
Autonomicity – An Antidote for Complexity?

Roy Sterritt
School of Computing and Mathematics

Faculty of Engineering
University of Ulster

Northern Ireland
r.sterritt@ulster.ac.uk

Mike Hinchey
NASA Goddard Space Flight Center
Software Engineering Laboratory

Greenbelt, MD 20771
USA

michael.g.hinchey@nasa.gov

Abstract

Autonomic Computing and other self-managing system
initiatives, many strongly based on biological metaphors,
are emerging as a significant new vision for the design
and development of complex computer systems. They offer
the promise of controlling complexity through the
achievement of self governance (autonomy) and self
management (autonomicity). We consider how complexity
is exhibited in the computer industry as a whole, and how
the situation is deteriorating, rather than improving. We
consider how Autonomous and Autonomic Systems, with
their biological inspiration, can provide a framework for
tackling complexity and overcoming the problems of its
(unavoidable) inherent existence in certain classes of
systems.

1. Introduction

Computer systems are becoming increasingly
demanding, challenging, and complex. Various visions
and paradigms for the future of computing are emerging.
Realization of these future visions, whether it is invisible,
world, ubiquitous, pervasive, utility, grid, ambient
intelligence, semantic web, etc., will require us to come to
terms with complexity.

When one considers interdisciplinary fields such as
Biology and Computer Science joining together in the
guise of Computational Biology and Bioinformatics, most
famously in the post-genomic era to harvest the fruits of
the sequenced human genome, complexity sky rockets.

Organizations that research and develop complex
computer systems are facing additional market conditions
such as demands for more functionality, ever decreasing
time-to-market, domain-expert shortage and high
employment costs, all of which leads to a need to utilize
employees that are only semi-skilled.

This result is the need for self-managing systems and
new development approaches that can deal with real-life

complexity and uncertainty. The challenge is to produce
practical methodologies and techniques for the
development of such self-managing systems, so that they
may be leveraged to deal with complexity.

2. The Challenge is Complexity

The world is becoming an ever-increasingly complex
place. In terms of computer systems, this complexity has
been confounded by the drive towards cheaper, faster and
smaller hardware and functionally rich software. The
infiltration of the computer into everyday life has made
our reliance on it critical. As such, there is an increasing
need throughout design, development and operation of
computer systems to cope with this complexity and the
inherent uncertainty within. There is an increasing need to
change the way we view computing; there is a need to
realign towards addressing computing in a complex world.

The IT industry is a marked success; within a half
century it has grown to become a trillion dollar per year
industry, obliterating barriers and setting records with
astonishing regularity [1],[2]. Throughout this time the
industry has had a single focus, namely to improve
performance [3] which has resulted in some breathtaking
statistics [4]:

• Performance/price ratio doubles around every
18 months,

• resulting in 100 fold increases per decade;
• Progress in the next 18 months will equal

ALL previous progress;
• New storage = sum of all old storage, ever;
• New processing = sum of all old processing;
• Aggregate bandwidth doubles in 8 months.

This performance focus has resulted in the emergence
of a small number of critical inherent behaviors in the way
the industry operates when designing, developing and

Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference Workshops (CSBW’05)
0-7695-2442-7/05 $20.00 © 2005 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287022467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

deploying hardware, software, and systems [3], and in the
tacit acceptance of a number of flawed assumptions:

• That humans can achieve perfection; that they
avoid making mistakes during installation,
upgrade, maintenance or repair.

• Software will eventually be bug free; the
focus of companies has been to hire better
programmers, and universities to train better
software engineers in development life-cycle
models.

• Hardware mean-time between failure (MTBF)
is already very large―approximately 100
years―and will continue to increase.

• Maintenance costs are irrelevant compared to
purchase price. The assumption that
maintenance is a function of price as such
cheaper helps keep estimates of maintenance
costs artificially lower.

When made explicit is this way, it is obvious that these
implicit behaviors are flawed and result in contributing
factors to the complexity problem.

Within the last decade, problems have started to
become more apparent. The industry that is used to rising
metrics saw some key decreases. Figure 1 [1] highlights
that key modern day systems―cell phones and the
internet―have seen a decline in availability, changing the
established trend of their counterparts.

