
Probabilistic Networks for Verifying Automated Testing of High Speed
Telecommunication Equipment through the Development Lifecycle

R. Sterritt, K. Adamson, E. P. Curran, C.M. Shapcott
University of Ulster at Jordanstown

Shore Road, Newtownabbey, BT37 OQB, Northern Ireland

Abstract

Learning probabilistic networks for expert system
applications has seen a great surge of research activity in
recent years. This paper reports on the adoption of
probabilistic networks for verifying the padfai l result of
automated testing at the software verification stage in the
development lifecycle of high-speed telecommunications
equipment.

The focus is on learning Bayesian Belief Networks (BBNs)
from automated test data on a per test execution basis. This
facilitates result classification and assurance, taking
advantage of their graphical nature to provide
accountability of the decision.

Keywords: Bayesian Belief Networks, automated testing,
intelligent systems, telecommunication networks.

1 Introduction

Within Nortel Networks’ NITEC (Northern Ireland
Telecommunications Engineering Centre) R&D lab, high
capacity broadband transmission and switching equipment
are designed and developed. This complex mix of
hardware, software and firmware must conform to
international standards to facilitate heterogeneous global
networks.

During the development cycle for each release of a product
a significant proportion of the time is taken up with testing,
commonly estimated at 60%. As the product becomes
larger and more complex the ability to comprehensively test
and verify the operation within the decreasing timeframe to
market becomes increasingly difficult. Automation offers
the potential to decrease this overhead.

Traditional manual testing of telecommunications
equipment was expensive in terms of time spent, costs
involved and even de-motivation of specialised engineers
due to the repetitive task. Automation offered a
competitive advantage in terms of reduced cost, reduced
time to market, enhanced quality and “freeing-up“ of
specialised engineers for further investigating and solving
of problems areas discovered from the testing [27].

The disadvantage to automation is that the experimental
approach to testing is lost [21],[27]. A test script will not
spot anomalous behaviour that an engineer would have.

Automation offers a rich data trail which can then be
utilised to compensate for the loss in live experimentation
by the engineer. Hidden in that data should be indications
that any anomalies have occurred. Each execution of an
individual test leaves behind a statistical ‘footprint‘ which
can be presented graphically.

The assumption is that the footprints can be utilised for a
wider-based identification (classification) of a pass or fail
of an individual test. In any case where there is a
sufficiently large number of pass and fail footprints
available, it should be possible to use classification
techniques, such as a neural network [22], to generate a
pass/fail classifier for automated testing. Yet a drawback of
many classification techniques, including neural networks,
is that they do not provide any explanation of the decision.

Inducing a probabilistic network from the data provides a
much more visual footprint. Probabilistic networks [11,
[171, in which relationships between variables can be
represented by the existence of links between them, have an
intuitive appeal. They are easy to “read” if represented
graphically and can summarise fairly complex relationships
succinctly.

0-7803-6583-6/00/$10.00 0 2000 IEEE 465

2 Automated Testing root cause of problems. A mleans of reducing the cognitive
overload on the test engineers is essential due to the
unabated growth in complexity of the networks.

It l lurl ,~rzrl ~ I C \ ? l l l ~

Workstation
output

0

Figure 1: Verification Automated Testing of Network Elements (NE)

Within NITEC, during the testing phase of releases 6/7 TN-
1X (STh4-1) multiplexer software, a significant amount of
knowledge and data have been collected from a fixed
topology. However, analysing the data collected has
proved to be extremely difficult due to the complexity of
the interactions and the large quantity of data involved.
The required testing to achieve the necessary coverage is
increasing significantly with network complexity. NITEC
engineers have committed substantial effort in an attempt to
automate this testing. These automated test scripts provide
substantial cost and time savings over manual testing, being
faster to perform as well as enabling test runs overnight and
at weekends. Yet they cannot provide the same coverage.
An expert engineer in attendance can spot anomalies a test
script could not. For instance, incorrect intermediate states
which are generated during an automatic test but which are
resolved by the end of the test are not easily detected. In
order for the engineers to spot these states, they need to
analyse all data produced during the test. To do this
manually would negate the time advantage gained by the
partial automation [25]. These rare incorrect intermediate
states may be indicating problems which exist in the
software that is under development but yet the test may
have been considered a pass [26].

