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Abstract 

The Coxian phase-type distribution is a special type 
of Markov model that represents a process as 
consisting of phases or states which change as time 
progresses. It is this phase-type representation of the 
process that makes the Coxian phase-type distributions 
appealing to use by easing the complexity of the system 
and in some cases further reducing the amount of 
cumbersome numerical calculations required. The 
main aim of this paper is to introduce a new clustering 
technique based on the Coxian phase-type distribution. 
The modelling technique is still formed using a 
continuous Markov model but in addition allows the 
modelling of similar characteristics within each 
cluster. Such a technique will provide insights into the 
data by identifying clusters whereby each cluster may 
be described as behaving in a certain way or cluster 
members behaving in similar ways. The clustering 
technique in this paper may be used to model the 
behaviour of gene expression data over continuous 
time.

1. Introduction 

A considerable amount of research has previously 
been carried out on clustering genes on the basis of 
their expression patterns. Various statistical techniques 
have been developed using for example Euclidean and 
mutual information cluster analyses to represent 
discretised gene expression sequences. Such work is 
valuable in assisting with the identification of genes 
that behave in similar ways or alternatively allows the 
grouping of similar responses for example to growth 
conditions, mutations and drugs.   

The main aim of this paper is to introduce a 
statistical technique that may be used to investigate 
expression data to enable the identification of unknown 
clusters and further highlight any common 
characteristics that may exist within such clusters. Such 

cluster analysis of genes is based on their behaviour 
over continuous time.  

2. Statistical Models 

In statistical theory, Markov models are often used 
to represent stochastic processes. The theory of general 
Markov models has been considered by Bartholomew 
[1]. The model assumes a probabilistic behaviour of 
objects moving around the system and therefore is 
useful at providing a realistic representation of real 
world situations. 

2.1. Phase-Type Distributions

Phase-type distributions describe the time to 
absorption of a finite Markov chain in continuous time, 
when there is a single absorbing state and the stochastic 
process starts in a transient state [2]. The models 
describe duration until an event occurs in terms of a 
process consisting of a sequence of latent phases - the 
states of a latent Markov model. In fact the 
assumptions of the distributions state that the 1,…,n
states are all transient, so absorption into the state n+1,
from any initial state is certain. 

There are many examples in the literature where 
phase-type distributions are being used, originally 
within the applied probability domain but now also as a 
tool for data analysis. Applications are wide ranging 
from calculating the expected load of mobile phone 
networks [3], to analysing the duration of stay of 
elderly patients in hospital [4]. Previous research [5] 
used this model to find a suitable distribution for the 
duration of stay of a group of geriatric patients in 
hospital. They found that the phase-type distributions 
were ideal for measuring the survival times, the lengths 
of stay of patients in hospital and showed how it was 
also possible to consider other variables that may 
influence duration.  
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For example, the length of time a patient spends in 
hospital can be thought of as a series of transitions 
through phases such as: acute illness, intervention, 
recovery, or discharge. As such, phase-type 
distributions can represent the diverse nature of the 
patient lengths of stay where there may be a large 
variation in the amount of time patients spend in 
hospital.  

By using matrix notation to represent phase-type 
distributions, the calculations become more 
manageable replacing the somewhat cumbersome 
numerical integrations that can occur in many 
situations. In addition, the distributions have the ability 
to describe detailed information about the behaviour of 
the stochastic models while also allowing the lack of 
memory property to exist. Another benefit in using 
phase-type distributions is that in most instances the 
models can be generalised to include almost all 
continuous distributions [2] such as the exponential 
(one phase), the Erlang and mixed exponential 
distributions. 

The phase-type distribution relates directly to the 
statistical approach known as survival analysis.  

2.2. Survival Analysis 

Survival analysis is a statistical methodology which 
models duration until a particular event occurs. The 
time (in months, weeks, or days) is measured from the 
beginning of the follow-up of an individual until the 
event occurs [6]. This is commonly known as survival 
time as it measures the length of time that an individual 
survives. The event, often referred to as a failure, is 
usually a negative individual experience such as the 
occurrence of death, disease incidence or relapse from 
remission ([7], [8]).  

Kleinbaum [6] discusses examples of survival 
analysis such as predicting the length of time in 
remission for leukaemia patients, heart transplant 
patients’ time until death and the time taken by subjects 
to complete specified tasks in a psychological trial. 
These are all considered to be survival analysis 
problems due to the nature of the data where there is an 
outcome variable of time until an event occurs. Other 
examples, discussed by Collett [9], include the 
prognosis of women with breast cancer where survival 
analysis is used to predict the survival prospects of 
breast cancer patients who may be developing 
secondary tumours.  

