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ABSTRACT 

Soft IP cores can be realized as parameterisable HDL 
descriptions of circuit architecture where the performance 

comes from efficiently mapping system functionality. 

However, special arithmetic operations e.g. division, 

reciprocal, can restrict this mapping. An approach is 

presented that maps the system onto foundation operations, 

multiplication and addition, thereby giving a freer mapping 

of the full system. The methodology and results are given 

for a QR-based recursive least squares filter design on a 

Xilinx Virtex 4 FPGA giving a 5 GFLOPS performance.   

 

1. INTRODUCTION 

One design approach for FPGA-based DSP system design 
uses pre-designed functional blocks known as intellectual 

property (IP) cores [1]. FPGA vendors provide their own IP 

core libraries as well as a brokering service e.g. the 

AllianceCORE (Xilinx) and Megafunction partner program 

(Altera). A key issue with IP cores is the development of 

the underlying architecture such that factors e.g. throughput 

and latency, can be used to drive the resulting parameter 

selection and therefore core functionality. For example, 

throughput can be used to scale the parallelism as well as 

pipelining levels of the circuit architecture. 

 Implementations of matrix based algorithms based on 
systolic arrays [2] are powerful representations as they 

allow processing power to be gained through the concurrent 

use of an array of simple repetitive units. This offers high 

levels of parallelism, pipelining and local interconnections 

and lends itself to scalability. This process of generating a 

QR systolic array version of the recursive least squares 

(RLS) filter [2] from a mathematical description is 

summarized in Fig. 1. The RLS architecture uses boundary 

cells (BC) and internal cells (ICs) defined in Fig. 2. The 

algorithm is firstly mapped onto a dependency graph (DG) 

of the triangular matrix representation then onto signal flow 

graph (SFG) and circuit architecture realizations [3]. By 
capturing the mappings of the final stage, it is then possible 

to parameterize functionality where performance translates 

to array size and pipelining levels in the cells.  

 A major design challenge for IP core providers has been 

the mapping of DGs onto efficient and suitable cell 

architectures. For Fig. 1, a simple mapping of the triangular 

DG onto a linear array can result in an architecture where 

the cell efficiency is not maintained (Fig. 1b). This has been 

overcome in two ways. By using an intricate mapping that  
overlaps computations in time (Fig. 1c), it is possible to 

map QR functionality efficiently onto a linear array [3] and 

even a wider range of structures [4], while maintaining 

individual QR cell functionality. Radar [5] applied a 

simpler mapping (Fig. 1d) that achieved 100% efficiency 

but needed a generic cell based on CORDIC that performed 

the BC and IC cell functionality.  The work in [3] involved 

a mapping of the triangular array of cells down onto a 

reduced architecture. An alternative approach is considered 

here where multipliers and adders are used as the key 

foundation blocks allowing all the cell functionality to be 

broken into series of these operations.  
 The paper is organized as follows. Section 2 presents 

the Squared Givens Rotation (SGR) algorithm for QR-

based RLS filtering. The implementation of the reciprocal 

function is given in section 3. Section 4 presents the revised 

design and performance of a generic cell using a Xilinx 

Virtex 4 family. Conclusions are given in the final section. 

 

2. QR-RECURSIVE LEAST SQUARES 

Computationally compact solutions for RLS filtering have 

evolved that are based on QR decomposition solved by 

Givens rotations performed on a triangular array of 
processors similar to that given in Fig. 1 [2]. The rotation 

parameters to eliminate one sub diagonal element of the 

data matrix are calculated within the BC and then passed to 

the ICs in the same row. The process in its raw form 

contains a number of highly complex arithmetic operations 

such as square root and division but approaches such as the 

Squared Givens Rotations (SGR) algorithm [3] remove the 

need for the square root operation and halve the number of 

multiplications, whilst still maintaining the SGR algorithm 

advantages of low word length characteristics and 

performance [3]. However, the reciprocal function is still 

needed. This can be directly implemented but the intention 
here is to investigate how this operation can be realized 
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using convergent division methods [6]. By breaking this 

into a series of multiplications and additions, we eliminate 

the key difference between the BC and IC cell and allow 

the possibility of a generic QR cell that can give the full 
functionality of RLS solved by QR decomposition. 

 

3. SQUARED GIVENS ROTATIONS  

3.1. QR cells with complex arithmetic 

The starting point for the generic QR cell is analysis of the 

BC and IC cells (Fig. 2). For applications such as adaptive 

beamforming [7], complex arithmetic is required to 

represent the spatial element to the filtering application. In 

addition, the performance requirements are such that 

floating-point arithmetic is desirable [3]. The SFGs for the 

complex SGR cells can be broken down into their real 
arithmetic components (as depicted in Fig. 4 for the IC).  

