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Abstract 

Learning probabilistic networks for expert system 
applications has seen a great surge of research activity in 
recent years. This paper reports on the adoption of 
probabilistic networks for verifying the padfai l  result of 
automated testing at the software verification stage in the 
development lifecycle of high-speed telecommunications 
equipment. 

The focus is on learning Bayesian Belief Networks (BBNs) 
from automated test data on a per test execution basis. This 
facilitates result classification and assurance, taking 
advantage of their graphical nature to provide 
accountability of the decision. 

Keywords: Bayesian Belief Networks, automated testing, 
intelligent systems, telecommunication networks. 

1 Introduction 

Within Nortel Networks’ NITEC (Northern Ireland 
Telecommunications Engineering Centre) R&D lab, high 
capacity broadband transmission and switching equipment 
are designed and developed. This complex mix of 
hardware, software and firmware must conform to 
international standards to facilitate heterogeneous global 
networks. 

During the development cycle for each release of a product 
a significant proportion of the time is taken up with testing, 
commonly estimated at 60%. As the product becomes 
larger and more complex the ability to comprehensively test 
and verify the operation within the decreasing timeframe to 
market becomes increasingly difficult. Automation offers 
the potential to decrease this overhead. 

Traditional manual testing of telecommunications 
equipment was expensive in terms of time spent, costs 
involved and even de-motivation of specialised engineers 
due to the repetitive task. Automation offered a 
competitive advantage in terms of reduced cost, reduced 
time to market, enhanced quality and “freeing-up“ of 
specialised engineers for further investigating and solving 
of problems areas discovered from the testing [27]. 

The disadvantage to automation is that the experimental 
approach to testing is lost [21],[27]. A test script will not 
spot anomalous behaviour that an engineer would have. 

Automation offers a rich data trail which can then be 
utilised to compensate for the loss in live experimentation 
by the engineer. Hidden in that data should be indications 
that any anomalies have occurred. Each execution of an 
individual test leaves behind a statistical ‘footprint‘ which 
can be presented graphically. 

The assumption is that the footprints can be utilised for a 
wider-based identification (classification) of a pass or fail 
of an individual test. In any case where there is a 
sufficiently large number of pass and fail footprints 
available, it should be possible to use classification 
techniques, such as a neural network [22], to generate a 
pass/fail classifier for automated testing. Yet a drawback of 
many classification techniques, including neural networks, 
is that they do not provide any explanation of the decision. 

Inducing a probabilistic network from the data provides a 
much more visual footprint. Probabilistic networks [ 11, 
[ 171, in which relationships between variables can be 
represented by the existence of links between them, have an 
intuitive appeal. They are easy to “read” if represented 
graphically and can summarise fairly complex relationships 
succinctly. 
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2 Automated Testing root cause of problems. A mleans of reducing the cognitive 
overload on the test engineers is essential due to the 
unabated growth in complexity of the networks. 
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Figure 1: Verification Automated Testing of Network Elements (NE) 

Within NITEC, during the testing phase of releases 6/7 TN- 
1X (STh4-1) multiplexer software, a significant amount of 
knowledge and data have been collected from a fixed 
topology. However, analysing the data collected has 
proved to be extremely difficult due to the complexity of 
the interactions and the large quantity of data involved. 
The required testing to achieve the necessary coverage is 
increasing significantly with network complexity. NITEC 
engineers have committed substantial effort in an attempt to 
automate this testing. These automated test scripts provide 
substantial cost and time savings over manual testing, being 
faster to perform as well as enabling test runs overnight and 
at weekends. Yet they cannot provide the same coverage. 
An expert engineer in attendance can spot anomalies a test 
script could not. For instance, incorrect intermediate states 
which are generated during an automatic test but which are 
resolved by the end of the test are not easily detected. In 
order for the engineers to spot these states, they need to 
analyse all data produced during the test. To do this 
manually would negate the time advantage gained by the 
partial automation [25]. These rare incorrect intermediate 
states may be indicating problems which exist in the 
software that is under development but yet the test may 
have been considered a pass [26]. 