2.2.1. Censored Data. A special feature of survival 
data is the possibility that the exact survival times of 
some individuals may be unknown and not observed 

for the full time to failure [8]. This was initially a focus 
in clinical trials when at the close of a trial, or at the 
current time in the database, patients may have 
survived without ever experiencing the event. 
Alternatively the survival time of the patient may not 
be known due to the patient withdrawing from the 
study or being lost to follow-up during the study 
period. Such an incomplete observation of failure time 
is called censoring [6]. The measure of survival for 
these individuals is then referred to as the censored 
survival time measured from time of entry to the study 
until the last recorded time when the individual is in the 
study. To identify the censored data, a new variable is 
introduced, δ where δ=(0,1) random variable such that 
δ = 1 if failure and δ = 0 if censored. 

This kind of censored data is referred to in the 
literature as right censored as the censoring has 
occurred after the individual has entered into the study, 
that is, to the right of the last known survival [9]. Left 
censored data occurs when the actual survival time for 
an individual is less than that observed, where the 
survival time is incomplete at the left side of the 
follow-up period.  

2.2.2. Functions of Survival Analysis. In summarising 
survival analysis, there are three functions of central 
interest namely;  
- the survivor function, denoted by S(t); 
- the probability density function, p.d.f., denoted by 

f(t), and, 
- the hazard function, denoted by h(t).
These three functions are mathematically equivalent, 
that is, if one of them is given, the other two can be 
derived [10].  

Let T denote the random variable for a person’s 
survival time. As T is a measure of time, the possible 
values of T will include all non-negative numbers. The 
actual survival time of an individual may then be 
defined as t. The survivor function is defined as the 
probability that an individual survives longer than t.

S(t)=P(an individual survives longer than t)
         = P(T > t).

(1)

Due to the generality of phase-type distributions, the 
estimation of parameters for the survival function and 
p.d.f. may become difficult. To overcome this problem 
the following Coxian phase-type distributions were 
introduced. 
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3. Coxian Phase-Type Distributions 

Coxian phase-type distributions [11] are a special 
type of phase-type distribution that describes the 
probability P(t) that the process is still active at time t
[4] where the transient states (or phases) of the model 
are ordered. The process begins in the first phase but is 
restricted in the sense that it must either progress 
through the phases sequentially or enter into the 
absorbing state (the terminating event - phase n+1). In 
the case of medicine, transitions through the ordered 
transient states could correspond to various stages in 
the patients disease progression for example diagnosis, 
assessment, rehabilitation and long-stay care where 
patients eventually discharge, transfer or die. 

A Coxian phase-type distribution {X(t); t ≥ 0} may 
be defined as a Markov chain in continuous time with 
states {1, 2, ...n, n + 1}, X(0) =1, and for i= 1, 2, ...n-1 

)(})(|1)(prob{ tot
i

itXittX δ+δλ==+=δ+ (2)

and for i= 1, 2, ...n

)(})(|1)(prob{ tot
i

itXnttX δ+δµ==+=δ+ . (3)

Here states {1, 2, ...n} are latent (transient) states of the 
process and state n + 1 is the absorbing state. The 
transition from state i to state (i+1) through the ordered 
transient states is represented by λi while the transition 
from state i to the absorbing state (n+1) is denoted by 
µi.

The Coxian phase-type distribution, illustrated in 
Figure 1, is defined as having a transition matrix Q of 
the following form, where the s'ands'

ii
µλ  are from 

Cox and Miller’s  [12] further developed theory of 
Markov chains defined by (2) and (3). 
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Figure 1 is an illustration of a phase-type distribution 
where λi represents the transition from phase i to phase 
(i+1) and µi the transition from phase i to the absorbing 
phase (n+1).

Phase 1 Phase 2 Phase n
λ 1 λ 2

µ 1 µ2 µn

 Figure 1. Illustration of phase-type distributions 

The system represents the continuous variable as 
notional partitions of time referred to as stages or 
phases of the system. An object will start in phase 1 of 
the system, stay there for a time period until it leaves 
the system or completely at a rate of µ1, or continue to 
stay in the process by moving into the next stage or 
phase, phase 2. The movement from phase 1 to phase 2 
of survival time is represented by the rate, λ1. The final 
transition is when the object leaves the system 
completely thus reaching the absorbing state of the 
process.  

