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Abstract 

Systems that are subject to uncertainty in their behaviour 
are often modelled by Bayesian Belief Networks (BBNs). 
These are probabilistic models of the system in which the 
independence relations between the variables of interest are 
represented explicitly. A directed graph is used, in which 
two nodes are connected by an edge if one is a 'direct cause' 
of the other. 

However the Bayesian paradigm does not provide any 
direct means for modelling dynamic systems. There has 
been a considerable amount of research effort in recent 
years to address this. In this paper, we review these 
approaches and propose a new dynamic extension to the 
BBN. 

Our discussion then focuses on fault management of 
complex telecommunications and how the dynamic 
bayesian models can assist in the prediction of faults. 

Keywords: dynamic bayesian belief networks, 
telecommunication networks, fault management, intelligent 
systems. 

1 Introduction 

Systems that are subject to uncertainty in their behaviour 
are often modelled by Bayesian Belief Networks (BBNs). 
These are probabilistic models of the system in which the 
independence relations between the variables of interest are 
represented explicitly. A directed graph is used, in which 
two nodes are connected by an edge if one is a 'direct cause' 
of the other. 

However BBNs provide no direct mechanism for 
representing temporal dependencies [ 11 ,[2],[391. In certain 
domains such as medicine, planning and control, and 
industrial environments, the incorporation of a temporal 
aspect into the model is crucial if the model is to achieve an 
effective and accurate representation of the system in 
question. The time that symptoms appear and their 
duration, the time that observations/measurements are made 
and the time that faults are induced can significantly affect 
the formulation of hypotheses used. The model must be 

able to update the system given that observations and 
evidence can be made over time, that is capture the 
evolution of the system as it changes over time. 

This paper is organised as follows. Section 2 introduces the 
fault management domain. Section 3 describes Bayesian 
Belief Networks. Section 4 summarises the published 
research into adapting BBNs with a dynamic or temporal 
dimension. Section 5 proposes an alternative approach 
combining BBNs with survival analysis. Section 6 explores 
how this can be used for fault management and section 7 
finally ends the paper with a conclusion and future work. 

2 Fault Management 

High-speed broadband telecommunication systems are built 
with extensive redundancy and complex management 
systems to ensure robustness. The presence of a fault may 
not only be detected by the offending component and its 
parent but the consequence of that fault discovered by other 
components. This often results in a nett effect of a large 
number of alarm events being raised and cascaded to the 
element controller. 

The behaviour of the alarms is so complex it appears non- 
deterministic [5] .  It is very difficult to isolate the true cause 
of the fault. Failures in the network are unavoidable but 
quick detection and identification of the fault is essential to 
ensure robustness. To this 'end the ability to correlate alarm 
events becomes very important. 

The major telecommunication equipment manufacturers 
deal with alarm correlation through alarm monitoring, 
filtering and masking as specified by ITU-T [17] and other 
international standard bodies, with rule-based type systems 
for assistance to the operator. Yet often it is left to the 
operator's expertise to determine the actual fault or 
multiple-faults from the filtered set of alarms reported. 

At the heart of alarm event correlation is the determination 
of the cause. The alarms represent the symptoms and as 
such, in the global scheme., are not of general interest once 
the failure is determined 1141. There are two real world 
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concerns: (1) the sheer volume of alarm event traffic when 
a fault occurs; (2) the cause not the symptoms. 

Alarm monitoring, filtering and masking meets criterion 
( l ) ,  which is vital. They focus on reducing the volume of 
alarms but do not necessarily meet criterion (2) to 
determine the actual cause - this is left to the operator to 
resolve from the reduced set of higher priority alarms. 
Ideally, a technique that can tackle both these concerns 
would be best. 

3 Bayesian Belief Networks (BBNs) 

Bayesian Belief Networks (BBNs) offer a potential 
solution. BBNs consist of a set of propositional variables 
represented by nodes in a directed acyclic graph. Each 
variable can assume an arbitrary number of mutually 
exclusive and exhaustive values. Directed arcs (arrows) 
between nodes represent the probabilistic relationships 
between nodes. The absence of a link between two 
variables indicates independence between them given that 
the values of their parents are known. In addition to the 
network topology, the prior probability of each state of a 
root node is required. It is also necessary, in the case of 
non-root nodes, to know the conditional probabilities of 
each possible value given the states of parent nodes or 
direct causes. A good illustration of a BBN and its related 
joint probability distribution is contained within Lauritzen 
and Spiegelhalter’s paper [25] where they consider an 
example based on doctors diagnoses of patients suffering 
from shortness of breathe (dyspnoea), Figure 1. 

visit to Asia? a smoking? p 

The graph can be considered as representing the joint 
probability distribution for all the variables. In the above 
example this is P(a,z,&,G,h,P,o). The chain rule can re- 
express this joint probability as the product of the 
conditional probabilities which need to be specified for 
each variable or node. 

