
SOFT IP CORE IMPLEMENTATION OF RECURSIVE LEAST SQUARES FILTER USING

ONLY MULTPLICATIVE AND ADDITIVE OPERATORS

Gaye Lightbody

School of Computing and Mathematics,
Faculty of Engineering, University of Ulster,

Jordanstown, BT370QB, N. Ireland
 email: g.lightbody@ulster.ac.uk

Roger Woods, Jonathan Francey

School of Electronics, Electrical Engineering
and Computer Science, ECIT, Queen’s Island,
Queen’s Road, Belfast, BT3 9DT, N. Ireland.

 email: r.woods, jfrancey03@qub.ac.uk.

ABSTRACT

Soft IP cores can be realized as parameterisable HDL
descriptions of circuit architecture where the performance

comes from efficiently mapping system functionality.

However, special arithmetic operations e.g. division,

reciprocal, can restrict this mapping. An approach is

presented that maps the system onto foundation operations,

multiplication and addition, thereby giving a freer mapping

of the full system. The methodology and results are given

for a QR-based recursive least squares filter design on a

Xilinx Virtex 4 FPGA giving a 5 GFLOPS performance.

1. INTRODUCTION

One design approach for FPGA-based DSP system design
uses pre-designed functional blocks known as intellectual

property (IP) cores [1]. FPGA vendors provide their own IP

core libraries as well as a brokering service e.g. the

AllianceCORE (Xilinx) and Megafunction partner program

(Altera). A key issue with IP cores is the development of

the underlying architecture such that factors e.g. throughput

and latency, can be used to drive the resulting parameter

selection and therefore core functionality. For example,

throughput can be used to scale the parallelism as well as

pipelining levels of the circuit architecture.

 Implementations of matrix based algorithms based on
systolic arrays [2] are powerful representations as they

allow processing power to be gained through the concurrent

use of an array of simple repetitive units. This offers high

levels of parallelism, pipelining and local interconnections

and lends itself to scalability. This process of generating a

QR systolic array version of the recursive least squares

(RLS) filter [2] from a mathematical description is

summarized in Fig. 1. The RLS architecture uses boundary

cells (BC) and internal cells (ICs) defined in Fig. 2. The

algorithm is firstly mapped onto a dependency graph (DG)

of the triangular matrix representation then onto signal flow

graph (SFG) and circuit architecture realizations [3]. By
capturing the mappings of the final stage, it is then possible

to parameterize functionality where performance translates

to array size and pipelining levels in the cells.

 A major design challenge for IP core providers has been

the mapping of DGs onto efficient and suitable cell

architectures. For Fig. 1, a simple mapping of the triangular

DG onto a linear array can result in an architecture where

the cell efficiency is not maintained (Fig. 1b). This has been

overcome in two ways. By using an intricate mapping that
overlaps computations in time (Fig. 1c), it is possible to

map QR functionality efficiently onto a linear array [3] and

even a wider range of structures [4], while maintaining

individual QR cell functionality. Radar [5] applied a

simpler mapping (Fig. 1d) that achieved 100% efficiency

but needed a generic cell based on CORDIC that performed

the BC and IC cell functionality. The work in [3] involved

a mapping of the triangular array of cells down onto a

reduced architecture. An alternative approach is considered

here where multipliers and adders are used as the key

foundation blocks allowing all the cell functionality to be

broken into series of these operations.
 The paper is organized as follows. Section 2 presents

the Squared Givens Rotation (SGR) algorithm for QR-

based RLS filtering. The implementation of the reciprocal

function is given in section 3. Section 4 presents the revised

design and performance of a generic cell using a Xilinx

Virtex 4 family. Conclusions are given in the final section.