In addition, the expertise of interpreting data produced from
this testing is not always available. It is important that this
knowledge be readily available if testing and subsequent
analysis is going to be fully automated. Justifying decisions
on judging tests as pass/fails is very important as well as
being able to make suggestions as to where to look for the

3 Probabilistic Network Induction

There are few cases where the researcher has advance
knowledge of the structure of the probabilistic network.
Therefore there is a need to induce or learn the structure
from the data which has the form of frequencies of the
different variable values occurring in combination.

Extensive research has been carried out on the induction of
probabilistic networks. Buntine [7] and Heckerman [171
provide good surveys of the: problem. Aliferis and Cooper
[l], Breese [2], Breese et a1.[3], Bouckaert [4], Buntine
[5],[6] , Chickering et al. [SI, Cooper and Herskovits
[10],[11], Dempster [12], Goldman and Charniak [15], and
Geiger and Heckerman [13],[18],[19],[20] are just some of
the literature which considers the induction problem.

Unfortunately the general problem is NP-hard [SI. For a
given number of variables there is a very large number of
potential graphical structures which can be induced. To
determine the best structuae one should, in theory, fit the
data to each possible graphilzal structure, score the structure,
and then select the structure with the best score.
Consequently algorithms for learning networks from data
are usually heuristic, once the number of variables gets to
be of reasonable size. There are 2k(k-1)n distinct possible
independence graphs for a. k-dimensional random vector:
this translates to 64 prob.abilistic models for k= 4, and
32,768 models for k = 6.

In this work, several different induction algorithms were
developed and tested using telecommunications data
supplied by NITEC.

3.1 The Chow and Liiu algorithm

In this algorithm, due to Chow and Liu [9] the mutual
information between pairs of variables is calculated and
those variables with the highest value are connected. The
algorithm continues wiith successive elimination of
variables. It has the advantage of simplicity but generates
only tree structures. The mutual information between two
variables, a and b is defined as:

(1)
Pr(a = i,b = j)

Pr(a = i)Pr(b = j)
pab = x P r (a = i,b = j)log

i, j

466

It can be shown that if the independence graph is a tree (that
is if there are no cycles in the I-map) the best fit to the data
is obtained by the Chow and Liu algorithm.

The main advantage of using tree-structured graphs is that
they are simple to compute. The probability tables can be
calculated directly from the marginal counts of the variables
- maximum likelihood estimators are obtained by simply
computing the pairwise marginal counts of the variables.

3.2 CAEGA

The Cause and Effect Genetic Algorithm (CAEGA)
developed by Sterritt et al. [23],[24] target good networks
which they ‘breed’ in order to produce new, potentially
better nets. It was found to give good solutions and was
selected as an innovative algorithm for extracting BBNs
from telecommunications data.

The algorithm takes as input a modified form of the
Bayesian Belief Network Interchange Format proposed by
the UAI community [29]. In this format each variable is
specified with its name, a description and the number of
values that it can have, and a descriptor for each possible
value. In the data table each tuple is replaced with a vector
of integer values, one integer for each value, and the
number of occurrences of each distinct vector also appears.
This format considerably compresses the storage
requirement for the input file. The genetic algorithm also
accepts a user-specified list of net structures (defined by
child-parent lists) which may have been generated by other
algorithms such as that developed by Chow and Liu.