Pta,  2, E, 6, h, p, 0) = 
P(a)P(2 I a)P(k I &)P(E I 2, h)P(6 I E, P)P(h I o)P(P I o)P(o) 

(1) 
The chain rule is given below: 

i=l 

where pa(XI) is the parent set of Xi. 

Each node has associated with it a conditional probability 
table that quantifies the effects that the parents have on the 
node. Taking the graph as a whole, the conditional 
probabilities and the structure can be used to determine the 
marginal probability or likelihood of each node holding one 
of its states. 

The power of the BBN comes to light whenever we change 
one of these marginal probabilities. The effects of the 
observation are propagated throughout the network and the 
other probabilities updated. In simple networks the 
marginal probabilities or likelihood of each state can be 
calculated from the knowledge of the joint distribution, 
shown earlier, using the product rule and Bayes’ theorem. 
This simply means that the directed acyclic graph (DAG) is 
singly connected; each link is a bridge where the removal of 
one leads to a disconnected network. 

However, cycles often occur and the calculation is much 
more complex. Algorithms have been devised to cope with 
the complication of such cycles. Some calculate the 
marginal probabilities exactly but by doing so introduce 
calculations which are NP-hard [6 ] .  Therefore many 
researchers have developed algorithms which approximate 
the marginal probabilities. This may lead to the 
compromise of accuracy over a lower computational 
overhead. 

A tuberculosis? 

The BBN can be used for deduction in the fault 
management domain. Given alarm data it will determine 
the most probable cause(s) of the supplied alarms, thus 
enabling the system to act as an expert system. 

Figure 1:  Lauritzen and Spiegelhalter’s illustration of a BBN 

In previous work [37] have developed an exact algorithm 
approach to deduce the marginal probabilities for their BBN 
application based on that developed by Lauritzen and 
Spiegelhalter [25]. 
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Figure 2: Diagram showing the difference 
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between models based on time slices 

4 Dynamic Belief Networks (DBNs) 

A problem with the standard theory of belief networks is 
that there is no natural mechanism for representing time [ 13, 
[2], [39]. There have been various efforts to extend the 
theory to allow time to be modelled. For example, where 
probability of movement from one state to another has a 
temporal dependency, survival analysis [27] can be used. 
Constraints on the behaviour of the system can be 
expressed using the formalism of temporal logic. 

Dynamic Belief Networks (DBN) model a system that is 
dynamically changing or evolving over time [ 10],[21],[22], 
[30]. This model will enable the user to monitor and update 
the system as time proceeds. 

The literature tends to use the terms dynamic and temporal 
interchangeably. Dynamic is the opposite of static, it 
concerns a motive force. Changing the nature of the static 
BBN to model ‘motive forces’ can then be classified as 
adapting it to a dynamic model. Although systems with 
change involve time, we differentiate between the two 
terms dynamic and temporal in that temporal models 
explicitly model time as opposed to other changes in the 
system such as the change in state. As such temporal 
models would be a sub-class of dynamic. 

Bayesian Belief Networks were not designed to model 
temporal relationships explicitly; they are a static model. 
The prediction and deduction made do not vary depending 
on when the observations or predictions are made. 

This standard theory of belief networks has been further 
developed by researchers to incorporate a temporal feature 
or time element into the model. This has been approached 
in various different ways. Aliferis and Cooper [ l ]  
summarise just some of the extensions of belief networks 
for time modelling presented over the last few years. These 
include temporal influence diagrams [33], Dynamic Belief 
Networks (DBNs) [7], temporal models of endogenous 
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change [ 131, Temporal Bayesian Networks (TBNs) [39], 
Temporal Nodes Bayesian Network (TNBNs) [3], 
embedded Markov processes [4], logic and time nets 
[ 19],[20], Modifiable Temporal Belief Networks (MTBNs) 
[l], as well as specific applications [4], [30]. 

An obvious way of classifying the literature is to use the 
authors’ individual terms (as above) to describe the various 
approaches. However, in most cases these terms, mainly 
dynamic and temporal, are interchangeable. For instance, if 
the time slices of a temporal model were applied so that the 
movement between the slices was based on a change in 
state instead of time, we could then classify them as 
belonging to a dynamic model. Likewise if Markov-chain 
approaches, dynamic modells, were implemented that each 
state was a point in time, WI: could classify the applications 
as temporal models. Therefore we can say that the 
difference is primarily dependent on the application of the 
model. 

Another approach of classitying the literature is to consider 
how the methods actually model the timehemporal element. 
This classification has been used by Palmer et al. [31] who 
divide the temporal approaches into two main categories of 
time representation, namely those models which represent 
time (1) as points or instances or (2) as time intervals. 