2. QR-RECURSIVE LEAST SQUARES

Computationally compact solutions for RLS filtering have

evolved that are based on QR decomposition solved by

Givens rotations performed on a triangular array of
processors similar to that given in Fig. 1 [2]. The rotation

parameters to eliminate one sub diagonal element of the

data matrix are calculated within the BC and then passed to

the ICs in the same row. The process in its raw form

contains a number of highly complex arithmetic operations

such as square root and division but approaches such as the

Squared Givens Rotations (SGR) algorithm [3] remove the

need for the square root operation and halve the number of

multiplications, whilst still maintaining the SGR algorithm

advantages of low word length characteristics and

performance [3]. However, the reciprocal function is still

needed. This can be directly implemented but the intention
here is to investigate how this operation can be realized

1-4244-1060-6/07/$25.00 ©2007 IEEE. 597

using convergent division methods [6]. By breaking this

into a series of multiplications and additions, we eliminate

the key difference between the BC and IC cell and allow

the possibility of a generic QR cell that can give the full
functionality of RLS solved by QR decomposition.

3. SQUARED GIVENS ROTATIONS

3.1. QR cells with complex arithmetic

The starting point for the generic QR cell is analysis of the

BC and IC cells (Fig. 2). For applications such as adaptive

beamforming [7], complex arithmetic is required to

represent the spatial element to the filtering application. In

addition, the performance requirements are such that

floating-point arithmetic is desirable [3]. The SFGs for the

complex SGR cells can be broken down into their real
arithmetic components (as depicted in Fig. 4 for the IC).

3.2. Reciprocal function

The key difference between the cells in Fig. 2 is the real

reciprocal function in the BC which can be implemented by

digit recurrence algorithms where digits are computed in a

most significant bit first fashion. Typically, 2n+1 additions

are needed (n is the word length) but this can be reduced to

n by employing the non-restoring recurrence algorithm of

the SRT division algorithm [8],[9], but these suffer from

high latency and converge linearly to the quotient.

1

d

R

R

G

δout

δin

dnew

dold

b

Recursive
loop

Recursive

loop

a

xin

R

xout

b

a

xin

b

a

rnew

rold

Z
-1

Z
-1

Key:

Special multiply

function

c(a-jb)

c(a2+b2a+jb

Rounder R

Shift

Complex

Real

Extended

precision

Z
-1

Algorithmic

delay

G

Real

operation

Real /complex

operation

Complex

operation

in

new

old

out

ininoldnew

old

in

inin

d

d

xdd

d

x
b

xa

δβδ

δβ

δ

2

2

=

+=

=

∗=

oldinout

inoldnew

brxx

axrr

−=

+=
2β

*

*

Complex

conjugate

1/dold

Z
-1

Fig. 2 Cell definitions for SGR QR algorithm

 On the other hand, functional iterative algorithms [6]

employ multiplication as the fundamental operation and

produce at least double the number of correct bits at each

iteration. As the initial stages only retire a few bits, there

has been a significant interest in approximation methods to

determine the first few correct bits [10]. For example, if

the first 7 bits of the quotient were found from a look up

Recursive Least

Squares solved by QR

decomposition

wLS = [XTX]-1Xy

wLS = R-1u

Sequential Algorithm

Givens Rotations:

⎥
⎦

⎤
⎢
⎣

⎡
αΟ

=

⎥
⎦

⎤
⎢
⎣

⎡ −β−β

)n(

)n(u)n(R

)n(y)n(x

)1n(u)n()1n(R)n(
)n(Q T

T

Stage 3:

VLSI Array Design

Stage 1:

Dependence Graph Design

Time

Mappings

Interleaved QR
updates

Processor array

Time

 n

 n+1

 n+2
Mappin

Efficiency

100%

75%

50%

25%
(b)

(a) (c)

(d)

Stage 2:

Signal Flow Graph
Design

D11
R12

e44

R13

U14

D22
U24 R23

D33
U34

γ0(n)

γin(n)

x3(n) x2(n) x1(n) y(n

)

e(n)

xin

xout

xBC

a, b

a and b are rotation
parameters

γ

(n) is the product of
cosines generated in the

course of eliminating xT(n)

α(n)

a, b

a, b

γout(n)

 Internal
Cells

Boundary
Cells

Fig. 1 Systolic array architecture design flow illustration for Recursive Least Squares filtering

598

table (LUT) then the number of iterations required to
produce a result of 53 bit accuracy is reduced to 3.

