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Abstract

Like the autonomic responses in the human body, autonomic computing systems recognise their

own health problems and where possible respond to correct them. Failing that, external help is

required. The purpose of this paper is to consider how autonomic systems might be structured

to facilitate health monitoring. The approach uses a ’pulse’ monitor for each autonomic element,

which provides a reflex reaction facility and basic information on the current state (health) of

that element. The pulse mechanism extends the NASA beacon monitor concept. The different

ways that pulse information might be communicated and used are examined. The discussion is

illustrated with a personal computing example.

1 Introduction

Autonomic Computing, first proposed by IBM in 2001 (Horn 2001) has become established as

a valuable approach to the design of robust computing systems (Mainsah 2002, IBM 2003).

The general concepts involved are summarised in Figure 1 (Sterritt and Bustard 2003a). An

autonomic system is self-managing, meaning that it performs a range of operations to ensure

its own viability. These primarily include self-protection, self-configuration, self-healing and self-

optimisation. Self-healing is concerned with ensuring effective recovery when a fault occurs. This

means successfully identifying the fault and then, where possible, repairing it. Also, there should

be minimal disruption to users, avoiding loss of data and significant delays in processing. Self-

optimisation means that a system is aware of its ideal performance, can measure its current

performance against that ideal and has strategies for attempting improvements. A self-protecting

system will defend itself from accidental or malicious external attack. This means being aware of

potential threats and having ways of handling those threats. This may include self-healing actions

if an attack is successful, and perhaps some self-optimisation to increase protection. Finally, self-

configuration is a system’s ability to readjust itself automatically to changing circumstances. This

may simply be in support of ongoing development or to assist in self-healing, self-optimisation

or self-protection. To achieve these objectives a system must be aware of its internal state (self-

aware) and current external operating conditions (environment-aware). Changing circumstances,

internal or external, are detected through self-monitoring and adaptations made accordingly

(self-adjusting). In more detail, this means a system having knowledge of its available resources,

its components, their desired performance characteristics, their current status, and the status of

inter-connections with other systems, along with rules and policies on how these may be adjusted.

Such autonomic systems can be created through a traditional systems engineering design process
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(Bustard et al., 2005) or through inclusion of adaptive learning logic (IJCAI AI&AC Workshop

2003).
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Figure 1 Autonomic Computing Concepts

The concept of self-managing systems has attracted significant attention from both industry

and academia. In addition to the autonomic computing work at IBM, there are similar

industry initiatives at HP (Adaptive Infrastructure), Sun (N1) and Microsoft (Dynamic Systems

Initiative). Examples of academic involvement include work at Rutgers (active middleware) (Bhat

and Parashar, 2003), CMU (self-healing systems)(Garlan et al., 2003), Columbia (retrofitting

legacy systems) (Kaiser et al., 2002), and Imperial College (autonomic management of ubiquitous

eHealth systems) (Lupu et al., 2003).

Achieving the grand vision of autonomic computing is likely to involve contributions from

research in many existing fields, including systems management, distributed computing, network-

ing, operational research, software engineering, artificial intelligence, agent technology and control

theory (Ganek and Corbi, 2003). Dependable and fault tolerant computing should be especially

influential, as dependability covers many system properties relevant to autonomic behavior, such

as reliability, availability, safety, security, survivability and maintainability (Avizienis et al., 2000,

Randell 2000, Sterritt and Bustard 2003a, Avizienis et al., 2004).

This paper is particularly concerned with the way in which an autonomic system can provide

information on its state for use by dependent autonomic elements or elements responsible for

health monitoring. The next section of the paper presents a general architecture model for

autonomic systems. This introduces the concept of a pulse monitor for each autonomic element

through which it can report a summary of its general health. Details of the operation and use of

the pulse monitor, based on the NASA beacon monitor (Wyatt et al., 1998, 1999), are covered

in the following section. The paper concludes with a consideration of related work which utilises

these concepts in various application areas.
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Figure 2 Abstract Architecture of an Autonomic Element

2 Autonomic Architecture

An autonomic system requires open standards to understand and communicate with other

systems in a heterogeneous environment (Horn 2001, IBM 2003). Communication standards

are also valuable within an autonomic system to facilitate system design and construction. For

conceptual simplicity and convenience, let us assume that an autonomic computing system is

made up of a connected set of autonomic elements, each with the same basic structure and mode

of operation. Figure 2 is a proposed architecture for those elements (Sterritt and Bustard 2003b).

Here, an autonomic element is made up of a managed component and an autonomic manager.