In addition, the expertise of interpreting data produced from 
this testing is not always available. It is important that this 
knowledge be readily available if testing and subsequent 
analysis is going to be fully automated. Justifying decisions 
on judging tests as pass/fails is very important as well as 
being able to make suggestions as to where to look for the 

3 Probabilistic Network Induction 

There are few cases where the researcher has advance 
knowledge of the structure of the probabilistic network. 
Therefore there is a need to induce or learn the structure 
from the data which has the form of frequencies of the 
different variable values occurring in combination. 

Extensive research has been carried out on the induction of 
probabilistic networks. Buntine [7] and Heckerman [ 171 
provide good surveys of the: problem. Aliferis and Cooper 
[l], Breese [2], Breese et a1.[3], Bouckaert [4], Buntine 
[5],[6] ,  Chickering et al. [SI, Cooper and Herskovits 
[10],[11], Dempster [12], Goldman and Charniak [15], and 
Geiger and Heckerman [13],[18],[19],[20] are just some of 
the literature which considers the induction problem. 

Unfortunately the general problem is NP-hard [SI. For a 
given number of variables there is a very large number of 
potential graphical structures which can be induced. To 
determine the best structuae one should, in theory, fit the 
data to each possible graphilzal structure, score the structure, 
and then select the structure with the best score. 
Consequently algorithms for learning networks from data 
are usually heuristic, once the number of variables gets to 
be of reasonable size. There are 2k(k-1)n distinct possible 
independence graphs for a. k-dimensional random vector: 
this translates to 64 prob.abilistic models for k= 4, and 
32,768 models for k = 6. 

In this work, several different induction algorithms were 
developed and tested using telecommunications data 
supplied by NITEC. 

3.1 The Chow and Liiu algorithm 

In this algorithm, due to Chow and Liu [9] the mutual 
information between pairs of variables is calculated and 
those variables with the highest value are connected. The 
algorithm continues wiith successive elimination of 
variables. It has the advantage of simplicity but generates 
only tree structures. The mutual information between two 
variables, a and b is defined as: 

(1) 
Pr(a = i,b = j )  

Pr(a = i)Pr(b = j )  
pab = x P r ( a  = i,b = j)log 

i, j 
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It can be shown that if the independence graph is a tree (that 
is if there are no cycles in the I-map) the best fit to the data 
is obtained by the Chow and Liu algorithm. 

The main advantage of using tree-structured graphs is that 
they are simple to compute. The probability tables can be 
calculated directly from the marginal counts of the variables 
- maximum likelihood estimators are obtained by simply 
computing the pairwise marginal counts of the variables. 

3.2 CAEGA 

The Cause and Effect Genetic Algorithm (CAEGA) 
developed by Sterritt et al. [23],[24] target good networks 
which they ‘breed’ in order to produce new, potentially 
better nets. It was found to give good solutions and was 
selected as an innovative algorithm for extracting BBNs 
from telecommunications data. 

The algorithm takes as input a modified form of the 
Bayesian Belief Network Interchange Format proposed by 
the UAI community [29]. In this format each variable is 
specified with its name, a description and the number of 
values that it can have, and a descriptor for each possible 
value. In the data table each tuple is replaced with a vector 
of integer values, one integer for each value, and the 
number of occurrences of each distinct vector also appears. 
This format considerably compresses the storage 
requirement for the input file. The genetic algorithm also 
accepts a user-specified list of net structures (defined by 
child-parent lists) which may have been generated by other 
algorithms such as that developed by Chow and Liu. 

The algorithm works in the following way. Internally, 
breeders are specified by a square matrix of binary values in 
which a unit value indicates a parent-child relationship 
between two variables and a zero indicates that there is no 
direct relationship. An initial breeding stock is created 
from the breeders specified in the input data file and by 
random creation of graphs, which represent the net 
structure. Because the graph must be acyclic not all binary 
matrices define valid graphs, and any invalid matrices 
created by breeding or mutation are pruned until they are 
valid. At each generation, pairs of breeders are selected 
randomly to exchange genetic material and thereby create 
new breeders. Others are selected for random mutations. 
Scoring was done using the posterior probability function in 
Cooper and Herskovits [ 1 11. Because there is a problem of 
overfitting with these models - the saturated model in 
which one node is picked arbitrarily and taken as a child of 
all the others is a perfect match to the data - thus displaying 
a need for a penalty to be applied to the score. In our 
implementation the penalty effect is obtained by limiting 
the number of parents each child may possess. The 

algorithms all have output which includes belief network 
specifications in standard format. 
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The following section discusses the application of learning 
these probabilistic networks for testing assurance. 