However, as the complexity of LUTs grows exponentially,

i.e. 2
n
, the LUT is only used to create the initial result and

other iterations are computed using suitable hardware.

 Two techniques for functional iteration of division

were considered, Newton Raphson and series convergence

expansions. The series convergent reciprocal approach

gives an algorithm with two separate series multiplications,

one at the start and one at the end (Fig. 3(b)) and with the

stages in between, performed by 2 parallel multiplications.

The Newton Raphson iteration converges to the reciprocal
and then for full division, it multiplies this by the dividend

to calculate the quotient (Fig. 3(a)).

 In both methods, the iteration has 2 multiplications

and a two’s complement operation. However, the Newton

Raphson multiplications are dependent whereas the series

expansion method are not and can be carried out in

parallel. Secondly, the Newton Raphson iteration is self

checking in that any error in computing xi can be corrected

by the subsequent iteration, since all operations are

dependent. For the series expansion, the result is computed

as the product of independent terms and an error in one of

them will not be corrected. To account for this, a few extra
bits of precision [6], [10] are used. The circuits for the

reciprocal and the complex multiplication and addition are

applied to the QR filter to giving the revised IC (Fig. 4)

and BC cells (Fig. 5).

X0

2-bX0

b

×

×

2-bX0

×

×

bX0

X1

bX1

X2

LUT

2-D1

×

R0

D0

N2

N3

R2

D0

2-D1

× ×

N1

D1

R1

D2

D1

LUT

×

 (a) Newton Raphson (b) Series expansion

Fig. 3 Two stage reciprocal circuits

 For the QR, a range of mantissa word lengths typically

12 to 24 bits suffices, bringing the bit width up to the IEEE

single precision floating point standard. With 3 to 6 bit

LUT, a 12 to 24 bit result (respectively) can be obtained
after only 2 iterations with the same being achieved in a

single iteration for a 6 to 12 bit LUT. The arithmetic cores

available from Northeastern University [11] are used.

-

×
×

+

×
×

+

+

Z
-1

Z
-1

-

×

+

×

×

+

+

X in real

X in

A in real

A in

B in real

B in

imaginary

X out real X out

Recursive
loop

R R

→ →

×

Real path
Imaginary path

Fig. 4 IC for the SGR QR algorithm

×

×

×

B
 real B imaginary δ out

×

×

+

×
×

+

Z
-1

RR

→

X in real

X in imaginary

δ in

A real A imaginary

Recursive
loop

*

×

LUT

×

2-D2

×

2-D2

×

×

Fig. 5 BC for the SGR QR algorithm

4. FPGA IMPLEMENTATION

 Table 1 gives Xilinx Virtex XC4VLX15 FPGA details

for reciprocal options: a full 23-bit LUT giving 16-bit
accuracy; a 10-bit and 6-bit LUT with the 1 stage. In each

case, Synplify Pro v8.6.2 was used and optimized for speed

with all available settings applied, such as retiming.

 Floating point implementation on FPGA has

considerably clouded the classical method of using smaller

LUT sizes and additional computation stages. This is

599

highlighted in Table 2 which shows the respective
performance, throughput and area, of an individual floating

point adder, a floating point multiplier and a reciprocal

based on only 1 multiplication. Note that the multiplier was

optimized for speed increasing the area beyond that of a

reciprocal block which contains a multiplication.

LUT

only

Full reciprocal unit

LUTs DSP48 FD LUT

Speed
(MHz)

6-bit 22 4 266 745 116.5

10-bit 619 4 266 1342 116.5

23-bit 1457

Table 1. FPGA implementation using Xilinx Virtex4

 The approach adopted here was to use a generic cell

(Fig. 6) that performs both computations and clearly shows
the overlap. A schedule based on 2 multipliers and 2 adders,

is used to compute the early part of the computation. A

dedicated multiplier and LUT were used for the reciprocal

but options exist for using an existing multiplier and one

LUT shared amongst a number of cells to improve the

utilization and increase scheduling complexity. A fixed-

point multiplier could have been used for the reciprocal.