The self-monitor actively observes the state of the component (internal monitor) and its external

environment (external monitor), drawing conclusions using information in the system knowledge

base. If necessary, this can lead to adjustments to the managed component (self-adjuster). The

external monitor observes the state of the environment through an autonomic signal channel (for

instance an asynchronous event bus), which provides linkage to other autonomic managers. This

linkage may be virtual (in the same physical system), peer-to-peer, client-server (Bantz et al.,

2003) or a Grid connection (Deen et al., 2003).

A novel feature in this design is the suggested use of a pulse monitor (Sterritt 2002, 2003b). This

is used to communicate basic information about the state of each managed component to other

relevant autonomic elements. In essence, its purpose is to provide a simple, general mechanism for

reporting the ’health’ of a managed component. This extends the biological autonomic metaphor.

The design of such a pulse monitor is examined in detail in the next section.

3 Pulse Monitoring

A standardised pulse monitor can provide a convenient framework for the design of fault-handling

software in autonomic systems. Ideally, it should be relevant to all autonomic elements and have

a simple conceptual base. One approach is to assume that the pulse monitor sends out a steady

’heartbeat’. When detected, this indicates that the autonomic element is ’alive’ and when missing

indicates an operational problem. It is then a small step to introduce the notion of a variable

pulse rate to indicate intermediate states. NASA has used this general idea in the design of the

Beacon Monitor for autonomy in space missions (Sherwood et al., 1999).
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3.1 NASA Beacon Monitor

NASA missions, particularly those to deep space, have had to increase onboard autonomy because

of the lengthy lag-time between a craft encountering new situations and the round-trip delay in

obtaining guidance from mission control (Swartwout 1998, Wyatt et al. 1998, ). Two of the first

missions to take this approach were DS1 (Deep Space 1) (Wyatt et al., 1998) and the Mars

Pathfinder (Muscettola et al., 1998). The Beacon Monitor concept, first used in the DS1 mission

work, automates the routine task of health monitoring, moving many responsibilities from ground

to the spacecraft. The spacecraft sends a beacon signal to the ground indicating how urgent it is

to track the spacecraft for telemetry. A tone is used to indicate the degree of urgency involved.

Five different states are used, as follows (Sherwood et al., 1999):

Nominal : functions as expected; no need to establish a downlink (a communications link to

download data).

Interesting: interesting, non-urgent event; establish communications when convenient.

Important : communications need to take place quickly or the state could deteriorate.

Urgent : emergency: a critical component has failed; it is not possible to recover autonomously

and intervention is needed immediately.

No Tone: beacon mode is not operating.

There are a number of points to note here in relating the beacon approach to the needs

of pulse monitoring in autonomic systems. The first is that there are two levels of communication

involved in each case. The spacecraft uses both the beacon signal and, when necessary, direct

communication, to downlink telemetry information for analysis at mission control. The same

is true of autonomic systems. If an autonomic element indicates that it is operating normally

then no further action is required. If a problem is indicated, however, then the autonomic

manager (through the external monitor) must be interrogated further to clarify the issue.

The type of information required will be specific to the problem detected and the particular

functions/services provided by the managed component.

Another similarity is that the behavior of mission control need not be dictated by the signal

from the beacon monitor. They can make direct contact with the spacecraft to obtain information

whenever they wish, even if there are no apparent problems present. The same is true of

communicating autonomic elements.

There are, however, some significant differences between the NASA situation and the general

needs of autonomic systems. One is that interaction between the spacecraft and mission control

is point-to-point, whereas many-to-many links are present in autonomic systems. Although,

in principle, all autonomic elements could receive pulse signals from every other element in

the system, this would quickly become overwhelming in systems of any reasonable size. The

implication, therefore, is that autonomic elements need to establish explicit communication

connections with each other before communication occurs. Using the biological metaphor, this

can be considered equivalent to ’taking a pulse’.

Another difference is that autonomic systems have communication sequences to consider. For

example, if an autonomic element detects that an element on which it relies is having problems,

then it needs to report any consequential secondary problems it is experiencing. This can have a

substantial knock-on ripple effect throughout an autonomic system when a serious failure occurs.

It is important that this failure information be transmitted quickly to all affected elements,

corresponding to the biological ’reflex reaction’. To instigate a repair, it will also be helpful to

have primary and secondary problems clearly distinguished.
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3.2 Pulse Monitor States

Based on the requirements for pulse monitoring outlined in the preceding sub-section, and taking

account of the NASA beacon monitor states used, the following five-state model is proposed:

Healthy the autonomic element is operating as required, with environment conditions as expected.

Active the autonomic element is operating as required, but work is being done to improve its

operation, triggered either by the results of an internal analysis or by recognition of environmental

changes.

