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Various 'short cut' approaches have been adopted in cash flow forecasting ranging from the 
statistical, mathematical, simulation and the use of artificial intelligence techniques. However, the 
majority of these approaches failed to consider the issues of risks and uncertainties inherent in 
construction. As such, a wide variation is observable between the predicted cash flow profile and the 
actual. This study attempts to model the variation between predicted and actual cost flow due to 
inherent risks in construction. Data were obtained through questionnaire survey and empirical data 
collection. Contractors on individual projects were requested to score on a Likert type scale, the 
extent of occurrence of each identified risk variable that resulted in the variation between the 
predicted and actual cost flow profiles. An analysis of the responses, using ranking of the mean 
response enabled the study to focus on the most significant risk variables. The impact of these risk 
variables on cost flow forecast was then investigated by collecting data on predicted and actual cost 
flow from completed construction projects in order to determine their variation. Neural network was 
employed using the back propagation algorithm to develop the cost flow risk assessment model. The 
developed model was tested on 20 new projects with satisfactory predictions of variations between 
the forecast and actual cost flow at 30, 50, 70 and 100% completion stages. 
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INTRODUCTION 
Cash flow forecast is of great importance to construction contractor as well as the client 
to prevent unsavoury consequences of liquidation and bankruptcy. However, an accurate 
forecast of construction cash flow has been a difficult issue due to risks and uncertainties 
inherent in construction projects. According to Flanagan and Norman (1993), the 
environment within which decision making takes place can be divided into three parts: 
certainty, risk and uncertainty. According to them, certainty exists only when one can 
specify exactly what will happen during the period of time covered by the decision. This, 
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they concluded of course does not happen very often in the construction industry. Bennett 
and Ormerod (1984) also concluded that an important source of bad decisions is illusions 
of certainty. They submitted that uncertainty is endemic in construction and needs to be 
explicitly recognised by construction managers. However, in the last three decades, many 
deterministic cash flow forecasting models have been developed (Odeyinka 2001) which 
did not take into consideration, the issue of risks inherent in construction. As such, 
considerable variations were observable between the modelled and actual cash flow. In an 
attempt to increase forecasting accuracy, nomothetic and idiographic epistemology were 
employed in previous researches. Also, deterministic and stochastic methodologies were 
used as well as the schedule-based or cost profile method (Kenley 2001). Value and cost 
flow approaches were also employed (Kaka 1999). Majority of the cash flow forecasting 
models employed the value approach. However, Kaka and Evans (1998) demonstrated 
that with very detailed classification of construction projects, it was very difficult to 
model the value curve accurately. Kaka and Price (1993) however were able to use the 
cost approach to classify and model construction cost flow more accurately, relative to 
previous models. Given this fact and also given the fact that variation between the 
modelled and actual cost flow is inevitable due to inherent risks in construction, this 
study, which is an on-going research therefore employs the cost approach to assess the 
impacts of risks on construction cost flow profile.  
 

RISKS IN CASH FLOW FORECASTING 
 
Risk has also been defined as the chance of exposure to the adverse consequences of 
future events (CCTA, 1993). Bufaied (1987) described risk in relation to construction as a 
variable in the process of a construction project whose variation results in uncertainty as 
to the final cost, duration and quality of the project. Moreover, Fong (1987) asserted that 
it is generally recognised that those within the construction industry are continually faced 
with a variety of situations involving many unknowns, unexpected, frequently undesirable 
and often unpredictable factors. These factors according to Lockyer and Gordon (1996) 
include production and timing schedule slippage of the project tasks, technological issues, 
people-oriented issues, finance, managerial and political issues.  
  
The major problem that construction managers encounter in making financial decisions 
involves both the uncertainty and ambiguity surrounding expected cash flows (Eldin, 
1989). In the case of complex projects, the problem of uncertainty and ambiguity 
assumed even greater proportion because of the difficulty in predicting the impact of 
unexpected changes on construction progress and consequently, on cash flows. The 
uncertainty and ambiguity are caused not only by project-related problems but also by the 
economical and technological factors (Laufer and Coheca, 1990). Lowe (1987) 
maintained that the factors responsible for variation in project cash flow could be grouped 
under five main headings of contractual, programming, pricing, valuation and economic 
factors. Kaka and Price  (1993) and Kaka (1996) in developing a model for cash flow 
forecasting identified other risk factors affecting cash flow profiles to include estimating 
error, tendering strategies, cost variances and duration overrun. Khosrowshahi (2000) also 
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identified other risk factors that impact on cash flow to include delay payment and 
difficulty in obtaining the right amount of funds at reasonable interest rates.  
Kenley and Wilson (1986) maintained that individual variation between projects' cash 
flow profile is caused by a multiplicity of factors, the great majority of which can neither 
be isolated in sample data, nor predicted in future projects. According to them, some 
existing cash flow models hold that generally two factors, date and project type, are 
sufficient to derive an ideal construction project cash flow curve. Such convenient 
division according to them ignores the complex interaction between such influences as 
economic and political climate, managerial structure and actions, union relations and 
personality conflicts. Many of these factors have been perceived to be important in related 
studies such as cost, time and quality performance of building projects (Ireland, 1983). 
According to Kenley and Wilson (1986), models, which ignore all these factors in cash 
flow research, must be questioned. Fig. 1 shows a typical variation between the forecast 
and actual cash flow occasioned by risk impacts. While this variation has been identified 
in literature, the impact of risks inherent in construction resulting in the variation has not 
been investigated. This then is the concern of this study. 
 