The survival probability that X(t) = 1,2,…,n is 
given by 

1}t{expt Qp)S( = (5)

where  
p = (1 0 0 ...0 0 ), (6)

and 1 is a column vector of 1’s and Q is the transition 
matrix as previously shown in (4). The probability 
density function (p.d.f.) of T then follows by 
differentiation: 

qQp t}{expf(t) = (7)

where 

.)...( T

21 nµµµ=−= Q1q (8)

Previous work [13] has used this model to find a 
suitable distribution for representing the duration of 
stay of a group of geriatric patients in hospital.  

4. Coxian Phase-Type Clustering (PhC)  

Clustering is a statistical process that partitions a 
data set into homogeneous groups or clusters of objects 
such that objects in the same cluster are more similar 
among themselves than to those in other clusters [14]. 
Given a dataset the clustering algorithm separates the 
objects or elements into clusters where objects within a 
cluster are alike in nature, that elements from different 
clusters have low similarity to each other and clusters 
are non-overlapping. 

There are two main forms of clustering algorithm 
available namely, those that have supervised learning 
and those that are unsupervised.  

This paper introduces a new clustering technique 
called Coxian Phase-type Clustering (PhC). PhC uses 
the Coxian phase-type distribution to cluster data 
according to an underlying continuous survival time. In 
doing so, the phases in the survival distribution are 
mapped onto clusters in the data set and common 
characteristics identified within each cluster using 
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standard statistical techniques.  

4.1. Motivating Example 

Preliminary work on this technique ([5],[13]) 
clustered patients in a data set according to their 
continuous survival times (length of stay) in a UK 
hospital. The data set was found to be best represented 
by 3 clusters of patient mapped from 3 survival phases. 
The three clusters of patient were interpreted as those 
in acute care in hospital, those in rehabilitation and 
those in long stay. On investigation of patients, those 
within each cluster possessed common characteristics 
and displayed similar behaviours. For example, those 
patients in the acute cluster mainly comprised of those 
patients who are discharged home or in such an acute 
state on arrival to hospital that they die after a short 
period of time. The second phase considered those 
patients who have a much longer duration of stay in 
hospital with quite distinguishable characteristics 
compared to the other 2 clusters in particular with 
respect to their admission reason to hospital, their 
dependency score and outcome on departure from 
hospital. This cluster mainly comprised of patients who 
eventually transferred to another form of care, such as 
nursing home care.  

The third and final cluster was extremely useful in 
highlighting particular patients with very long, extreme 
lengths of stay in hospital. In fact, such patients are 
referred to in the UK National Health Service (NHS) as 
bed blockers as they should have been discharged from 
hospital a long time previous but instead are still using 
hospital beds blocking them from use by other patients. 
Some of the common characteristics of patients in this 
cluster include patient gender as female and age 
between 57 and 64 years (where the age range for the 
full data set is between 42-105 years). 

As such, the study on patient length of stay 
demonstrated how the proposed clustering technique 
can provide insights into the data by identifying 
clusters whereby each cluster may be described as 
behaving in a certain way or cluster members behaving 
in similar ways. The paper concluded that the 
identification of patient clusters and common 
characteristics within such, offered huge potential for 
hospital managers and clinicians who had valuable 
insight into the overall management and bed allocation 
of the hospital wards. 

4.2. Fitting PhCs 

The clustering technique is unsupervised in that the 
number of clusters can be determined by the fit of the 

data. Alternatively, if the number of clusters is 
previously known, the algorithm can be simplified to 
partition the data for that specified number of clusters. 

In order to perform PhC, the Coxian phase-type 
distribution has to be fitted to the continuous time 
variable. The parameters of which can be estimated 
using the maximum likelihood function and the Nelder-
Mead simplex algorithm [15]. The Nelder-Mead 
algorithm is a non-gradient approach which uses a 
simplex formed by a set of (n+1) mutually equidistant 
points in n dimensional space. The method compares 
the values of the function at the (n+1) vertices using the 
simplex which it then guides towards the optimum 
point during the iterative process. The three basic 
operations used to direct the simplex are reflection, 
expansion and contraction. The approach is considered 
a very robust, powerful technique.  

Table 1. Coxian phase-type clustering algorithm 
Input: A dataset containing m objects, and 
Corresponding survival times ti each for ith object. 