The algorithm works in the following way. Internally,
breeders are specified by a square matrix of binary values in
which a unit value indicates a parent-child relationship
between two variables and a zero indicates that there is no
direct relationship. An initial breeding stock is created
from the breeders specified in the input data file and by
random creation of graphs, which represent the net
structure. Because the graph must be acyclic not all binary
matrices define valid graphs, and any invalid matrices
created by breeding or mutation are pruned until they are
valid. At each generation, pairs of breeders are selected
randomly to exchange genetic material and thereby create
new breeders. Others are selected for random mutations.
Scoring was done using the posterior probability function in
Cooper and Herskovits [1 11. Because there is a problem of
overfitting with these models - the saturated model in
which one node is picked arbitrarily and taken as a child of
all the others is a perfect match to the data - thus displaying
a need for a penalty to be applied to the score. In our
implementation the penalty effect is obtained by limiting
the number of parents each child may possess. The

algorithms all have output which includes belief network
specifications in standard format.

467

The following section discusses the application of learning
these probabilistic networks for testing assurance.

4 Probabilistic Networks for Testing
Assurance

-time
Event 1 Log

:vents between test
start and test end

I Data cleaned cleaner
events

I

W
Probabilistic

Network for Test

Figure 2: Inducing probabilistic networks from test data for test assurance

The process, in common with most machine learning
approaches, uses a relation-based approach to the data.
Information concerning the behaviour of test cases is
assumed to be available and is passed, after suitable pre-
processing, to an induction process, which extracts a model
- in our case a Bayesian Belief Network (BBN) - from the
data.

The induction process attempts to optimise the network - in
the sense that it searches for the network structure that best
fits the data. The BBN extracted would normally be used as
the basis for an expert system. In this case it provides a
model for classifying the test.

The realisation of the process can be viewed in Figure 2,
containing a Data Cleaner, Pre-processor and Induction
component. It provides an abstracted model of the

behaviour in the form of a BBN. This is achieved by
examining the events that occur during a test run from the
event log which resides on the network controller.

The hypothesis is that the BBN expresses the behaviour that
has occurred during the test to either provide assurance that
the test “pass” is a correct assumption or to highlight the
behavioural anomalies.

Due to the nature of the Synchronous Digital Hierarchy
(SDH) system where a fault can produce a cascade of
alarms reported back to the network controller, large
quantities of verbose data are generated. In one particular
experiment a single fault produced 6Mb of binary data.

Data cleaning and data pre-processing is often an
understated process. Hatonen et al. [161 found it to require
80% of the knowledge discovery process in some domains.

Test assurance and confidence levels will rely on the ability
of cross-referencing the extracted behaviour for that test
with previous behaviour for the same test on a different test
run or a similar test. This necessitates the storage of BBN
for each specific test run.

In manual processing terms the tests produce a large
amount of data, yet in data mining terms the induction of a
BBN on a per test-script basis is from a relatively small
amount of data. As such it was found that CAEGA which
was designed as a BBN data mining algorithm was not
suitable.

It did not produce a relatively constant BBN to allow
comparisons between tests. This is not surprising for
several reasons; firstly genetic algorithms (GAS) have a
random element to assist in the prevention of being caught
at a local maximum. Secondly, GAS are designed to
perform in a large search space and an under-sized
population affects their behaviour by causing premature
convergence [14]. The data for a single script is too small
to effectively use. There are possible methods to work
around this problem and one approach is to adapt the GA to
perform competition at the family level instead of globally.
It is believed that this approach is less prone to error with
undersized populations [28], yet the random element to the
GA could still cause differences in the BBN due to the
algorithm and not the test data.

The adaptation of OM1 (Optimisation of Mutual
Information) was used as an alternative for this situation.
As already mentioned the algorithm was one of the first in
use for the induction of Bayesian networks, published by
Chow and Liu [9]. Basically, the algorithm attempts to
find a structure in which the strengths of the edges between

the pairs of nodes are maximised. The edge strength is
measured by the mutual inf,ormation between the nodes.
The implementation used was a greedy algorithm in which
edges are added in order of strength while preserving an
acyclic structure. Initial experimentation with the adapted
OM1 algorithm indicates a more suitable algorithm. This is
explained by the fact that each time a variation occurs in the
induced BBN it is as a result of the test, not the algorithm.