Within category (1) the models, based on points in time, 
require that events occur in,stantaneously where each event 
considered occurs at an instcant in time. These are basically 
the time slice models and temporal reasoning models 
reviewed by Hanks et al. [ 131 and illustrated in Figure 2. 

Figure 2(a) represents an approach where a time slice is 
used to represent a snapshot of the evolving temporal 
process [21]. The belief network consists of a sequence of 
sub-models each representing the system at a particular 
point or interval in time (time slice) and which are 
interconnected by tempoiral relations. Kjaerulff [22], 
Dagum et a1.[7][8], F’rovan[32], Berzuini[4], Lekuona[26] 
are just some of the researchers currently using the time 
slice approach. 
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Figure 2(b) represent models where the network is 
composed of sub-models and duplicated over time slices, as 
before. However links between state variables within a 
time slice are disallowed. Dean and Kanazawa [9] and 
Kanazawa [ 19][20] use this approach in their research. 

Hanks et al. [13] proposed a modification to the time slice 
approach where they take into account the system as it 
changes over time, both due to exogenous and endogenous 
influences. 

Category (2) of the classification approach in Palmer et al. 
[3 11 considers interval representations of time. Allen’s 
interval algebra and its 13 relations were used to provide 
the temporal basis for the model [2]. This may be more 
broadly thought of as a dynamic model as an interval in 
time represents an event or process during which a property 
(either true or false) holds uniformly throughout. Examples 
of work in this area are the Temporal Abduction Problem 
(TAP) [35] and the Probabilistic Temporal Network (PTN) 
W l .  

An alternative to the above approaches is introduced in the 
next section. 

5 A Dynamic Bayesian Belief Network 
Approach (DBBNs) 

A new approach currently being researched and applied to 
geriatric patient management [28] is that of combining 
BBNs and Survival Analysis to create a Dynamic Bayesian 
Belief Network (DBBN). 

DBBNs are described as generalising the concept of BBNs 
to include a time dimension. The approach represents a 
stochastic (or probabilistic) process along with causal 
information [9],[34]. Heckerman et al. [16] has also 
introduced a temporal component to BBNs by providing a 
temporal definition of causal dependence where he 
associates a set of variables indexed by time with each 
cause and with an effect. 

In statistical theory, Markov models are often used to 
represent stochastic processes. Structured phase-type (Ph) 
distributions [29] characterise a type of latent Markov 
model which provide an intuitive and robust way of 
describing probabilistic processes. Such models describe 
duration until an event occurs in terms of a process 
consisting of a sequence of latent phases - the states of a 
latent Markov model. For example, duration of stay in 
hospital can be thought of as a series of transitions through 
phases such as: acute illness, intervention, recovery or 

discharge. The representation of such a process in terms of 
latent phases is realistic, as that is how a domain expert 
conceptualises the process. It is also mathematically 
suitable since we can prove that any such statistical 
distribution may be represented arbitrarily closely by one of 
phase-type form [lo]. 

In this approach we combine the advantages of BBNs in 
incorporating prior knowledge and causation into the model 
with the elegant and intuitive process representation 
phase-type distributions (Figure 3). 

of 

Figure 3: The underlying representation describes a DBBN in terms of a 
number of interrelated causal nodes which temporally precede and 
predetermine (in a probabilistic sense) the effect node(s) which constitute 
the process. The effect node(s) here are characterised by a continuous 
positive random variable(s), the duration, described by a phase-type 
distribution 

The Causal Network is modelled as a BBN. The Process 
Model may be defined in a manner similar to that of [9], 
[13] where we consider an event <E> which initiates a 
process P at time zero and <P, t> indicates that the process 
P is active at time t. Then prob<P, t> is the probability that 
the process is still active at time t. In statistical terminology, 
prob<P, t> is known as the survivorfunction, denoted by 
F(t) and, for a continuous time representation, its derivative 
f(t) is the probability densityfunction (p.d.f.) of the time for 
which the process is active. Here we define f(t) by 
f(t)& = prob(process terminates in (t, t+&) I 

process is still active at t), 

We thus assume that the model includes variables, some of 
which are qualitative (the causal variables) and some 
quantitative (the survival variables). Some previous work 
has been done on data of this sort, mainly involving the 
introduction of conditional Gaussian (CG) distributions 
[12], [24]. We here introduce the idea of Conditional 
Phase-type (C-Ph) distributions which are more appropriate 
for process data. 
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6 A Discussion of Potential Fault 
Management Applications 

Downtime in a network not only results in loss of revenue 
but can lead to serious financial contractual penalties. It is 
therefore not surprising that network operators are 
extremely keen to remedy faults as quickly as possible. To 
this end not only is identification of the fault critical but an 
estimation of a fault’s likely life span would greatly assist 
in managing and assessing maintenance strategies. 