4 Probabilistic Networks for Testing 
Assurance 

-time 
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Figure 2: Inducing probabilistic networks from test data for test assurance 

The process, in common with most machine learning 
approaches, uses a relation-based approach to the data. 
Information concerning the behaviour of test cases is 
assumed to be available and is passed, after suitable pre- 
processing, to an induction process, which extracts a model 
- in our case a Bayesian Belief Network (BBN) - from the 
data. 

The induction process attempts to optimise the network - in 
the sense that it searches for the network structure that best 
fits the data. The BBN extracted would normally be used as 
the basis for an expert system. In this case it provides a 
model for classifying the test. 

The realisation of the process can be viewed in Figure 2, 
containing a Data Cleaner, Pre-processor and Induction 
component. It provides an abstracted model of the 



behaviour in the form of a BBN. This is achieved by 
examining the events that occur during a test run from the 
event log which resides on the network controller. 

The hypothesis is that the BBN expresses the behaviour that 
has occurred during the test to either provide assurance that 
the test “pass” is a correct assumption or to highlight the 
behavioural anomalies. 

Due to the nature of the Synchronous Digital Hierarchy 
(SDH) system where a fault can produce a cascade of 
alarms reported back to the network controller, large 
quantities of verbose data are generated. In one particular 
experiment a single fault produced 6Mb of binary data. 

Data cleaning and data pre-processing is often an 
understated process. Hatonen et al. [ 161 found it to require 
80% of the knowledge discovery process in some domains. 

Test assurance and confidence levels will rely on the ability 
of cross-referencing the extracted behaviour for that test 
with previous behaviour for the same test on a different test 
run or a similar test. This necessitates the storage of BBN 
for each specific test run. 

In manual processing terms the tests produce a large 
amount of data, yet in data mining terms the induction of a 
BBN on a per test-script basis is from a relatively small 
amount of data. As such it was found that CAEGA which 
was designed as a BBN data mining algorithm was not 
suitable. 

It did not produce a relatively constant BBN to allow 
comparisons between tests. This is not surprising for 
several reasons; firstly genetic algorithms (GAS) have a 
random element to assist in the prevention of being caught 
at a local maximum. Secondly, GAS are designed to 
perform in a large search space and an under-sized 
population affects their behaviour by causing premature 
convergence [14]. The data for a single script is too small 
to effectively use. There are possible methods to work 
around this problem and one approach is to adapt the GA to 
perform competition at the family level instead of globally. 
It is believed that this approach is less prone to error with 
undersized populations [28], yet the random element to the 
GA could still cause differences in the BBN due to the 
algorithm and not the test data. 

The adaptation of OM1 (Optimisation of Mutual 
Information) was used as an alternative for this situation. 
As already mentioned the algorithm was one of the first in 
use for the induction of Bayesian networks, published by 
Chow and Liu [9]. Basically, the algorithm attempts to 
find a structure in which the strengths of the edges between 

the pairs of nodes are maximised. The edge strength is 
measured by the mutual inf,ormation between the nodes. 
The implementation used was a greedy algorithm in which 
edges are added in order of strength while preserving an 
acyclic structure. Initial experimentation with the adapted 
OM1 algorithm indicates a more suitable algorithm. This is 
explained by the fact that each time a variation occurs in the 
induced BBN it is as a result of the test, not the algorithm. 

5 A Motivating Example 

The following example study shows the results from two 
separate runs of a sample auto-test script. Both runs were 
considered to have passed by the script. The hardware and 
software configuration had not changed significantly 
between runs. 