5 A Motivating Example

The following example study shows the results from two
separate runs of a sample auto-test script. Both runs were
considered to have passed by the script. The hardware and
software configuration had not changed significantly
between runs.

The script performs the simulation of simple faults into a
test network via the command line user interface (CLUI) on
the element controller. The network consists of two
multiplexers named Enfield and Acton. The faults were
induced on Enfield. The sample commands shown
demonstrate the disconnection of tributary port 1 (in slot 2
of the multiplexer) then its reconnection after a time period.
In the sample test ports 2 - 8 were also disconnected then
after a time period reconnected in the same way.

Cmd=c/n/d S6-klll&S‘7-klll S2-
l,User=cluil
Cmd=c/n/c S7-1-Jl-Klll&S6-1-Jl-K111
S2-1,User=cluil
Cmd=c/n/d S6-k112&S’7-k112 S2-
2,User=cluil
Cmd=c/n/c S7-1-J1-K112&S6-1-J1-K112
S2-2,User=cluil
Cmd=c/n/d S6-k113&S7-k113 S2-
3,User=cluil
Cmd=c/n/c S7-1-J1-K113&S6-1-J1-K113
S2-3,User=cluil
Cmd=c/n/d S6-k121&S7-k121 S2-
4,User=cluil
Cmd=c/n/c S7-1-J1-K121&S6-1-Jl-K121
S2-4,User=cluil
Cmd=c/n/d S6-k122&S7-k122 S2-
S,User=cluil
Cmd=c/n/c S7-1-Jl-K122&S6-1-Jl-K122
S2-5,User=cluil
Cmd=c/n/d S6-k123&S7-k123 S2-
6,User=cluil
Cmd=c/n/c S7-1-Jl-K123&S6-1-Jl-K123
S2-6,User=cluil
Cmd=c/n/d S6-k131&S7-k131 S2-
i’,User=cluil

468

Cmd=c/n/c S7-1-J1-K131&S6-1-J1-K131
S2-7,User=cluil
Cmd=c/n/d S6-k132&S7-k132 S2-
8,User=cluil
Cmd=c/n/c S7-1-Jl-K132&S6-l-Jl-K132
S2-8,User=cluil

Thus in total 16 commands were performed (8 sets of
disconnection and reconnections). Table 1 displays a
breakdown of the event types that were recorded in the
event log on the element controller during these runs. Note
no other activity was occurring on the network during the
experiment.

Table 1. Breakdown of recorded events during experiment

Event Type . Run 1 Run2
Alarm Events 476 463
Login Events 106 106
User Action Events 16 16
Message Tool Events 159 160
System Error Events 1 1
Total number of events 758 746

The auto-test script consisted of 16 actual commands
(recorded as user action events) but also required 106 login
actions throughout the script. Although over 400 alarm
instances occurred in both runs, only 5 actual alarm types
transpired, which are shown in Table 2.

Table 2. Alarm types that occurred during the experiment

Alarm Event Type Explanation
PPI-AIS PDH Physical Interface - Alarm

Indication Signal
PPI-Unexp-Signal PDH Physical Interface -

Unexpected Signal
LP-PLM Lower order Path - Path Label

Mismatch
INT-TU-LOP Intemal - Tributary Unit - Loss of

Pointer
INT-TU-AIS Internal - Tributary Unit - Alarm

Indication Signal

The induction of a BBN from each set of data produced
differing results (Table 3 and Table 4) that indicated an
anomaly. Since both tests were recorded as passes, these
differences gave the indication of the need for investigation.
The differences originate from the addition of an alarm in
the second run, INT-TU-LOP, and the occurrence of only 9
INT-TU-AISs as opposed to 15.