+

+

X

aRaI bRbI aRaI bR bI Rold

 Real

Xin

Real

X

β2Rold Real

β2Rold Imag

Xin Real

Xin Imag

bRold Imag

bRold Real

aXin Imag

aXin Real

Rold

 Imag

Xin

Imag

Xout Imag

Xout Real

Rnew Imag

Rnew Real

β2

(a) Internal cell implementation

Z
-1

→

-

+

X

β2dold
Xin

Real

X

Xin

Imag

δin
1

dold -δin

1

dold

δin

δin|Xin|

dnew

X

LUT

2’s

δout

1

dnew

areal aimag

(b) Boundary cell implementation

1

dold

β2dold

Z
-1

aimag

bimag

areal

breal

+

Note that δin is set to negative so to
calculate: aimag = δin(-Xin Imag)

Fig. 6 QR cell implementations on reduced architectures

 The generic cell was synthesized using the floating

point libraries only giving an area of 3229 LUTs, 12

DSP48s and 1411 D flip-flops. Thus, the processor is

capable of performing 547MFLOPs (5 FLOPS per cell at

109.4 MHz) indicating a performance of 5GFLOPs for the

FPGA without using the optimizations suggested. It does

highlight the poor return of floating point on FPGA but
Walke [3] has indicated that the same performance may be

possible with a 24-bit fixed-point wordlength.

5. CONCLUSIONS

The paper presents an approach for mapping specific

arithmetic functions into a series of multiplications and

additions thereby easing the final mapping of the design

into FPGA hardware. Whilst the approach has only been

demonstrated for the reciprocal function, the same approach

can be applied to division and square root.

 DSP48 LUT FD Speed

(MHz)

Multiplier 4 799 347 141.4

Adder - 620 343 208.2

Reciprocal 4 745 266 116.5

Table 2. Processor implementations

6. REFERENCES

[1] P. S. Zuchowski et el., “A hybrid ASIC and FPGA

architecture” Proc. IEEE/ACM Int’l Conf. on Computer-

Aided Design, pp. 187--194, 2002.

[2] J. G. McWhirter, “Recursive least squares minimisation

using systolic array”, Proc. SPIE (Real-Time Signal

Processing IV), vol. 431, pp. 105-112, 1983.

[3] R. L. Walke, High Sample Rate Givens Rotations for

Recursive Least Squares, PhD Thesis, University of

Warwick, 1997.

[4] G. Lightbody, R. Woods and R. Walke, “Design of a

parameterisable silicon intellectual property core for QR-

based RLS filtering”, IEEE Trans. on VLSI Systems, vol.

11, No. 4, pp.659-678, August 2003.

[5] C. M. Rader “VLSI systolic arrays for adaptive nulling”,

IEEE Signal Proc. Mag., vol. 13, no. 4, pp. 29-49, Jul 1996.

[6] M. J. Flynn, “On Division by Functional Iteration”, IEEE

Trans. on Comp., vol. C-19, No. 8, pp. 702-706, 1970.

[7] T. J. Shephard and J. G. McWhirter, “Systolic Adaptive

Beamforming”, chapter 5, Array Processing, Eds. S.

Haykin, J. Litva and T. J. Shephard, Springer-Verlag, ISBN

3-540-55224, pp. 153-243, 1993.

[8] K. D. Tocher, “Techniques of Multiplication and Division

for Automatic Binary Computers”, Quart. J. Mech. Appl.

Math., vol. XI, Pt. 3, pp364-384, 1958.

[9] J. E. Robertson, “A new Class of Division Methods”, IRE

Trans. on Electronic Comp., vol. EC-7, pp. 218-222, 1958.

[10] M. J. Schulte, J. E. Stine and K. E. Wires, “High-Speed

reciprocal Approximations,” Proceedings of the 14th

Symposium on Computer Arithmetic, pp. 1183-1187, 1999.

[11] “Variable Precision Floating Point Modules” available from

NorthEastern University, http://www.ece.neu.edu/groups/

rpl/projects/ floatingpoint/index.html.

600