Figure 1 Systems Availability over the Decades [1]

When one also considers how dependant we have
become on our systems and how much it costs for a single

hour of downtime (e.g., in 2000, $6.5m for brokerage
operations, $2.5m for credit card authorization and $¼m
for eBay [3],[5]) it is obvious how much we increasingly
require our complex systems to be dependable.

3. Dependability through Autonomicity

3.1 Dependability

Dependability is defined as that property of a
computer-based system that enables reliance to be placed
on the service it delivers. That service is its behavior as
perceived by other systems, or its human users [6].

Figure 2 [6]-[9] (which has been updated in [15])
depicts the concepts of dependability in terms of threats
to, attributes of, and the means by which, dependability is
attained.

The effectiveness of these four mechanisms has a
substantial influence on the dependability of a computer-
based system.

Randell describes dependability in terms of failures,
faults and errors, arguing that they follow a “fundamental
chain” [6], thus:

…�failure � fault � error � failure � fault �…

More abstractly, this can be described by the sequence:

…�event � cause � state � event � cause �…

For example, the failure of a system (event) occurs
when a fault is encountered during its operation (cause),
because of an error in its implementation (state). This
might be attributed to a failure in the test process (event)
because the relevant code was not exercised (cause),
meaning that the test suite was incomplete (state).

These chains may, of course, be broken at any stage in
the chain by effective fault means (fault prevention, fault
tolerance, fault removal and fault forecasting, as shown in
Figure 2).

Overall, the breadth of issues involved suggests the
need for a holistic approach to designing dependable
systems [36].

Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference Workshops (CSBW’05)
0-7695-2442-7/05 $20.00 © 2005 IEEE

Figure 2 The Dependability Tree Figure 3 Autonomic Computing Tree

3.2 Autonomic Computing

Autonomic Computing, launched by IBM in 2001
[2], [10]-[13], is emerging as a significant new strategic
and holistic approach to the design of computing
systems. Two of IBM’s main objectives were to reduce
the total cost of ownership of systems and to find better
ways of managing their increasing complexity.

In addition to IBM, many major software and system
vendors, such as HP, Sun, Cisco, and Microsoft, have
established strategic initiatives to help create computer
systems that manage themselves, concluding that this is
the only viable long-term solution.

As the name implies, the influence for the new
paradigm is the human body’s autonomic system, which
regulates vital bodily functions such as the control of
heart rate, the body’s temperature and blood flow―all
without conscious effort.

The desire for automation and effective robust
systems is not new; in fact this may be considered an
aspect of systems and software engineering best practice.
Similarly, the desires for system self-awareness,
awareness of the external environment, and the ability to
adapt, are also not new, being major goals of artificial
intelligence (AI) research for many years. What may be
considered new in Autonomic Computing is its overall
breadth of vision and scope.

Research in Autonomic Computing is likely to see a
greater collaboration between the AI and software
engineering fields. Such collaboration has been
motivated by increasing system complexity and a more
demanding user community. For example, software
engineers have used AI techniques to provide more
sophisticated support for user interfaces, better and
faster search techniques, and to help address soft issues

in the development and operation of software. Similarly,
the AI community has increasingly been looking to
software engineering for disciplined methodologies to
support the development of complex intelligent systems.

Consequently, Autonomic Computing is perhaps best
considered a strategic refocus for the engineering of
effective systems, rather than a revolutionary new
approach [14], that said the overarching vision may be
considered revolutionary.

The overall goal of Autonomic Computing is the
creation of self-managing systems: these are proactive,
robust, adaptable and easy to use. Such objectives are
achieved though self-protecting, self-configuring, self-
healing and self-optimizing activities, as indicated in
Figure 3 [36].

To achieve these objectives a system must be both
self-aware and environment-aware, meaning that it must
have some concept of the current state of both itself and
its operating environment. It must then self-monitor to
recognize any change in that state that may require
modification (self-adjusting) to meet its overall self-
management goal. This means that a system must have
knowledge of its available resources, its components,
their desired performance characteristics, their current
status, and the status of inter-connections with other
systems. This self-monitoring and self-adjusting forms a
feedback control loop between the managed component
and the autonomic manager.

The ability to operate in a heterogeneous
environment requires the use of open standards to
understand and communicate with other systems.

In effect, autonomic systems are proactive in their
operation, hiding away much of the associated
complexity from users.