C
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t

Duration

30% 100%50% 70%

Forecast Cost flow curve

Actual Cost flow curve

Fig 1:A typical variation  between forecast and actual cost flow curves at 30%, 50%, 70%
         and 100% completion

Positive variation

Negative variation

 
 
DATA AND METHODOLOGY 
 
Data were obtained through a combination of questionnaire survey and collection of 
empirical data from archival sources. Two sets of questionnaires were employed in data 

 
5



collection. The first set identified 25 risk factors from literature and from discussion with 
other researchers in construction cash flow as well as from discussion with construction 
practitioners. These factors were perceived to have potential impact on cost flow forecast. 
The questionnaire was then administered on a project by project basis to 350 randomly 
selected small, medium and large-scale contractors. A reminder letter subsequently 
followed this. In all, 96 responses fit for analysis were received, which represents a 27.4% 
response rate. The contractors were asked to score on a Likert type scale of 0-5, the extent 
of occurrence and perceived impacts of the identified risk factors on a recently completed 
building project. This approach has been detailed in a related pilot study (Odeyinka and 
Lowe 2000, 2001a). Mean response analysis was performed on the responses. This was 
ranked in order to determine the significant risk factors to focus on. Table 1 summarises 
the result of this analysis. From the table, the first 11 high ranking risk factors, which also 
happen to have high-ranking impacts were selected so as to assess their impacts on 
variation between the forecast and actual cash flow profile. Using the 11 high ranking risk 
factors, another questionnaire was administered on a project by project basis to medium 
and large-scale construction contractors. The questionnaire asked them to score on a scale 
of 0-5 the extent of occurrence of the identified risk factors on a recently completed or an 
on-going building project. It also requested them to estimate the percentage variation 
between their forecast cost flow and actual cost flow on the project at 30, 50, 70 and 
100% completion stages. Out of the 400 questionnaires administered, only 50 were 
returned and fit for analysis. This represents a 12.5% response rate. Empirical data were 
also obtained from the archives of a construction company regarding the forecast and 
actual cost flow of 10 recently completed building projects. The project quantity surveyor 
on each project was also requested to complete a questionnaire regarding the extent of 
occurrence of the identified risks on the project. Variations between the forecast and 
actual cost flow at 30, 50, 70 and 100% completion stages were later calculated to get a 
complete data set. Out of the 50 data set obtained from the second set of questionnaire 
survey, 40 were used to develop a cost flow risk assessment model while the remaining 
10 and the other 10 data set obtained from a construction company were used for testing 
and validating the model. The model was developed using the artificial neural network 
(ANN). 
 
An artificial neural network is an information processing system that has certain 
performance characteristic in common with biological neural networks. Artificial neural 
networks have been developed as generalisations of mathematical models of human 
cognition or neural biology. A neural network is characterised by its pattern of 
connections between the neurons (called its architecture), its methods of determining the 
weights on the connections (called its training, or learning, algorithm), and its activation 
function (Fausett 1994). It has been proved that neural network can solve problems with 
multi-attributes better than conventional methods (Masters 1993). Neural networks are 
suited to such problems because of their adaptivity owing to their structure; i.e. non-linear 
activation functions. Unlike expert systems and traditional modelling methods where 
knowledge is made explicit in the form of rules, neural networks generate their own rules 
by learning from examples (Gallant 1993). The problem of learning in neural network is 
simply that of finding a set of connection strengths that allow the network to carry out the 
desired computation (Boussabaine 1998). The learning method used in this study is the 
back propagation (BP) which is the most widely and successfully used algorithm in 
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neural networks.  The main mechanism in a back propagation network according to 
Boussabaine (1998) is to propagate the input forward through the layers to the output  
 