Fault management is an important but difficult area of 
telecommunications network management. Networks 
produce large amounts of alarm information that must be 
analysed and interrupted before the faults can be located 
[23]. As has been stated earlier alarm correlation is the 
central technique in fault identification [ 181. 

The instance of a fault can cause numerous alarm events to 
be raised from an individual network element (NE), this 
means that the alarms are often interrelated. Also a fault 
may trigger numerous similar and different alarms to be 
generated in different NE’s up or down stream on the 
network. For example, the Comms fail alarm, an alarm 
raised by the management system if it cannot maintain a 
communications channel to the indicated NE, may cause 
other alarms such as RS-LOS, RS-LOF, Qecc-Comms-fail, 
MS-EXC or even laser alarms depending on the fault and 
configuration. 

Correlation serves to diminish the number of alarms 
presented to the operator, yet ideally the approach should be 
able to facilitate fault prediction; 

Fault identificatioddiagnosis - prediction of the 
fault@) that have occurred from the alarms present 

8 Behaviour prediction - warn the operator before hand 
of severe faults from the alarms that are presenting 
themselves. 

The Bayesian paradigm and its extensions offer the 
machinery to achieve these ideals. Although methods such 
as Artificial Neural Networks ( A N N s )  have been proven to 
obtain good predictive performance, they do not meet one 
important goal; that of comprehensibility. 
Telecommunication companies do not wish to install ‘black 
boxes’ into their fault management systems therefore ruling 
out A N N s  [15]. BBN’s graphical structure more than meet 
the need for ‘readability’. 

Figure 4: SDH Alarm data viewecl over time. Screenshot of NxGantt [38] 
with comments displaying an alami’s lifespan (horizontal Gantt bars), how 
close the injection of 2 alarms may occur in time and the correlation 
window. 

BBNs, DBNs and DBBNs can all be applied to fault 
management of telecommimications. Below, we discuss 
how BBNs may be developed, refined by DBNs and further 
enhanced by DBBNs. 

When an alarm occurs in a network it is “present” until its 
accompanying “clear” arriws thus implying a temporal life 
span (Figure 4) and a correliation window. 

The inducing of this alarm data into a static BBN (Section 
3) then provides the ‘guts’ of an expert system, for 
answering “if then” questions exploring the effects of 
changing variable values. For example, if Alarm type LP- 
PLM is observed, this alter!; the probability (among others) 
that alarm PPI-Unexpl-Signal will be observed. [36] and 
[37] describes an architecture that induces a BBN from this 
data inferring from it the likely alarm behaviour (Figure 5) .  

PPCDEG 

LP-EXO 

Figure 5: Alarm B13N for Fault Management 
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TBNs or DBNs (Section 4) offer an opportunity to be more 
precise when predicting the fault by adding a temporal 
dimension to the model, since the alarms have a lifespan 
(Figure 4) and the network changes in state under fault 
conditions. The alarms that are correlated to produce a 
higher priority alarm may be correlated with other alarms in 
a later slice - narrowing to a prediction of likely faults. 

The DBBN (Section 5) could offer the previously 
mentioned expert system in the form of the BBN with 
additional benefits of extra predictions of how long until the 
fault occurs (in the case of behaviour prediction) or how 
long until the fault is repaired (in the case of fault 
identification). These additional predictions come from the 
inclusion of survival analysis into the model. 

Once the phase-type distribution has been modelled from 
suitable available data it may be possible to adapt the 
DBBN model for more precise fault prediction. The 
incorporation of phase-type variables within the BBN could 
contribute to a more realistic network where identification 
of the phase containing the evolving fault episode, would 
strengthedweaken the time based prediction options. 

7 Conclusion 

This paper has deliberated the Bayesian paradigm and 
reviewed the literature on its dynamic extensions. It has 
proposed a new dynamic approach by incorporating 
survival analysis as part of the model. 

Included is a brief discussion on the potential applications 
of these models for intelligent fault management in 
complex telecommunications systems. 

The paper has demonstrated the potential power of the 
dynamic approach for fault identification and behaviour 
prediction, for instance the ability to determine the 
likelihood of an alarm being set off at a particular point in 
time due to a fault occurring at a precise moment in the 
past. 

In fault management there are two real world concerns: (1) 
the sheer volume of alarm event traffic when a fault occurs; 
and (2) the cause not the symptoms. The rule-based type 
systems (monitoring, filtering and masking) used in 
telecommunication systems address the first. The 
approaches discussed in this paper would address both 
concerns paving the way to true intelligent fault 
management. 
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