Self-healing is concerned with ensuring effective
recovery under fault conditions, without loss of data or

Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference Workshops (CSBW’05)
0-7695-2442-7/05 $20.00 © 2005 IEEE

noticeable delays in processing, while identifying the
fault and repairing it, when possible. Fault prediction
techniques may also be used, leading to re-configuration
to avoid the faults concerned, or to reduce the likelihood
of their re-occurrence.

With self-optimization, the system seeks to optimize
its operations in both proactive and reactive ways.

With self-protection, a system will defend itself from
malicious attack and may also have to self-heal when
problems are detected, or self-optimize to improve
protection.

With self-configuring, the system may automatically
install, configure, and integrate new software
components seamlessly to meet defined business
strategies.

IBM discusses the characteristics or “elements” of
Autonomic Computing in more detail in its manifesto
[10]. This is being expanded throughout the research
community, as witnessed by the uptake of workshops
and conferences on the topic (e.g., [22]-[27]).

3.3 Autonomic Computing and Dependability

Randell and colleagues [7]-[9] give two main reasons
for their interest in and focus on the concepts and
definitions of dependability, failures, errors, faults and
tolerance. First, there is a need to clarify the subtleties
involved. Secondly, and possibly more importantly, is a
desire to avoid dependability concepts being reinvented
in other research domains such as safety, survivability,
trustworthiness, security, critical infrastructure
protection, information survivability, etc. [6]. Often the
associated research communities do not realize that they
are dealing with different facets of the same concept, and
are failing to build on existing research advances and
insights [6].

This focus on concepts and definitions is also critical
for Autonomic Computing. Research and development
from many disciplines will be required and, as already
mentioned, the successful integration of AI and software
engineering, will be particularly important.

In the IBM manifesto for Autonomic Computing
[10], success is linked to the use of open standards, open
source code, and open technologies in general. Yet there
is also a need for common concepts and indeed common
or open definitions for researchers from the many
disciplines that are needed to make Autonomic
Computing a reality.

On first consideration, dependability and fault
tolerance would appear to be specifically aligned to the
self-healing facet of Autonomic Computing. Yet any
system that is incorrectly or ineffectively configured
and/or inefficiently optimized is likely to lead to failures
in the future. Similarly, any system that is not

adequately protected is vulnerable to malicious faults,
whether from hackers or viruses. Thus, essentially all
facets of Autonomic Computing are concerned with
dependability [36].

Referring again to Randell’s fundamental chain:

…�failure � fault � error �…

and its abstract form:

…�event � cause � state �…

then each facet of Autonomic Computing (Figure 3) can
be considered “states of undependability” or “states of
dependability” according to how well they are addressed
in a system.

States of Undependability
Faulty (unhealthy)

Ill-configured
Sub-optimal
Unprotected

That is, if any of these states exist within a system, they
are liable to lead to subsequent errors; in turn, that may
lead to subsequent faults and on to failure. Autonomic
Computing, through self-healing, self-configuring, self-
optimization and self-protection, will therefore increase
dependability.

4. Towards Autonomicity in Complex
Systems

This section takes a look at some exemplar complex
areas to highlight the need for autonomicity.

4.1 Telecommunications Systems

As the size and complexity of networks and
communications continue to grow, there is a heightened
need to develop new techniques capable of achieving a
level of service with successful operations upon which
users can place even more reliance. Key emerging
strategies for meeting this demand are “autonomic
networks” and “autonomic communications”, concepts
similar to Autonomic Computing, while specific to the
communications field.

The Autonomic initiatives are about much more than
faults and self-healing, yet this is a critical area to
address considering that it has been estimated that
companies spend 33% to 50% of their total cost of
ownership recovering from or preparing against failures

Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference Workshops (CSBW’05)
0-7695-2442-7/05 $20.00 © 2005 IEEE

[28]. All properties within self-management can also be
related to a fault focus.

The Internet, with its vast infrastructure supporting
millions of interconnected computers is perhaps the most
significant development. The complexity of networks
has grown in various ways [29]. As user demands and
expectations become more varied and complex, so too
do the networks themselves.