Table 1: Perception of risk occurrence and impact on cost flow  
 
Risk Factors 
 

Overall mean score Rank

Changes to initial design 3.32 1 
Inclement weather  3.00 2 
Variation to works (AI)  2.95 3 
Labour shortage  2.81 4 
Production target slippage  2.70 5 
Delay in agreeing variation/dayworks 2.62 6 
Delay in settling claims 2.59 7 
Problems with foundations 2.46 8 
Underestimating project complexity 2.41 9 
Estimating error  2.24 10 
Under valuation 2.24 10 
Delay in payment from client 2.08 12 
Shortage of key materials 2.08 12 
Delays in interim certificates 2.03 14 
Delay in retention release 1.97 15 
Inflation  1.86 16 
Compliance with new regulations  1.78 17 
Subcontractor's insolvency 1.70 18 
Changes in interest rates  1.68 19 
Shortage of key plant items 1.68 19 
Access to funds at reasonable interest rate 1.46 21 
Archaeological remains 1.46 21 
Changes in currency exchange rates  1.35 23 
Civil disturbances  1.24 24 
Labour strikes  1.19 25 
 
 
layer and then to propagate the errors back through the network from the output layer to 
the input layer. The input data in this study were the identified significant risk factors 
while the output data were the estimated variation at 30, 50, 70 and 100% completion 
stages. A BP neuron transfers its inputs as follows: 
 
Output (node)i = σ [∑wijxj(t) - βI] 
 
Where σ is the sigmoid function, wij  is the strength of the connection (weight) from node 
j to node i, xj   is the output value of node j; and βI is the node threshold value.  As such, 
when a neuron is activated, the new output is equal to the sigmoid function of the sum of 
the products of the weights and the activities of the input wires (connections), minus the 
threshold of the node. The sigmoid function is defined by the following equation: 

)exp(1
1)(

x
x

−+
=σ
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  The global error function used to propagate the error back through the network is  
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s (Masters 1993). 

EVELOPMENT OF THE ANN MODEL 
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Where di is the desired output and oi is the actual output produced by the network. The 
main objective is to maximise this function, i.e. to change the weights of the system in 
proportion to the derivative of the error with respect to the weights. The error correctio
learning procedure is simple in conception and is as follows: during training, input is 
provided for the network and flows through the network generating a set of values on the 
output neurons. Then, the actual output is compared with the desired target, and a match 
is computed. If the output and the target match, no change is made to the net. However if 
the output differs from the target a change must be made to some of the conn
procedure works remarkably well on a variety of problem

D
 
Neural network based modelling process according to Ogunlana et. al. (2001) involves 
five main aspects. These are (1) data acquisition, analysis and problem representat
architecture determination; (3) learning process determination; (4) training of 
n
 
As previously stated 40 data sets were used in the model development. The scores 
attached to the 11 identified significant risk factors were used as the input for the neural 
network. The estimates of percentage variation between the forecast and actual cost flo
at 30, 50, 70 and 100% completion stages were used as the output. These two pairs of 
data set constitute the training set for the neural network model. The number of input data 
and output data also suggested that 11 input neurons and 4 output neurons would be goo
network architecture to start with. After a number of trials and errors, the network w
found to stabilise with 12 hidden nodes. Thu
p
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Fig. 2: Artificial network architecture employed for assessing risk 
           impacts on cost flow forecast 
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Having determined the network architecture, the input output pairs for the 40 data sets
used in training the network for model development were fed into the neural network 
software employed. A screen dump of the training pairs and the networks generated is 
shown in Appendix 1. The learning rate η for the best network was found after trial and 
error to be 0.7 with 32001 training cycles. Training error was set to be reduced to 0.001. 
The outputs produced by the network and the desired outputs of the training samples were
then compared using the mean

 

 
 squared error (RMS). This according to Fausett (1994) is 

omputed using the formula: 

t the 

atrix 
ow becomes a model for assessing risk impacts on 

onstruction cost flow forecast.  
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eviations to be measured in absolute 

rms. The formula for this measure is given as:  
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ther test samples, it is also possible that there may be an error of judgement in scoring  
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Where ti and oi are actual and predicted variation at completion period i and n is the 
number of periods. After 32001 training cycles, the RMS for the training samples was 
found to be 0.007, which is not too far from the target of 0.001. This suggests tha
system has learned the relationship between the inputs and outputs and can also 
generalise from data. The network architecture together with the associated weight m
is shown in the Appendix. This n
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In order to test the forecasting adequacy of the model, the remaining 20 data set were 
used. Input data regarding the extent of risk occurrence were entered and the network 
requested to forecast the percentage variation at 30, 50, 70 and 100% completion periods. 
The outputs are shown in the screen dump in Appendix. The validation tests performe
on the networks were a comparison between the predicted and the actual percentage 
variation obtained from the test data at the desired completion periods. The statistical 
verification method employed was the relative mean absolute deviation (Rel. MAD). Th
was chosen as it is a unitless quantity and allows d
te
 