Injured (Primary and/or Secondary): the autonomic element is experiencing difficulties affecting

its performance. This may be due to internal problems (primary) and/or difficulties with its

environment, such as problems with other elements on which it depends (secondary).

Incapacitated (Primary and/or Secondary): the autonomic element is no longer able to function.

This may be due to serious internal problems (primary) and/or extreme difficulties with its

environment, such as the failure of other elements on which it depends (secondary).

Dead : the autonomic element is not communicating.

To illustrate what these states mean consider the simple example of an autonomic element

responsible for managing a file server:

Healthy: the file server is operating at the performance levels expected, saving and retrieving files

successfully in all circumstances, and making security back-ups where required.

Active: the file server is making adjustments to file locations, perhaps to improve performance or

in response to the addition or (controlled) removal of available storage.

Injured (Primary and/or Secondary): an example of a primary problem is the file server detecting

a hardware failure resulting in the loss of files. This ’injury’ may be healed autonomically through

retrieval of backup copies. Shortage of file space would also be treated as a primary wound. An

example of a secondary problem is difficulty in retrieving files through the autonomic element

managing DVD backup storage. Note that this may occur at the same time as the primary

problem of file loss.

Incapacitated (Primary and/or Secondary): the file server has run out of disk apace. A similar

problem might occur with a DVD backup management autonomic element, although this alone

would only ’injure’ the file server.

Dead : the file server cannot be contacted because, for example, the server software has crashed, the

server host machine has failed, or the server has been disconnected from the network unexpectedly.

The next two subsections consider how the pulse monitor might be implemented and illustrate

its use in a personal computing system, expanding on the file server example.

3.3 Pulse Monitor Implementation

The NASA Beacon Monitor uses a variable tone to indicate its different states. An autonomic

pulse monitor could use a similar mechanism, indicating different states through different

frequencies of communication. This has the advantage of being consistent with the biological

metaphor, in which ’no signal’ means ’death’ and higher pulse rates indicate greater degrees of

stress. In computing terms, however, each signal can easily include extra information to avoid

the receiving element having to deduce a state change. Also, once the receiving element has

acknowledged receipt of a problem there seems little point in repeating the message frequently,

consuming processing power that might be needed to provide assistance. It is still important,

however, to provide the basic carrier heartbeat to be able to recognise quickly when an autonomic

element has ’died’. This must be communicated rapidly through the system to avoid further

problems and perhaps contact human operators who may be needed to resolve the problem.
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Figure 3 Pulse Monitor Connections in a Personal Computing System

3.4 Personal Computing Example

To illustrate the way that the ’health’ of an autonomic system might be monitored consider the

following personal computing example. A local network is set up as shown in Figure 3. This

comprises autonomic elements for: (i) each connected user; (ii) a shared file server; (iii) a shared

printer server; (iv) a DVD backup server; and (v) an operator with overall responsibility for the

network. The lines in the diagram indicate monitoring relationships between autonomic elements.

These indicate, for example, that each user monitors the printer server, the operator monitors

the users, and the users monitor the operator.

In general there are a number of ways in which the ’health’ of autonomic elements might be

monitored. One is to have dedicated system elements for that purpose. Another, more robust

approach, is to share this responsibility among the autonomic elements so that, in effect, they

monitor each other. It is convenient, for example, for an autonomic element to monitor the health

of any other system element on which it depends. To improve robustness it is also desirable to

have every autonomic element monitored at least twice, as indicated in the example. The users

in this case might be connected in a two-way ring, with each monitoring their left and right

neighbour.

Most autonomic research, especially that in industry, has so far focused on server management

(Bantz and Frank 2003), since requirements for reliability have increased, while servers have

become more complex and hence more difficult to maintain. The contribution of autonomic

computing to personal computing is different being much less about achieving optimum

performance or exploiting redundancy and more about simplifying use of the equipment and

the associated services involved (Bantz and Frank 2003, Sterritt and Bantz 2004). This is an

important area because, potentially, it can affect every computer user. Issues to be considered

include, for example:

• How to design file servers to help users become better organised, and hence make better use

of the storage space available.

• How to deal effectively with laptop connections to a network to facilitate users making the

connection while protecting the network from viruses and other threats.

• How to involve users in autonomic activity, using their technical knowledge to recover from

operational problems (e.g. a hardware problem while the operator is unavailable) or provide

assistance for other users.
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• How to design autonomic elements to respond effectively to system problems that occur.

Certainly it is important for elements to be informed quickly (reflex reaction) but what

action should then follow? As in biological systems, a short-term reflex action coupled with

a longer-term healing process seems the necessary strategy to adopt (Bapty et al., 2003).