Table 3. BBN Induction results for auto-test run 1

Frwuencies of Alarm Occurrence

1, INT-TU-UP, 0
2, PPI-Unexp-Signal, 8
3,LP-PLM, 8

0, PPI-AIS, 192

4, INT-TU-AIS, 15

Strength of Edges (mutual information score)
0 >:2, 0.121383
2 >:3, 0.113237
0 >:3, 0.0832668
0 > 4, 0.0676941
3 > 4. 0.052712

Probabilistic Connections
p(PP1-Unexp-Signal I PPI-AIS)
p(LP-PLM I PPI-AIS, PPI-Unexp-Signal)
p(INT-TU-AIS I PPI-AIS, LP-PLM)

Table 4. BBN Induction results for auto-test run 2

Frequencies of Alarm Occurrence
0, PPI-AIS, 192
1, INT-TU-LOP, 1
2, PPI-Unexp-Signal, 8
3, LP-PLM, 8
4, INT-TU-AIS, 9

Strength of dyes (mutual information score)
0 > 2,0.123822
2 > 3.0.103088
0 > 3.0.0957039
0 > 4,0.0637544
3 > 4,0.0629661
2 > 4.0.028953
1 > 3.0.00722244
1 > 2.0.00667615
0 > 1,0.00467317

Probabilistic Connections
p(PP1-AIS)
p(INT-TU-UP I PPI-AIS, PPI-Unexp-Signal, LP-PLM)
p(PPI-Unexp-Signal I PPI-AIS)
p(LP-PLM I PPI-AIS, PPI-Unexp-Signal)
p(INT-TU-AIS I PPI-AIS, PPI-Unexp-Signal, LP-PLM)

Upon consultation with engineers it was discovered that
"the occasional occurrence of INT-TU-LOP during
breaWmake connections was a characteristic of the TN-1X
product".

Also INT-TU-LOP is a major alarm while INT-TU-AIS is a
minor one. LOP is directly above AIS in the masking
hierarchy. The reduced number of INT-TU-AIS alarms is
most likely due to the masking effect of INT-TU-LOP.

Therefore in this case it was decided that the differences in
the 'footprints' (Figure 3 and Figure 4) should not indicate
a fail. Note that the thickness of the edges in these figures
represents the strength of the connections between variables
in the belief network. The strengths of the additional edges
in Figure 4 appear so low that visually there is not a strong

difference between the footprints. It is relatively simple to
set an ignore threshold above this for classification
purposes.

INT-TU-LOP INT-TU-AIS

PPI-Unexp-Signal PPI-AIS
Figure 3: BBN (footprint) of Test 1

INT-TU-LOP INT-TU-AIS

PPI-Unexp-Signal PPI-AIS

Figure 4: BBN (footprint) of Test 2

6 Conclusion and Future Direction

LP-PLM

LP-PLM

This paper has reported on the adoption of probabilistic
networks for verifying the pasdfail result of automated
testing at the software verification stage in the development
lifecycle of high-speed telecommunications equipment.

Automated testing offers advantages such as cost reductions
in terms of extensive overtime requirements, being able to
test and repeatability test again and again in a fraction of
the manual testing time, improve the job quality of test
engineers freeing them up to examine and solve the real
problems encountered. In doing so the quality and
reliability of the products is increased.

Yet the disadvantage of automation is that the experimental
approach to testing is lost. The engineer is no longer at
hand to spot anomalies and investigate.

Inducing a probabilistic network from the data offers a
means to summarise the behaviour of the network during
the test. Comparing the results to an expected norm or
previous test results offers a mleans of classifying the result
and thus providing assurance of the automated result.

Since probabilistic networks are easily readable when
represented graphically and summarise fairly complex
relationships succinctly, they provide an explanation of the
decision unlike other AI approaches.