Data, voice, image, and other information now
travels under the control of different protocols through
numerous physical devices manufactured and operated
by different vendors. It is expected that the trend
towards increasing complexity will continue, due to
several factors such as the increasing complexity of
individual network elements, the need for sophisticated
network and communication services, and the
heterogeneity of connected equipment [30]. The
promise of Autonomic Networks, networks that manage
themselves, will substantially abate this complexity
crisis.

Survivable Network Architectures demonstrate some
autonomic behavior in the physical layer of the
telecommunications networks, yet this is just the
beginning of the autonomic vision: zero touch, self-
sensing, context-aware, dynamic, self-programming and
evolvable networks. To create Autonomic Networks
will require the cooperation of the industry to develop
open standards to evolve from the current network
elements (NEs) to autonomic network elements (ANEs).
From a Telco’s perspective, the physical layer tends to
be outside their immediate design control as the NEs are
supplied by third party vendors.

Telcos offer communications and services across a
large variety of technologies. Each technology within
the network; SDH (SONET in USA), PDH, ATM, IP,
and so on, all have their own specific domain technology
fault managers. SDH frames may be carrying ATM
frames which may be carrying IP and so on. As such, at
the physical layer, Autonomic Networks may resolve
their own management issues, but these may have
affected the traffic/service they are carrying. This can
only be determined at a higher layer.

Essentially, due to complexity, the situation has
arisen that a large number of uncorrelated alarm event
messages may reside on a network at any one time. One
estimate concerning BT’s UK network was that 95% of
all alarm events raised remain uncorrelated, amounting
to tens of thousands of alarm events being active at any
one time.

Over time this amounts to a substantial load of data.
Another concern is that these problems with root cause
analysis are preventing the development of further
autonomics particularly in self-healing, and with
increasing mean-time to human intervention.

Autonomic Networks in themselves will not be an
easy goal to achieve, yet the longer term goal of
Autonomic Communications is much more than this,
having commonality with Ubiquitous and Pervasive
Computing, a vision of communications services
anytime, anyplace, from any device, adapting to the
user’s current needs and situation. Effective problem
determination in the networks will assist in enabling
other autonomics to advance.

The introduction of autonomic principles requires the
monitoring of individual system components through
sensors and the ability of those components to respond
to requests through effectors. Monitoring will typically
involve the correlation of several related pieces of
information. Correlation is important in both self-
assessment (self-awareness) and in the assessment of a
component’s operating environment (environment
awareness). This helps in deciding when action is
required and what should be done.

By analogy with the human autonomic nervous
system, event messages are similar to the electric pulses
that travel along nerves. When a fault occurs in an SDH
network, a series of triggered events are usually reported
to the element controller (manager). The behavior of the
alarms is often so complex that it appears non-
deterministic [31], making it very difficult to isolate the
true cause of the fault [32]. Yet at this level this is one
of the primary goals of Autonomic Networks.

Currently, the skill of the operator is central to
identifying faults. So, although automation prevents the
immediate loss of traffic and preserves the general
function of the system (as in the SNA), intervention is
necessary to determine and resolve problems that arise.
The promise of autonomic networks would bring about a
significant reduction in the role of the operator.

IBM concurs with this assessment that root cause
analysis in complex systems is key to achieving
autonomics. In their white paper “Autonomic problem
determination: A first step towards self-healing
computing systems” [33] they state that, in effect,
complexity in problem determination is diluting the
effectiveness of computing in the corporate
environment. The same can be said for communications
and networks.

One of the major differences that the vision of
autonomicity brings to the existing efforts aimed at
advanced automation (often including AI research) is the
situated aspect ― the goal being to deal with the
problem as locally as possible, and within the context of
the situation.

Although complex telecoms systems have automated
fail-over by having alarm event messages passed off to
an element manager, the vision of Autonomic
Computing is to have each component with its own
manager.

Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference Workshops (CSBW’05)
0-7695-2442-7/05 $20.00 © 2005 IEEE

4.2 Space Flight Systems

Complexity in Space Systems has been well
documented [18],[19],[21]. New paradigms in
spacecraft design are leading to radical changes in the
way NASA designs spacecraft operations [16].
Increasing constraints on resources, and greater focus on
the cost of operations, has led NASA, and other
agencies, to use adaptive operations and move towards
almost total onboard autonomy in certain classes of
mission operations [17],[18].