Output: A set of c clusters with associated 
likelihood value  

Method:  
1 Initialise variables c=0, likelihoodc_1=0 
2 Repeat 
3     likelihood=0 
4     c=c+1
5     define p, Q, and q for PhC with c clusters 
6     for i = 1,…, m
7         read survival time ti

8         likelihood  
                    = likelihood + log(p×(exp(Q×ti) )×q)

9     end 
10 estimate λi and µi parameters using Nelder   

Mead algorithm and likelihood value 
11     compare likelihood values for c clusters and  

c-1 clusters 
12     likelihoodc_1=likelihood 
13 Until no change in Likelihood or insignificant 

change in likelihood 

The PhC Algorithm, Table 1, begins by fitting a 
Coxian phase-type distribution with one phase, (when 
c=1) corresponding to the exponential distribution, to 
the continuous survival data. This is implemented and 
parameters estimated using the Nelder Mead Algorithm 
along with the following likelihood function 

∑=
n

i
i

)}texp{(log qQpL . (9)
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The fitting process continues as a sequential procedure 
whereby a series of Coxian phase-type distributions are 
fitted and assessed. This is performed by repeatedly 
adding an additional phase to the distribution (c=c+1),
fitting the data, estimating the parameters for the 
distribution, calculating the likelihood of the new 
model and repeating the process until c phases are tried 
with the process terminating when there is very little or 
no improvement made to the fit from adding an 
additional phase. Such an approach may employ a 
series of likelihood ratio tests [8] to compare model 
likelihoods to assess whether there is significant 
improvement by adding an additional phase. 

The PhC Algorithm is implemented using the 
MATLAB [16] mathematical software package to 
perform the likelihood ratio tests which determine the 
most suitable number of clusters for the data set.  

The following formula is derived in order to 
represent the length of stay in terms of k phases. Let πi

be the probability that an object leaves the system from 
Phi. This can be calculated by taking the probability 
density formula for each phase or state as follows. For 
example when i=1, the p.d.f. is

tQtpt )(}exp{)(f 11
1

µ+λ−µ== �
(10)

and the probability that the object leaves the system 
from phase 1 is 

11

1)11(

0
11 µ+λ

µµ+λ−
∞

=µ=π
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dte t .
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A data set of individuals or objects may then be 
divided into clusters according to their survival time, 
where the clusters are represented by ck determined by 
the following equation:  

,:
1

1
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(14)

for k = 1, …, c where x(1), … , x(m) represents the 
ordered survival time for each object and m represents 
the number of patients or objects in the data set. The 
characteristics within each cluster may then be 
examined to determine commonalities.  

4.2.1. PhC for Censored Data. One feature 
considered by survival analysis is the inclusion of 
missing or censored data. This problem can be 
overcome for simplified cases of the coxian phase-type 
model by estimating survival using the EM 
(Expectation - Maximisation) algorithm [17]. For 
example, the EM algorithm can be used for data where 
say the outcome is typically missing since for some 
individuals for example when modeling time until 
relapse, the patients may not experience a relapse by 
the time the data collection ceases. For some models 
such incompleteness may be straightforwardly taken 
account of by incorporating appropriate terms into the 
likelihood functions. The likelihoods may then be 
maximised using the EM algorithm [17]. Use of the 
EM algorithm with phase-type distributions has been 
described by Aalen [18].  

The approach is illustrated using the following two 
cluster model. Let x1,…xp be continuous survival time 
for say, patients who leave hospital alive. Let y1,…yq

be the continuous survival time for those patients that 
are known to die whilst in hospital. Let z1,…zr be the 
continuous survival for those patients who have not yet 
left hospital, that is, those cases where outcome is 
unknown, the censored data. The likelihood function 
for patient survival is then: 
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The parameters a, b, λ1 and λ2 are then fitted to 
maximise the likelihood. Using the EM algorithm [17], 
this maximisation is achieved by replacing the 
incomplete data by its expectation in the expressions 
for maximum likelihood estimators for complete data. 
The following iterative equations are derived by 
differentiating the likelihood of the model and solving 
for the parameters a, λ1, and λ2
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In this two term case, b can easily be calculated by 
subtracting a from 1. Here the complete estimators of 
the probabilities a and b are just the proportions who 
leave hospital alive and dead respectively while the 
complete estimators of the exponential parameters are 
given by the number of discharges of the appropriate 
type (alive or dead) divided by the total time spent in 
the hospital. The EM iterations then estimate, for 
example, the number of live discharges in the 
incomplete data by the number of incomplete 
observations r multiplied by the probability a of these 
ending in a death. The expected time spent in hospital 
by a patient censored at z who eventually leaves 
hospital alive is z +λ1

-1; similar expressions may be 
obtained for patients who die in hospital. Dempster et 
al. [17] show that the iterative scheme converges to the 
maximum likelihood solution but may be slow. 
MATLAB [16] software may be used to speed up the 
process. 