 

3.2. Reciprocal function 

The key difference between the cells in Fig. 2 is the real 

reciprocal function in the BC which can be implemented by 

digit recurrence algorithms where digits are computed in a 

most significant bit first fashion. Typically, 2n+1 additions 

are needed (n is the word length) but this can be reduced to 

n by employing the non-restoring recurrence algorithm of 

the SRT division algorithm [8],[9], but these suffer from 

high latency and converge linearly to the quotient.  
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Fig. 2   Cell definitions for SGR QR algorithm 
  

 On the other hand, functional iterative algorithms [6] 

employ multiplication as the fundamental operation and 

produce at least double the number of correct bits at each 

iteration. As the initial stages only retire a few bits, there 

has been a significant interest in approximation methods to 

determine the first few correct bits [10]. For example, if 

the first 7 bits of the quotient were found from a look up 
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Fig. 1 Systolic array architecture design flow illustration for Recursive Least Squares filtering 
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table (LUT) then the number of iterations required to 
produce a result of 53 bit accuracy is reduced to 3. 

However, as the complexity of LUTs grows exponentially, 

i.e. 2
n
, the LUT is only used to create the initial result and 

other iterations are computed using suitable hardware.  

  Two techniques for functional iteration of division 

were considered, Newton Raphson and series convergence 

expansions. The series convergent reciprocal approach 

gives an algorithm with two separate series multiplications, 

one at the start and one at the end (Fig. 3(b)) and with the 

stages in between, performed by 2 parallel multiplications. 

The Newton Raphson iteration converges to the reciprocal 
and then for full division, it multiplies this by the dividend 

to calculate the quotient (Fig. 3(a)).  

  In both methods, the iteration has 2 multiplications 

and a two’s complement operation. However, the Newton 

Raphson multiplications are dependent whereas the series 

expansion method are not and can be carried out in 

parallel. Secondly, the Newton Raphson iteration is self 

checking in that any error in computing xi can be corrected 

by the subsequent iteration, since all operations are 

dependent. For the series expansion, the result is computed 

as the product of independent terms and an error in one of 

them will not be corrected. To account for this, a few extra 
bits of precision [6], [10] are used. The circuits for the 

reciprocal and the complex multiplication and addition are 

applied to the QR filter to giving the revised IC (Fig.  4) 

and BC cells (Fig.  5). 
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Fig.  3 Two stage reciprocal circuits 

 

 For the QR, a range of mantissa word lengths typically 

12 to 24 bits suffices, bringing the bit width up to the IEEE 

single precision floating point standard. With 3 to 6 bit 

LUT, a 12 to 24 bit result (respectively) can be obtained 
after only 2 iterations with the same being achieved in a 

single iteration for a 6 to 12 bit LUT. The arithmetic cores 

available from Northeastern University [11] are used.  
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Fig.  4  IC for the SGR QR algorithm 
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Fig.  5  BC for the SGR QR algorithm 

 

4. FPGA IMPLEMENTATION 

 Table 1 gives Xilinx Virtex XC4VLX15 FPGA details 

for reciprocal options: a full 23-bit LUT giving 16-bit 
accuracy; a 10-bit and 6-bit LUT with the 1 stage. In each 

case, Synplify Pro v8.6.2 was used and optimized for speed 

with all available settings applied, such as retiming. 

 Floating point implementation on FPGA has 

considerably clouded the classical method of using smaller 

LUT sizes and additional computation stages. This is 
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highlighted in Table 2 which shows the respective 
performance, throughput and area, of an individual floating 

point adder, a floating point multiplier and a reciprocal 

based on only 1 multiplication. Note that the multiplier was 

optimized for speed increasing the area beyond that of a 

reciprocal block which contains a multiplication. 

 

LUT 

only 

Full reciprocal unit  

LUTs DSP48 FD LUT 

Speed 
(MHz) 

6-bit  22 4 266 745 116.5 

10-bit   619 4 266 1342 116.5 

23-bit 1457     

 

Table 1. FPGA implementation using Xilinx Virtex4 

  

 The approach adopted here was to use a generic cell 

(Fig.  6) that performs both computations and clearly shows 
the overlap. A schedule based on 2 multipliers and 2 adders, 

is used to compute the early part of the computation. A 

dedicated multiplier and LUT were used for the reciprocal 

but options exist for using an existing multiplier and one 

LUT shared amongst a number of cells to improve the 

utilization and increase scheduling complexity. A fixed-

point multiplier could have been used for the reciprocal. 
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Fig.  6  QR cell implementations on reduced architectures 

 

 The generic cell was synthesized using the floating 

point libraries only giving an area of 3229 LUTs, 12 

DSP48s and 1411 D flip-flops. Thus, the processor is 

capable of performing 547MFLOPs (5 FLOPS per cell at 

109.4 MHz) indicating a performance of 5GFLOPs for the 

FPGA without using the optimizations suggested. It does 

highlight the poor return of floating point on FPGA but 
Walke [3] has indicated that the same performance may be 

possible with a 24-bit fixed-point wordlength.  

5. CONCLUSIONS 

The paper presents an approach for mapping specific 

arithmetic functions into a series of multiplications and 

additions thereby easing the final mapping of the design 

into FPGA hardware. Whilst the approach has only been 

demonstrated for the reciprocal function, the same approach 

can be applied to division and square root. 

 

 DSP48 LUT FD Speed 

(MHz) 

Multiplier 4 799 347 141.4 

Adder - 620 343 208.2 

Reciprocal 4 745 266 116.5 

 

Table 2. Processor implementations 
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