NASA missions, particularly those to deep space,
where manned craft cannot currently being sent, are
considering the use of almost wholly autonomous
decision-making to overcome the unacceptable time lag
between a craft encountering new situations and the
round-trip delay (of upwards of 40 (Earth) minutes) in
obtaining responses and guidance from mission control.

More and more NASA missions will, and must,
incorporate autonomicity as well as autonomy [19],[20],
and the Autonomic Computing initiative has been
identified as having potential to contribute to NASA’s
goals of autonomy and cost reduction in future space
exploration missions [18],[19],[20].

ANTS, Autonomous Nano-Technology Swarm, is a
NASA concept mission that will launch sometime
between 2020 and 2030 (“any day now” in terms of
NASA missions). The mission is viewed as a prototype
for how many future unmanned missions will be
developed and how future space exploration will exploit
autonomous and autonomic behavior.

The mission will involve the launch of 1000 pico-
class spacecraft swarm from a stationary factory ship, on
which the spacecraft will be assembled. The spacecraft
will explore the asteroid belt from close-up, giving
scientists data that heretofore has not been available.

As much as 60% to 70% of the spacecraft will be lost
on first launch as they enter the asteroid belt. The
surviving craft will work as a swarm, forming smaller
groupings of worker craft (each containing a unique
instrument for data gathering), a coordinating ruler, that
will use the data it receives from workers to determine
which asteroids are of interest and to issue instructions
to the workers and act as a coordinator, and messenger
craft which will coordinate communications between the
swarm and between the swarm and ground control.
Communications with Earth will be limited to the
download of science data and status information, and
requests for additional craft to be launched from earth as
necessary.

A current project (FAST) is studying advanced
technologies for the verification of this incredibly
complex mission; the reader is directed to [18],[20] for a
more detailed exposition of the ANTS mission and the

FAST (Formal Approaches to Swarm Technologies)
project. Formal approaches to verification of such
complex autonomic systems are essential, as all possible
behavior cannot possibly be determined in advance, and
no a priori testing plan is likely to be realistic.

4.3 Towards an Autonomic Grid

Virtualization of resources such as machine, memory
storage, and I/O are enabling virtual, collaborative
organizations sharing applications and data in an open
heterogeneous environment. This empowers the
organization yet also creates a more complex
infrastructure to manage.

A grid infrastructure promises seamless access to
computational and storage resources, and offers the
possibility of cheap, ubiquitous distributed computing.
Grid technology is beginning to have a fundamental
impact on the economy by creating new areas, such as e-
Science, e-Government and e-Health, new business
opportunities, such as computational and data storage
services, and changing business models, such as greater
organizational and service devolution [37],[38]. The
Grid is a very active area of research and development;
with the number of academic grids jumping six-fold in
the last year [41].

Historically, the Grid arose out of a need to perform
massive computation, the current direction demonstrates
the potential to change the structure of electronic service
provision and create a new grid service economy. The
success of the Grid will be founded on the development
of new grid-enabled software systems and the evolution
of legacy systems to grid-enabled systems. There are
many middleware frameworks for distributed computing,
many modeling techniques for software artifacts, and
many development processes for controlling the creation
of new software systems and managing the evolution of
existing software systems.

A fundamental challenge is creating correct, robust,
flexible and cost-effective grid-enabled software [39].
The Grid aims to be self-configuring, self-tuning and
self-healing, similar to the goals of Autonomic
Computing [40]. Its aim to fulfill the vision of
Corbato’s Multics [42]– like a utility company, a
massive resource to which a customer gives his or her
computational or storage needs [40]. As such,
Autonomic Computing will be required to provide some
of the answers to achieve this vision.

5. Discussion

There is a need to establish standards and
mechanisms in order for Autonomic Computing to work.

Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference Workshops (CSBW’05)
0-7695-2442-7/05 $20.00 © 2005 IEEE

For instance, it is possible to develop a self-healing tool
with a control loop that constantly monitors the
applications (processes) running on your laptop [35]. If
any of these applications (processes) should “hang”, the
autonomic tool can restart that process. Yet there is no
means to inform the process where to restart (unless it is
designed to do so) ― effectively it’s a process being
started from fresh with any previous state lost, unless the
process’s application itself handles this. There is a need
for standards for autonomic signals and communications
to take place not only at this level―from autonomic
manager to processes running on the managed
component―but also from autonomic manager to
autonomic manager. Allowing standard “autonomic
signal” routes into processes would raise security issues,
yet this will need to be part of the self-protection
autonomic property.