The script performs the simulation of simple faults into a 
test network via the command line user interface (CLUI) on 
the element controller. The network consists of two 
multiplexers named Enfield and Acton. The faults were 
induced on Enfield. The sample commands shown 
demonstrate the disconnection of tributary port 1 (in slot 2 
of the multiplexer) then its reconnection after a time period. 
In the sample test ports 2 - 8 were also disconnected then 
after a time period reconnected in the same way. 

Cmd=c/n/d S6-klll&S‘7-klll S2- 
l,User=cluil 
Cmd=c/n/c S7-1-Jl-Klll&S6-1-Jl-K111 
S2-1,User=cluil 
Cmd=c/n/d S6-k112&S’7-k112 S2- 
2,User=cluil 
Cmd=c/n/c S7-1-J1-K112&S6-1-J1-K112 
S2-2,User=cluil 
Cmd=c/n/d S6-k113&S7-k113 S2- 
3,User=cluil 
Cmd=c/n/c S7-1-J1-K113&S6-1-J1-K113 
S2-3,User=cluil 
Cmd=c/n/d S6-k121&S7-k121 S2- 
4,User=cluil 
Cmd=c/n/c S7-1-J1-K121&S6-1-Jl-K121 
S2-4,User=cluil 
Cmd=c/n/d S6-k122&S7-k122 S2- 
S,User=cluil 
Cmd=c/n/c S7-1-Jl-K122&S6-1-Jl-K122 
S2-5,User=cluil 
Cmd=c/n/d S6-k123&S7-k123 S2- 
6,User=cluil 
Cmd=c/n/c S7-1-Jl-K123&S6-1-Jl-K123 
S2-6,User=cluil 
Cmd=c/n/d S6-k131&S7-k131 S2- 
i’,User=cluil 
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Cmd=c/n/c S7-1-J1-K131&S6-1-J1-K131 
S2-7,User=cluil 
Cmd=c/n/d S6-k132&S7-k132 S2- 
8,User=cluil 
Cmd=c/n/c S7-1-Jl-K132&S6-l-Jl-K132 
S2-8,User=cluil 

Thus in total 16 commands were performed (8 sets of 
disconnection and reconnections). Table 1 displays a 
breakdown of the event types that were recorded in the 
event log on the element controller during these runs. Note 
no other activity was occurring on the network during the 
experiment. 

Table 1. Breakdown of recorded events during experiment 

Event Type . Run 1 Run2 
Alarm Events 476 463 
Login Events 106 106 
User Action Events 16 16 
Message Tool Events 159 160 
System Error Events 1 1 
Total number of events 758 746 

The auto-test script consisted of 16 actual commands 
(recorded as user action events) but also required 106 login 
actions throughout the script. Although over 400 alarm 
instances occurred in both runs, only 5 actual alarm types 
transpired, which are shown in Table 2. 

Table 2. Alarm types that occurred during the experiment 

Alarm Event Type Explanation 
PPI-AIS PDH Physical Interface - Alarm 

Indication Signal 
PPI-Unexp-Signal PDH Physical Interface - 

Unexpected Signal 
LP-PLM Lower order Path - Path Label 

Mismatch 
INT-TU-LOP Intemal - Tributary Unit - Loss of 

Pointer 
INT-TU-AIS Internal - Tributary Unit - Alarm 

Indication Signal 

The induction of a BBN from each set of data produced 
differing results (Table 3 and Table 4) that indicated an 
anomaly. Since both tests were recorded as passes, these 
differences gave the indication of the need for investigation. 
The differences originate from the addition of an alarm in 
the second run, INT-TU-LOP, and the occurrence of only 9 
INT-TU-AISs as opposed to 15. 

