," clock cycle, resulting in a low utilisation.
New data samples need to be input at a much faster rate.

time

0

L

2Lr

3LE

li

Figure 8: Stretched schedule
The factor, TQR, is determined by the level of

hardware reduction that is used to derive the
architecture. It can be shown that a valid schedule which
results in a 100% utilisation can be achieved by setting
the latency to a value that is relatively prime to TQR. That
is: if the two values do not share a common factor other
than 1 then their lowest common multiple will be their
product. The time instance TQRXLZC does not represent a
data collision. By choosing the value of TQR to be equal
to 2m+l, then the QR operation that was on line to
collide with a new QR operation will have just been
completed. Figure 9 shows an example schedule for the
7-input linear array where Lzc is 3 and TQR is 7. The
shaded cells represent the QR operations from different
updates that are interleaved with each other and fill the
gaps left by the highlighted QR update. This diagram
shows a 100% efficient schedule. The same relationship
between Lzc and TQR applies to the other QR architecture
variants.

cl
e2
e3
tc4
w
b6

e7
NU

tc9

e10
t+ll

e12

\
ReI#titiVe
section of
schedule

Figure 9: Schedule for a linear array with an
internal cell latency of 3

A MATLAB program was written to mathematically
model the time the inputs enter each cell of the linear
array. Tests were then camed out for input collisions and
processor usage over a range of values of Lzc and TQR.
Then a software model of the linear architecture built

123

using Cadence’s SPWM tool was updated to include
latency. Simulations were performed to validate the
retimed architecture proving that the linear architecture
operates identically to the original triangular QR array.

4. Discussion

The details of a mapping has been presented which
offers a means of generically deriving highly efficient
arclutectures meet specific pexforxnance requirements.
The architecture derivation can be applied to allow a
m g e of resulting architectures with varied levels of
hardware reduction. These architectures may be defined
in four classes; hear. sparse linear. rectangular and
sparse rectangular. Each type is a regular architecture
with only local interconnections. Both the boundary and
internal cell operations are performed on distinct
processors. For the linear array the processors are used
with 100% efficiency. For the sparse arrays the internal
cell processors are used with 100% efficiency, while the
usage of the boundary cell processor depends on the
leyel of reduction in the sparse variant.

The derivation of the range of architectures begins
with the formation of a processor array. This is a
rectangular array of cells consisting of all the operations
required by one QR update. It has the dimension, (2m+l)
rows by (m+l) columns, where (2m+l) is the number of
inputs of the origtnal triangular array. The processor
array is then used to derive the QR architectures.

The simple relationship between TQR and L ~ c is a key
factor in acheving a hgh utilisation for these structures.
The relationship gives a concise mathematical
expression that is vitally important in the automatic
generation of a generic QR archtecture. Thls also
addresses scheduhg and retiming issues.

Table 2 shows example architectures derived from a
QR array. The value for TQR for the full QR array
implementation is determined by the latency in the
mxrsive loop of the QR cells (consisting of a floating
point addition and a shift multiply function). For the
example shown, the QR array needs to wait for 4 clock
cvcles for the calculation of the value in the recursive
loop. Therefore h s latency determines the sample rate

return of perforxnance of the full QR implementation at
such a high cost of hardware.

A key outcome of this research is the elimination of
the dependence of the latency withm the recursive loops
of the QR cells and the sample me. If a QR array is to
be implemented in full then the delay in the feedback
loops will determine the sample rates and has therefore
been a principal factor in the choice of QR algorithm
However. due to the level of hardware reduction in
deriving the linear and rectangular QR architectures. the
input sample rate is now controlled by the term T, This
value in turn is governed by the level and method of
hardware reduction. Table 2 shows the performance
aclueved by implementing the full QR array can be met
using about a quarter of the hardware.

5. References
[l] S. Haykin, Adaptive Filter Theory. Prentice Hall:
Englewocd Cliffs, NJ, 1986
[2] N. Kalouptsidis & S . Theodoridis, Aahptive Svstm
Identification and signal processing, Prentice Hall: Englewood
Cliffs, NJ 1993.
[3] W. Givens, “Cornputahon of plane unitary rotations
transforming a general matrix to triangular form”t J. SOC. Ind.

[4] W.M. Gentleman and H. T. Kung, “Matrix trianguhisation
by systolic array”, Proc. SPIE, (Real-Time Signal Processing

[5] J.G. McWhi~tex, “Recursive least squares minimisauon
using systolic array”, Proc. SPZE (Real-Time Signal Processing

[6] R. Dahler, “Squared Given’s Rotations”, U J. of
Numerical Analysis, Vol. II, pp. 1-5, 199 1
[7] R.Walke, High Sample Rate Givens Rotationsfor Recursive
Least Squares, PhD Thesis, University of Warwick, 1997
[8] G. Lightbody, R. Wake, R. Woods, J. McCanny, “Rapid
design of a single chip adaptwe beamformer‘’, IEEE Proc. on
Signal Processing Systems, pp. 285-294, 1998.
[9] C.M. Rada “VLSI systolic arrays for adaptive nulling“,
IEEE Signal Processing Magazine, Vol. 13, No. 4, pp. 2949,
July 1996.

Appl. Math, vol. 6, pp.26-50, 1958.

Zv, vol. 298, p ~ . 298-303,1981

Iv, vol. 431, pp. 105-1 12: 1983

0 British Crown Copyright 1999. Published with the
permission of the defence Evaluation and Research
Agency on behalf of the Controller HMSO.

Table 2: Example QR architectures with (2m+1=45) inputs

1 24