This implies that all processes effectively need to be
designed with autonomicity and self-managing
capabilities in mind (not only from within, but taking
direction from the external environment). This not only
raises issues of standards to achieve this but raises
questions as to whether current design and development
approaches meet the needs for developing autonomicity,
and handling human error due to complexity. The
realization of self-managing systems, which will still be
complex to design, may only move the human error
aspect from the administrator (who had been manually
managing the running systems) to the designer.

The telecommunications domain was discussed as an
exemplar as its alternative evolution may place it much
further down this path than the computer industry. That
is, its systems have a management layer, with standards
allowing heterogeneous elements to communicate
management information. Consider how often our
phones go down compared to our PCs or Internet
connections. Yet the design of the management layer
has created a complex system in itself, where, it has been
claimed, 95% of the event messages under fault
conditions cannot be automatically correlated, and this
has created a bottleneck for further advanced
automation.

It is essential that the emerging Autonomic research
community find a way forward to deal with this hard
problem of root cause analysis from the start and avoids
this situation.

The NASA example illustrates a complex system that
cannot be managed from Earth due to bandwidth limits
and time delays. Moreover, it is a complex system
where decisions need to be made with real-time
constraints. Even without bandwidth issues, the system
would likely be too complex to be managed in real-time
by human beings.

Fully autonomous behavior is realistically the only
alternative. But, in order for this to be successful, the

mission must embody the autonomic properties of self-
healing, self-protecting, self-configuring and self-
optimizing. In short: the mission must be self-
managing.

6. Conclusion

Autonomic computing is an emerging holistic
approach to computer system development that aims to
cope with complexity and bring a new level of
automation and dependability to systems through self-
healing, self-optimizing, self-configuring and self-
protection functions.

To illustrate that autonomicity may assist with coping
with complexity, examples from research in
telecommunications and space systems were discussed.

While Autonomic Computing may not be a panacea
for complex computer system, it clearly does have a role
to play in overcoming complexity, and offers a
promising antidote to some of the problems of complex
systems.

Open standards and technologies are required for
Autonomic Computing to reach its goals. The challenges
of addressing these issues must be taken up by the wider
computing community. A remit needs to be established
to encourage interaction and research among researchers
and developers in industry, government, and academia,
in determining standards, techniques, development
processes and mechanisms that can be exploited in
creating self-managing systems.

As Bioinformatics produces even more complex
applications, the Autonomic Computing initiative will
have a role to play in ensuring the emergence of better,
more reliable, and effective systems.

Acknowledgements

The development of this paper was supported at
University of Ulster by the Computer Science Research
Institute (CSRI) and by the Centre for Software Process
Technologies (CSPT) which is funded by Invest NI
through the Centres of Excellence Programme, under the
EU Peace II initiative.

Part of this work has been supported by the NASA
Office of Systems and Mission Assurance (OSMA)
through its Software Assurance Research Program
(SARP) project, Formal Approaches to Swarm
Technologies (FAST), and by NASA Goddard Space
Flight Center, Software Engineering Laboratory (Code
581).

Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference Workshops (CSBW’05)
0-7695-2442-7/05 $20.00 © 2005 IEEE

References

[1] J. Gray, “Dependability in the Internet Era”,
http://research.microsoft.com/˜gray/talks/InternetAv
ailability.ppt.

[2] P. Horn, Invited Talk to the National Academy of
Engineering at Harvard University, March 8, 2001

[3] D. Patterson, Recovery-Oriented Computing,
Keynote, at High Performance Transaction Systems
Workshop (HPTS), October 2001.

[4] J. Gray, “What Next? A dozen remaining IT
problems,” Turing Award Lecture, FCRC, May
1999

[5] Per Hour Downtime Costs, Contingency Planning
Research and Internetweek (4/3/2000).

[6] B. Randell, “Turing Memorial Lecture – Facing Up
to Faults”, Comp. J. 43(2):95-106, 2000.

[7] A. Avizienis, J.-C. Laprie, B. Randell,
“Fundamental Concepts of Dependability”, UCLA
CSD Report #010028, 2000.