Table 3. BBN Induction results for auto-test run 1 

Frwuencies of Alarm Occurrence 

1, INT-TU-UP, 0 
2, PPI-Unexp-Signal, 8 
3,LP-PLM, 8 

0, PPI-AIS, 192 

4, INT-TU-AIS, 15 

Strength of Edges (mutual information score) 
0 >:2, 0.121383 
2 >:3, 0.113237 
0 >:3, 0.0832668 
0 > 4, 0.0676941 
3 > 4. 0.052712 

Probabilistic Connections 
p(PP1-Unexp-Signal I PPI-AIS) 
p(LP-PLM I PPI-AIS, PPI-Unexp-Signal) 
p(INT-TU-AIS I PPI-AIS, LP-PLM) 

Table 4. BBN Induction results for auto-test run 2 

Frequencies of Alarm Occurrence 
0, PPI-AIS, 192 
1, INT-TU-LOP, 1 
2, PPI-Unexp-Signal, 8 
3, LP-PLM, 8 
4, INT-TU-AIS, 9 

Strength of  dyes (mutual information score) 
0 > 2,0.123822 
2 > 3.0.103088 
0 > 3.0.0957039 
0 > 4,0.0637544 
3 > 4,0.0629661 
2 > 4.0.028953 
1 > 3.0.00722244 
1 > 2.0.00667615 
0 > 1,0.00467317 

Probabilistic Connections 
p(PP1-AIS) 
p(INT-TU-UP I PPI-AIS, PPI-Unexp-Signal, LP-PLM) 
p(PPI-Unexp-Signal I PPI-AIS) 
p(LP-PLM I PPI-AIS, PPI-Unexp-Signal) 
p(INT-TU-AIS I PPI-AIS, PPI-Unexp-Signal, LP-PLM) 

Upon consultation with engineers it was discovered that 
"the occasional occurrence of INT-TU-LOP during 
breaWmake connections was a characteristic of the TN-1X 
product". 

Also INT-TU-LOP is a major alarm while INT-TU-AIS is a 
minor one. LOP is directly above AIS in the masking 
hierarchy. The reduced number of INT-TU-AIS alarms is 
most likely due to the masking effect of INT-TU-LOP. 

Therefore in this case it was decided that the differences in 
the 'footprints' (Figure 3 and Figure 4) should not indicate 
a fail. Note that the thickness of the edges in these figures 
represents the strength of the connections between variables 
in the belief network. The strengths of the additional edges 
in Figure 4 appear so low that visually there is not a strong 



difference between the footprints. It is relatively simple to 
set an ignore threshold above this for classification 
purposes. 

INT-TU-LOP INT-TU-AIS 

PPI-Unexp-Signal PPI-AIS 
Figure 3: BBN (footprint) of Test 1 

INT-TU-LOP INT-TU-AIS 

PPI-Unexp-Signal PPI-AIS 

Figure 4: BBN (footprint) of Test 2 

6 Conclusion and Future Direction 

LP-PLM 

LP-PLM 

This paper has reported on the adoption of probabilistic 
networks for verifying the pasdfail result of automated 
testing at the software verification stage in the development 
lifecycle of high-speed telecommunications equipment. 

Automated testing offers advantages such as cost reductions 
in terms of extensive overtime requirements, being able to 
test and repeatability test again and again in a fraction of 
the manual testing time, improve the job quality of test 
engineers freeing them up to examine and solve the real 
problems encountered. In doing so the quality and 
reliability of the products is increased. 

Yet the disadvantage of automation is that the experimental 
approach to testing is lost. The engineer is no longer at 
hand to spot anomalies and investigate. 

Inducing a probabilistic network from the data offers a 
means to summarise the behaviour of the network during 
the test. Comparing the results to an expected norm or 
previous test results offers a mleans of classifying the result 
and thus providing assurance of the automated result. 

Since probabilistic networks are easily readable when 
represented graphically and summarise fairly complex 
relationships succinctly, they provide an explanation of the 
decision unlike other AI approaches. 

The approach introduced in this paper, offers great promise. 
From initial experimentation it would appear that the BBNs 
can be used as a classification technique. They cover all 
events that have occurred during a test and therefore 
provide the means to make up for the lack of a test engineer 
at the scene monitoring for anomalous activity. 

At present it is generally valid to compare a test run against 
the previous nights test run. Yet the environment is not 
constant. Throughout the development lifecycle, from 
initial software beta releases to final product, the behaviour 
of the software gradually changes and as such the induced 
network will be different throughout the lifecycle. Future 
work would involve storing the network with other 
information as a case in a case-based reasoning (CBR) 
system. This further enhancement will offer an automated 
adaptive decision making capability to the process. 
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