Human reflex reactions enable a rapid response to pain, such as when a hot object is touched.

In computing terms, it is likely that each autonomic system will have to reconfigure itself in

response to problems encountered, while maintaining its overall operation as far as possible.

This may result in the system operating with a reduced set of resources and services (Bapty

et al., 2003).

4 Related Work

The section briefly discusses two application areas where the pulse monitor may be considered

beneficial.

4.1 Grid Heartbeat Monitor

The Globus Open Grid Services Architecture (OGSA) has a health-check facility known as the

Globus Heartbeat Monitor, which is designed to provide a simple, highly reliable mechanism for

monitoring processes (Stelling, 1998). The Globus OGSA specifies three aspects of the heartbeat

monitor: a Client Library, a Local Monitor, and a Data Collector. Essentially, a Local Monitor

runs on each host checking and reporting on the status of its local processes and the overall

system, generating ’I-am-alive’ messages (heartbeats) to confirm working health.

The Client Library enables processes to register when they are activated within the Local

Monitor and sign out when they terminate. Each Local Monitor periodically executes a review

cycle in which it checks the status of the client processes it is monitoring, updates the local status

information of those processes, and sends a report on each process to one or more external agents

(Data Collectors) specified at registration. There can be any number of Data Collectors defined,

but typically there is at least one for tracking all of the monitored processes associated with the

computing environment, and one for each distributed application. A Data Collector infers that

monitored components have failed or are unavailable, based on reports it is expecting from Local

Monitors but has not received (missing heartbeats) (Stelling, 1998).

This mechanism could usefully be extended with the pulse concept to provide more information

on operational health. For instance, a Local Monitor recognising that a process is no longer

executing optimally might send this health indicator pulse to the Data Collector. The Data

Collector would then have the benefit of additional information in assessing the heath of a service

and be able to detect deterioration prior to complete failure, taking remedial action as appropriate

to reduce the risk identified (Sterritt 2003b).

4.2 Fault Management in Telecommunication Systems

These approaches have been investigated in relation to more effective fault management in

telecommunication systems, particularly in exploring the relationship between a rapid response

to faults that occur (reflex reaction) and the slower analysis and healing process that follows.

Figure 4 shows a typical fault management architecture for a large telecommunications network

(Sterritt et al., 2004). Faults occur in network elements at the bottom of the reporting tree in

the figure. Many different network technologies are involved (e.g. SDH (SONET), PDH, ATM,

IP) and each has a specific fault manager. The network technologies are inter-dependent to some

extent however, so it is only at the next layer up, the cross technology network fault manager,

that the faults reported can be correlated to produce a coherent understanding of the root cause

of the problem.

Once the root cause has been determined, either automatically or through operator assistance,

the fault is assigned a trouble ticket and handed over to field force management for attention.
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Figure 4 Large Telecommunications Fault Management Architecture

Because of the amount of processing involved in the various layers shown it can take up to 15

minutes for details of a fault to reach the service layer, by which time customers may have already

reported the problem.

A study took place in 2003 at British Telecom (Sterritt 2003a, Sterritt et al., 2004, 2005)

to examine the potential of utilising autonomicity to assist. It was found that this delay

could potentially be reduced substantially by having pulse monitors in each (autonomic) fault

management element that can supply reflex health signal about fault traffic ahead of details

on the exact source of the problem emerging through the hierarchy. This may be achieved

through extending the existing heartbeat monitors between the managers to carry a network

health indicator (the pulse), as depicted in Figure 4.

5 Conclusions

Potentially, the autonomic computing concept could have an impact on system design similar to

that of the object-oriented paradigm. It promises to improve the robustness of future systems, as

well as reducing complexity for users, by taking on more responsibility for identifying and handling

system problems that arise. The purpose of this paper was to consider how system ’health’ might

be monitored. This was based on an assumption that autonomic systems were made up of a set of

autonomic elements with the same basic architecture. Included in that architecture was a pulse

monitor, to provide a reflex reaction and essential information on the current state of health of
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each autonomic element. This is an extension of the more commonly used ’heartbeat’ mechanism,

typically found in embedded systems and fault-tolerant computing applications.

Each pulse monitor can report one of five different states for its associated element: healthy,

active, injured, incapacitated and dead. These are a variation of the states developed for the NASA

Beacon Monitor, adapted to cover general computing and communications health summarisation.

The use of the states was illustrated with a file server autonomic element, operating in a personal

computing network. The discussion identified a number of areas for future research, particularly

in personal computing. Overall, however, it seems possible that such a mechanism could be of

value in the construction of almost any system.
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