5. Clustering Gene Expression Data 

A fundamental progression in gene expression data 
analysis, was the application of techniques capable to 
identifying subsets of genes that possess similar 
expression patterns based on the analysis of gene 
expression data. Such techniques emerged in the form 
of clustering algorithms [19]. 

There has been tremendous research and 
development in clustering gene expression data, both in 
terms of standard statistical clustering techniques 
currently in existence and the emergence of new 
methods specifically focused on gene expression data. 
Clustering can help identify groups of genes that have 
similar expression patterns under various conditions or 
across different tissue samples [20]. 

The application of current statistical techniques 
include the widely known and well accepted methods 
of survival analyses mainly the Kaplan Meier (KM) 
technique, log-rank test and Cox Model ([6],[8]). Such 
applications involve the modeling of phenotypes, the 
observable or measurable traits of an individual as 
produced by its genotype and the environment. 

The approach relates gene expression profiles to 
survival phenotypes by first grouping tumour samples 
into several clusters based on gene expression patterns 
across many genes, and then to use the Kaplan-Meier 
(KM) curves or the log-rank test to indicate whether 
there is a difference in survival time among different 
tumour groups [19]. Alternatively the Cox model has 
been used to model survival outcome based on clusters 
of gene expressions across different samples [21]. 

However, the Cox’s model intrinsically assumes 
proportional hazards, that is the instantaneous or 
immediate potential per unit time of failure, given that 
the survival up to time t is proportional [7].  
Li and Gui [21] also use Cox’s model to develop an 
extension of the partial least squares method to 
construct predictive components which model survival. 
Similar to principle component analysis (PCA), the 
method examines the relationship among the variables 
and identifies linear combinations of the original 
variables as predictors. In addition to PCA, the method 
makes use of the response variable in constructing the 
latent components. However, the technique cannot 
accurately handle continuous survival distributions. As 
is the case with the cluster analysis system introduced 
by Eisen et al. [20] for analysing genome-wide 
expression data from DNA microarray hydridization.  

Meltzer et al. [22] comment that new algorithmic 
approaches are required to accommodate the 
complexity of underlying rules of genome function 
emphasizing the particular importance in approaches 
which help identify critical genes and pathways which 
are essential to tumour growth and survival. 

5.1. PhC of Gene Expression Data 

As stated by Golub et al. [23], one of the most 
promising applications of gene expression analysis is 
the classification of tissue types to their gene 
expression profiles. This paper proposes the PhC 
technique as a method capable of doing just that. The 
application of the Coxian phase-type clustering 
technique to microarray data has the potential of 
greatly assisting the prediction of various clinical 
phenotypes based on the gene expression profile. This 
is similar in nature to the example discussed earlier in 
this paper where a continuous survival time is clustered 
according to some further information concerning the 
objects in the data set. When considering microarray 
data, the survival time could be for example the time a 
patient survives after treatment or the time to cancer 
relapse. The clusters will then be represented by 
linking gene expression profiles to the survival 
variable. Identification of the clusters is comparable to 
identifying different streams of behaviour within the 
heterogeneous data and relating these to survival 
phenotype. For example the different clusters could be 
considered as groups of patients or genes who are at 
varying degrees of risk to a negative experience such as 
time until cancer recurs in the body or time t until 
death. These degrees of risk are related to phenotype. 

Due to the continuous nature of the Coxian phase-
type distribution and its ease of representation as a 
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survival function, the resulting PhC model could be 
used to estimate hazard functions for the different 
cluster of patient. Such developments will facilitate the 
modeling of future samples thus permitting the 
prediction of patient survival according to clinically 
relevant high and low risk groups.  

It is without question the practical implications of 
being able to make predictions of this nature. Certainly 
the ability to predict patient survival opens up a wealth 
of opportunities in the healthcare domain. 