The approach introduced in this paper, offers great promise.
From initial experimentation it would appear that the BBNs
can be used as a classification technique. They cover all
events that have occurred during a test and therefore
provide the means to make up for the lack of a test engineer
at the scene monitoring for anomalous activity.

At present it is generally valid to compare a test run against
the previous nights test run. Yet the environment is not
constant. Throughout the development lifecycle, from
initial software beta releases to final product, the behaviour
of the software gradually changes and as such the induced
network will be different throughout the lifecycle. Future
work would involve storing the network with other
information as a case in a case-based reasoning (CBR)
system. This further enhancement will offer an automated
adaptive decision making capability to the process.

Acknowledgements

We acknowledge funding for this work by IRTU Start
programme, research project ITS 07: the GARNET project,
1997- 1999 with industrial collaboration from Northern
Ireland Telecommunications Engineering Centre (NITEC),
Nortel Networks.

References

[11 C. Aliferis, G. Cooper, "An Evaluation of an Algorithm
for Inductive Learning ,of Bayesian Belief Networks
Using Simulated Data Sets", Proc. Of the Con$ On
Uncertainty in Artificial Intelligence, pp.8-14, 1994.

[2] J. S. Breese, "Construc.tion of Belief and Decision
Networks", Computational Intelligence, Vol. 8(4),
pp.624-647, 1992.

470

[31 J. S. Breese, R. P. Goldman, M. P. Wellman,
"Introduction to the Special Section of Knowledge-
based Construction of Probabilistic Networks and
Decision Models", IEEE Trans. On Systems, Man and
Cybernetics, Vol. 24(1 l), pp.1577-1579, 1994.

[4] R. R. Bouckaert, "Properties of Bayesian Belief
Network Learning Algorithms", Proc. of the lo'h C o n .
On Uncertainty in Artificial Intelligence, 1994.

[5] W. Buntine, "Operations for Learning with Graphical
Models", J. of Artificial Intelligence Research, Vol. 2,

[6] W. Buntine, "Chain Graphs for Learning", Proc. of the
I f h Annual Con$ On Uncertainty in Artificial
Intelligence, 1995.

[7] W. Buntine, "A Guide to the Literature on Learning
Probabilistic Networks from Data", IEEE Transactions
on Knowledge and Data Engineering, Vol. 8, No. 2,

[8] D. M. Chickering, D. Geiger, D. Heckerman,
"Learning Bayesian networks is NP-hard". Technical
Report MSR-TR-94-17, Microsoft Research, 1994.

[9] C. J. K. Chow, C. N. Liu., "Approximating discrete
probability distributions with dependence trees", IEEE
Trans. Information Theory, Vol. 14(3), pp.462-467,
1968.

[10]G. F. Cooper, E. Herskovits, "A Bayesian Method for
Constructing Bayesian Belief Networks from
Databases", Proc. of the 7th Ann. Conf On Uncertainty
in Artificial Intelligence, 1991.

[111 G. F. Cooper, E. Herskovits, "A Bayesian Method for
the Induction of Probabilistic Networks from Data",
Machine Learning, Vol. 9, pp.309-347, 1992.

[121 A. P. Dempster, "Construction and Local Computation
Aspects of Network Belief Functions", R. M. Oliver, J.
Q. Smith, eds., Influence Diagrams, Belief Nets and
Decision Analysis, pp.121-124, Wiley & Sons, 1990.

[131 D. Geiger, D. Heckerman, "Learning Bayesian
Networks: A Unification for Discrete and Gaussian
Domains", Proc. 1 lth Annual Conference on
Uncertainty and Artificial Intelligence, 1995.

[141 D. E. Goldberg, "Sizing Populations for Serial and
Parallel Genetic Algorithms", Proc. 3rd Int. Con$ On
Genetic Algorithms, pp.70-79, 1989.