 
Where ti and oi are actual and predicted variation at completion period i and n is the 
number of periods. Table 2 shows the actual and predicted variations at 30, 50, 70 and 
100% completion stages. A cursory look at the prediction error shows that the dev
are not too much. However, for a better perception of the error, the Rel. MAD is 
calculated as stated earlier. The Rel. MAD measures for each of the 20 data sets used in 
testing the model are shown in Table 2 and Fig 3 also depicts the Rel. MAD measures
the 20 test projects. It is obvious from Table 2 and Fig. 3 that the Rel. MAD clusters 
between 0.18 and 0.5, which is considered good enough for the type of data, involved. 
However, project 7 has a very high Rel. MAD of 1.16, followed by project 3 with Rel.
MAD of 0.62. The data sets for these 2 projects are from the empirical data collected 
from a construction company. While this may be considered as an outlier compared to 
o
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Table 2: Network prediction performance using relative mean absolute deviation  

            measurement 

Co tio Co tio Co tio  C et

  
 

30% mple n 50% mple n 70% mple n 100% ompl ion Proj. 
No  

al c
Error 

al c
Error 

al c
Error 

a c
Error M. Actu

 
Predi
ted 

Actu
 

Predi
ted 

Actu
 

Predi
ted 

Actu
l 

Predi
ted 

Rel. 
AD 

1 0.12 0.16 -0.04 0.08 0.07 0.01 0.08 0.03 0.05 0.05 0.01 0.04 0.471 
2 0.15 0.20 -0.05 0.12 0.15 -0.03 0.10 0.05 0.05 0.05 0.09 -0.04 0.471 
3 0.20 0.26 -0.06 0.26 0.40 -0.14 0.19 0.44 -0.25 0.23 0.30 -0.07 0.615 
4 0.21 0.27 -0.07 0.19 0.23 -0.04 0.25 0.31 -0.06 0.04 0.07 -0.03 0.372 
5 0.18 0.22 -0.04 0.19 0.18 0.01 0.12 0.16 -0.04 0.05 0.01 0.04 0.352 
6 0.19 0.12 0.07 0.43 0.37 0.06 0.17 0.16 0.01 0.07 0.02 0.05 0.320 
7 0.18 0.15 0.03 0.26 0.25 0.01 0.07 0.10 -0.03 0.01 0.05 -0.04 1.158 
8 0.36 0.30 0.06 0.24 0.23 0.01 0.17 0.18 -0.01 0.01 0.01 0.00 0.067 
9 0.25 0.29 -0.04 0.30 0.34 -0.04 0.30 0.36 -0.06 0.05 0.01 0.04 0.323 

10 0.05 0.07 -0.02 0.10 0.10 0.00 0.15 0.07 0.08 0.10 0.03 0.07 0.408 
11 0.25 0.28 -0.03 0.25 0.32 -0.07 0.20 0.06 0.14 0.10 0.01 0.09 0.500 
12 0.10 0.06 0.04 0.15 0.04 0.11 0.20 0.19 0.01 0.20 0.29 -0.09 0.408 
13 0.15 0.25 0.10 0.25 0.29 -0.04 0.35 0.30 0.05 0.20 0.28 -0.08 0.342 
14 0.20 0.28 -0.08 0.15 0.18 -0.03 0.10 0.06 0.04 0.05 0.01 0.04 0.450 
15 0.15 0.20 -0.05 0.10 0.14 -0.04 0.10 0.08 0.02 0.05 0.01 0.04 0.433 
16 0.15 0.16 -0.01 0.20 0.25 -0.05 0.20 0.16 0.04 0.10 0.02 0.08 0.329 
17 0.20 0.15 0.05 0.30 0.37 -0.07 0.45 0.43 0.02 0.10 0.12 -0.02 0.182 
18 0.15 0.14 0.01 0.20 0.26 -0.06 0.20 0.10 0.10 0.15 0.18 -0.03 0.267 
19 0.20 0.30 -0.10 0.25 0.34 -0.09 0.35 0.42 -0.07 0.05 0.01 0.04 0.465 
20  0.02 0.06 0.00 0.04 0.300 0.05 0.03 0.10 0.04 0.15 0.15 0.20 0.16 

R2 = 0.626  R2 =  0.748  R2 =   0.653  R2 =     0.765    
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the risk variables as carefully scored variables are very important for accurate predic
The coefficient of correlation R2 between the predicted and actual values were also 

FFig. 3: Relative mean absolute deviation (Rel. MAD) for test projects 
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calculated and shown in Table 2. The R2 measures showed a high degree of correlation 
between the predicted and actual values. This further supports the viability of the mo
to predict the likely 

del 
variation between the forecast and actual cost flow at the stated 

ompletion stages. 
 

ONCLUSION 

s 

neural 

onstruction and the usual variation observed between the forecast and 
ctual cost flow. 
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