[8] J.C. Laprie, “Dependability: basic concepts and
terminology-in English, French, German, Italian and
Japanese”, In Dependable Computing and Fault
Tolerance, p. 265, Springer-Verlag, Vienna, 1992.

[9] J.C. Laprie, “Dependable computing: concepts,
limits, challenges”. In Proceedings 25th IEEE
International Symposium on Fault-Tolerant
Computing, Pasadena, CA, pp 42-54, 1995.

[10]P. Horn, “Autonomic computing: IBM perspective
on the state of information technology”, IBM T.J.
Watson Labs, NY, 15th October 2001, also
Presented at AGENDA 2001, Scottsdale, AZ
(http://www.research.ibm.com/autonomic/), 2001.

[11] E. Mainsah, “Autonomic computing: the next era of
computing”, IEE Electronics Communication
Engineering Journal, 14(1):2-3, February 2002.

[12]A. Wolfe, “IBM sets its sights on ‘Autonomic
Computing’”, IEEE Spectrum, pp 18-19, January
2002.

[13]L.D. Paulson, “IBM Begins Autonomic Computing
Project,” IEEE Computer, p 25, February 2002.

[14]R. Sterritt, “Towards Autonomic Computing:
Effective Event Management,” In Proceedings of
27th Annual IEEE/NASA Software Engineering
Workshop (SEW), Greenbelt, MD, USA, December
3-5 2002, IEEE Computer Society Press, pp 40-47.

[15]A. Avižienis, J-C Laprie, B Randell, C Landwehr,
“Basic Concepts and Taxonomy of Dependable and
Secure Computing”, IEEE Transactions on
Dependable & Secure Computing, 1(1), January.-
March 2004.

[16]M.A. Swartwout, “Engineering Data Summaries for
Space Missions,” SSDL, 1998.

[17] J. Wyatt, R. Sherwood, M. Sue, J. Szijjarto, “Flight
Validation of On-Demand Operations: The Deep

Space One Beacon Monitor Operations
Experiment,” In Proc. 5th International
Symposium on Artificial Intelligence, Robotics and
Automation in Space (i-SAIRAS '99), ESTEC,
Noordwijk, The Netherlands, 1-3 June 1999.

[18]W. Truszkowski, M. Hinchey, J. Rash and C. Rouff,
“NASA’s Swarm Missions: The Challenge of
Building Autonomous Software,” IEEE IT
Professional, September/October 2004, pp 51-56.

[19]W. Truszkowski, M. Hinchey, C. Rouff and J. Rash,
“Autonomous and Autonomic Systems: A Paradigm
for Future Space Exploration Missions,” IEEE
Transactions on Systems, Man and Cybernetics,
Part C, to appear 2006.

[20]W. Truszkowski, J. Rash, C. Rouff and M. Hinchey,
“Asteroid Exploration with Autonomic Systems,” In
Proceedings of IEEE Workshop on the Engineering
of Autonomic Systems (EASe 2004) at the 11th
Annual IEEE International Conference and
Workshop on the Engineering of Computer Based
Systems (ECBS 2004), Brno, Czech Republic, 24-27
May 2004, pp 484-490.

[21]R. Sterritt, “Pulse Monitoring: Extending the
Health-check for the Autonomic GRID,” In
Proceedings of IEEE Workshop on Autonomic
Computing Principles and Architectures (AUCOPA
2003) at INDIN 2003, Banff, Alberta, Canada, 22-
23 August 2003, pp 433-440.

[22]The Autonomic Computing Workshop, Proceedings
5th International Workshop on Active Middleware
Services (AMS 2003), Seattle, WA, pp 198, 25 June
2003, IEEE Computer Society Press.

[23] IJCAI Workshop, “AI and Autonomic Computing:
Developing a Research Agenda for Self-Managing
Computer Systems”, Acapulco, Mexico, 10 August
2003, http://www.research.ibm.com/ACworkshop

[24]Workshop on Autonomic Computing Principles and
Architectures (AUCOPA 2003), at INDIN 2003,
First IEEE Conference on Industrial Informatics,
Banff Canada, August 2003.

[25]1st International Workshop on Autonomic
Computing Systems at 14th International
Conference on Database and Expert Systems
Applications (DEXA 2003), Prague, Czech
Republic, 1-5 September 2003.