[15]R. P. Goldman, E. Charniak, "A Language for
Construction of Belief Networks", IEEE Trans. On
Pattern Analysis and Machine Intelligence, Vol. 15(3),

[16]K. Hatonen, M. Klemettinen, H. Mannila, P.
Ronkainen, H. Toivionen, "Knowledge Discovery from
Telecommunication Network Alarm Databases", 12th
ICDE, 1996.

[171 D. Heckerman, "A Tutorial on Learning Bayesian
Networks", Technical Report, MSR-TR-96-06
Microsojl Research, 1995.

pp.159-225, 1994.

pp.195-210, 1996.

pp.196-208, 1993.

[181 D. Heckerman, D. Geiger, "Learning Bayesian
Networks", Technical Report MSR-TR-95-02,
Microsoft Research, 1995.

[19]D. Heckerman, D. Geiger, D. M. Chickering,
"Learning Bayesian Networks: The Combination of
Knowledge and Statistical Data", Proc. IOh Annual
Conference on Uncertainty and Artificial Intelligence,

[20] D. Heckerman, "Bayesian Networks for Knowledge
Discovery" In U.M. Fayyad, G. Piatetsky-Shapiro, P.
Smyth, R. Uthurusamy (Eds.), Advances in Knowledge
Discovery and Data Mining AAA1 Press I The MIT
Press, pp.273-305, 1996.

[21] I. D. Hicks, G. J. South, A. 0. Oshisanwo, "Automated
Testing as an Aid to Systems Integration", BT Tech J . ,
Vol. 15 (3), pp.26-36, 1997. Data Analysis, Vol. 19,

[22]D. E. Rumelhart, B. Widrow, M. A. Lehr, "The Basic
Ideas in Neural Networks", Methods of the Brain and
Evolution, Journal of Commucations of the ACM, Vol.

[23]R. Sterritt, K. Adamson, C. M. Shapcott, D. A. Bell, F.
McErlean, "Using A.I. For The Analysis Of Complex
Systems", Proc. IASTED Int. Confi Artificial
Intelligence and Soft Computing, pp.113-116, 1997.

[24]R. Sterritt, K. Adamson, M. Shapcott, N. Wells, D. A.
Bell, W. Liu, "P-CAEGA: A Parallel Genetic
Algorithm For Cause And Effect Networks", Proc.
IASTED Int. Con$ Artificial Intelligence and Soft
Computing, pp.105-108, 1997.

[25]R. Sterritt, K. Adamson, C. M. Shapcott, E. P. Curran,
"Adapting An Architecture For Knowledge
Discovery In Complex Telecommunication Systems
For Testing Assurance" Proceedings of the NIMES 98
Conference on Complex Systems, Intelligent Systems
and Intelfaces, pp.37-39, 1998.

[26] R. Sterritt, E. P. Curran, K. Adamson, C. M. Shapcott,
"Application Of AI For Automated Testing In
Complex Telecommunication Systems", EXPERSYS
98 - Artificial Intelligent Applications, Eds. D.A.
Jacobs, IITT-International, pp.97-102, 1998.

[27]R. Sterritt, K. Adamson, E. P. Curran, C. M. Shapcott,
"Towards Intelligent Automated Testing In The
Development Lifecycle Of High Speed
Telecommunication Equipment", Proceedings of the
International Conference On Artificial Intelligence

[28] D. Thierens, D. Goldberg, "Elitist Recombination: an
integrated selection recombination GA", Proc. 1" IEEE
Con. On Evolutionary Computation, pp.508-5 12, 1994.

[29] Decision Theory Group, "Proposal for a Bayesian
Network Interchange Format",
http://www.research.microsoft.com/researchldtg/bnfor
mat/proposal.htm, 1996.

pp.293-301, 1994.

pp. 155- 175, 1995.

37(3), pp.87-92, 1994.

(IC-AI), 2000.

47 1

http://www.research.microsoft.com/researchldtg/bnfor