Another application is that of pharmacogenomics, 
the study of whole genomes or substantial numbers of 
genes in order to assess drug responses. For example, 
pharmocogenomics could assist in the identification of 
large-scale differences in the patterns of gene 
expression in response to chemical compounds or to 
classify cancers for predicting different patient’s 
survival or response to drugs, varying levels of drugs or 
other treatments.  

In summary, the PhC technique provides 
opportunity to analyse gene expression data for many 
important applications for example to classify cancers 
or to assess drug responses in pharamcogenomics and 
drug discovery. Previous studies such as Golub et al. 
[23] have shown how gene expression data can 
distinguish between similar cancer types thus assisting 
with diagnosis and treatment. Additionally the PhC 
technique can be used to model the progression of 
disease as consisting of various states or clusters of 
health and disease, associated with which is a list of 
common characteristics for each cluster. Thus 
highlighting distinguishing characteristics for the 
different clusters and the features that identify an 
element as belonging to one particular cluster as 
opposed to any other. Such information can facilitate 
the prediction of future disease status and survival at 
the molecular level. 

When considering time to remission of cancer 
patients, the large variability in the data often results in 
censored survival phenotypes. As previously discussed, 
there is also the possibility of extending the PhC 
procedure for censored survival times by utilizing the 
EM algorithm. The construction of such mutually 
uncorrelated components, based on microarray gene 
expression data, provides an opportunity to investigate 
the objects within the clusters to capture common 
characteristics and similar behaviours. These may then 
be used for future inference, for example once a cluster 
model is determined for the survival times and common 
characteristics identified, it may be used as a means of 
predicting the outcome and survival times of future 
patients.  

Alternative techniques can enforce additional 
assumptions for example, in the Cox’s proportional 
hazards model, the hazard functions are assumed to be 
in proportion to each other which is not always the case 
for gene expression data. Whereas other clustering 
algorithms require the specification of the number of 
clusters in advance or that the data is normally 
distributed. 

Most algorithms produce poor partitions in 
presence of outliers while PhC can correctly reveal the 
structure of data and identify outliers simultaneously.  
Such versatility of the PhC models is partly due to the 
nature of the Coxian phase-type distribution capturing 
the structure of the data, which may be skewed, may 
contain outliers and may have censoring. 

Indeed the nature of the PhC technique lends itself 
nicely to a plethora of applications within gene 
expression modelling. 

6. Summary and Further Work 

This paper introduces a statistical procedure, the 
Coxain Phase-type Clustering technique (PhC) as a 
new method of separating data into groups according to 
the continuous survival of the objects in the data set. In 
doing so each cluster is considered to only contain 
objects that are alike as possible, that is, the objects 
within a cluster display similar characteristics. Objects 
that do not belong to the same cluster are expected to 
have significantly different characteristics. Such a 
clustering algorithm can be utilized to model gene 
expression data. 

There is a growing wealth of research focused on 
clustering genes on the basis of their expression 
patterns. This has been both in terms of applying 
standard statistical clustering techniques currently in 
existence and the emergence of new methods with 
specific attention on gene expression data. However, 
there are drawbacks and in some cases additional 
assumptions associated with these techniques. As such 
the PhC model is introduced as an alternative method 
for investigating gene expression data to enable the 
identification of unknown clusters and then further 
highlight any common characteristics that may exist 
within such clusters.  

The PhC model represents the continuous survival 
variable as a Coxian phase-type distribution, a special 
type of Markov model that represents a process as 
consisting of phases or states which change as time 
progresses. These phases are then the basis for the 
clusters of data. Such a technique has potential to be 
applied to many areas of gene expression modeling for 
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instance in prediction of cancer survival times, in drug 
development and responsiveness to treatments and 
pharmacogenomics.  

The technique, unlike its competitors, also has 
fewer assumption enforced upon it, such as the nature 
of the underlying distribution of survival, the restriction 
of having to specify in advance the number of clusters, 
and the limitations that some methods place on the type 
of data used. The PhC model can accommodate data 
that contains outliers, includes censoring and most 
importantly is specifically tailored for continuous 
survival times. One drawback, however is that fitting 
the PhC to huge data sets can be time consuming and as 
such further research is currently underway to improve 
such a fitting process. 

Currently, covariates of the data can be 
incorporated into the various clusters in the PhC model, 
however it is possible to develop this further. One 
approach currently being developed is the formulation 
of a new method using Bayesian network theory to 
model a network structure of covariates to exist within 
each cluster of gene expression data. 
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