[26]Autonomic Applications Workshop, at International
Conference on High Performance Computing (HiPC
2003), Taj Krishna, Hyberabad, India, 17 December
2003

[27] IEEE ECBS Workshop on Engineering of
Autonomic Systems (EASe 2004), Brno, May 2004.

[28]D. A. Patterson, A. Brown, P. Broadwell, G.
Candea, M. Chen, J. Cutler, P. Enriquez, A. Fox, E.
Kiciman, M. Merzbacher, D. Oppenhiemer, N.
Sastry, W. Tetzlaff, J. Traupman, N. Treuhaft,

Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference Workshops (CSBW’05)
0-7695-2442-7/05 $20.00 © 2005 IEEE

Recovery-Oriented Computing (ROC): Motivation,
Definition, Techniques, and Case Studies, U.C.
Berkeley Computer Science Technical Report,
UCB//CSD-02-1175, University of California,
Berkeley, 15 March 2002.

[29]T. Oates, Fault identification in computer networks:
A review and a new approach. Technical Report
95-113, University of Massachusetts at Amherst,
Computer Science Department, 1995.

[30]M. Cheikhrouhou, P. Conti, J. Labetoulle, K.
Marcus, “Intelligent Agents for Network
Management: Fault Detection Experiment,” In
Proc. Sixth IFIP/IEEE International Symposium on
Integrated Network Management, Boston, USA,
May, 1999.

[31]A.T. Bouloutas, S. Calo, A. Finkel, Alarm
correlation and fault identification in
communication networks, IEEE Trans. on
Communications, 42(2):523-533, 1994.

[32]M. Klemettinen, A knowledge discovery
methodology for telecommunication network alarm
databases, Ph.D. Thesis, University of Helsinki,
Finland, 1999.

[33] IBM, “Autonomic problem determination: A first
step towards self-healing computing systems,”
White Paper, October 2003.

[34]D. Patterson, “Availability and Maintainability
Performance: New Focus for a New Century,”
USENIX Conference on File and Storage
Technologies (FAST ’02), Keynote Address,
Monterey, CA, 29 January 2002.

[35]R. Sterritt, S. Chung S, “Personal Autonomic
Computing Self-Healing Tool”, In Proceedings of
IEEE Workshop on the Engineering of Autonomic
Systems (EASe 2004) at 11th Annual IEEE
International Conference and Workshop on the

Engineering of Computer Based Systems (ECBS
2004), Brno, Czech Republic, 24-27 May, pp 513-
520

[36]R. Sterritt, D.W. Bustard, “Autonomic Computing-a
Means of Achieving Dependability?” In
Proceedings of IEEE International Conference on
the Engineering of Computer Based Systems
(ECBS'03), Huntsville, Alabama, 7-11April 2003,
pp 247-251, IEEE Computer Society Press.

[37]D. De Roure, N. Jennings, N. Shadbolt, “A Future
e-Science Infastructure” aka Research Agenda for
the Semantic Grid, EPSRC/DTI Core e-Science
Programme, December 2001.

[38] I. Foster, C. Kesselman, J.M. Nick, S. Tuecke, “The
Physiology of the Grid – An Open Grid Service
Architecture for Distributed Systems Integration”,
http://www.globus.org/research/papers/ogsa.pdf
June 2002.

[39]M. Atkinson, J. Crowcroft, C. Goble, J. Gurd, T.
Rodden, N. Shadbolt, M. Sloman, I. Sommerville,
T. Storey, “Computer Challenges to emerge from e-
Science ” aka UK e-Science Research Agenda,
National e-Science Centre :
http://umbriel.dcs.gla.ac.uk/nesc/general/news/uk_e-
Science _agenda.html

[40] J. Ledlie, J. Shneidman, M. Seltzer, J. Huth,
“Scooped, Again” in Proceedings of IPTPS 2003
conference. Berkeley, CA. February 2003.

[41]O. Malik, “Ian Foster = Grid Computing”, Grid
Today, Oct. 2002.

[42]F.J. Corbato, V.A. Vyssotsky, “Introduction and
Overview of Multics System”, Proceedings of
AFIPS FJCC, 1965.

Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference Workshops (CSBW’05)
0-7695-2442-7/05 $20.00 © 2005 IEEE

