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Abstract 

Autonomic Computing and other self-managing system 
initiatives, many strongly based on biological metaphors, 
are emerging as a significant new vision for the design 
and development of complex computer systems. They offer 
the promise of controlling complexity through the 
achievement of self governance (autonomy) and self 
management (autonomicity). We consider how complexity 
is exhibited in the computer industry as a whole, and how 
the situation is deteriorating, rather than improving.  We 
consider how Autonomous and Autonomic Systems, with 
their biological inspiration, can provide a framework for 
tackling complexity and overcoming the problems of its 
(unavoidable) inherent existence in certain classes of 
systems. 

1. Introduction 

Computer systems are becoming increasingly 
demanding, challenging, and complex.  Various visions 
and paradigms for the future of computing are emerging.  
Realization of these future visions, whether it is invisible, 
world, ubiquitous, pervasive, utility, grid, ambient 
intelligence, semantic web, etc., will require us to come to 
terms with complexity. 

When one considers interdisciplinary fields such as 
Biology and Computer Science joining together in the 
guise of Computational Biology and Bioinformatics, most 
famously in the post-genomic era to harvest the fruits of 
the sequenced human genome, complexity sky rockets.  

Organizations that research and develop complex 
computer systems are facing additional market conditions 
such as demands for more functionality, ever decreasing 
time-to-market, domain-expert shortage and high 
employment costs, all of which leads to a need to utilize 
employees that are only semi-skilled. 

This result is the need for self-managing systems and 
new development approaches that can deal with real-life 

complexity and uncertainty.  The challenge is to produce 
practical methodologies and techniques for the 
development of such self-managing systems, so that they 
may be leveraged to deal with complexity. 

2. The Challenge is Complexity 

The world is becoming an ever-increasingly complex 
place.  In terms of computer systems, this complexity has 
been confounded by the drive towards cheaper, faster and 
smaller hardware and functionally rich software.  The 
infiltration of the computer into everyday life has made 
our reliance on it critical.  As such, there is an increasing 
need throughout design, development and operation of 
computer systems to cope with this complexity and the 
inherent uncertainty within. There is an increasing need to 
change the way we view computing; there is a need to 
realign towards addressing computing in a complex world. 

The IT industry is a marked success; within a half 
century it has grown to become a trillion dollar per year 
industry, obliterating barriers and setting records with 
astonishing regularity [1],[2].  Throughout this time the 
industry has had a single focus, namely to improve 
performance [3] which has resulted in some breathtaking 
statistics [4]: 

• Performance/price ratio doubles around every 
18 months,  

• resulting in 100 fold increases per decade; 
• Progress in the next 18 months will equal 

ALL previous progress; 
• New storage = sum of all old storage, ever; 
• New processing = sum of all old processing; 
• Aggregate bandwidth doubles in 8 months. 

This performance focus has resulted in the emergence 
of a small number of critical inherent behaviors in the way 
the industry operates when designing, developing and 
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deploying hardware, software, and systems [3], and in the 
tacit acceptance of a number of flawed assumptions: 

• That humans can achieve perfection; that they 
avoid making mistakes during installation, 
upgrade, maintenance or repair. 

• Software will eventually be bug free; the 
focus of companies has been to hire better 
programmers, and universities to train better 
software engineers in development life-cycle 
models. 

• Hardware mean-time between failure (MTBF) 
is already very large―approximately 100 
years―and will continue to increase. 

• Maintenance costs are irrelevant compared to 
purchase price.  The assumption that 
maintenance is a function of price as such 
cheaper helps keep estimates of maintenance 
costs artificially lower.  

When made explicit is this way, it is obvious that these 
implicit behaviors are flawed and result in contributing 
factors to the complexity problem. 

Within the last decade, problems have started to 
become more apparent.  The industry that is used to rising 
metrics saw some key decreases. Figure 1 [1] highlights 
that key modern day systems―cell phones and the 
internet―have seen a decline in availability, changing the 
established trend of their counterparts. 

Figure 1 Systems Availability over the Decades [1] 

When one also considers how dependant we have 
become on our systems and how much it costs for a single 

hour of downtime (e.g., in 2000, $6.5m for brokerage 
operations, $2.5m for credit card authorization and $¼m 
for eBay [3],[5]) it is obvious how much we increasingly 
require our complex systems to be dependable.  

3. Dependability through Autonomicity 

3.1 Dependability 

Dependability is defined as that property of a 
computer-based system that enables reliance to be placed 
on the service it delivers. That service is its behavior as 
perceived by other systems, or its human users [6]. 

Figure 2 [6]-[9] (which has been updated in [15]) 
depicts the concepts of dependability in terms of threats 
to, attributes of, and the means by which, dependability is 
attained. 

The effectiveness of these four mechanisms has a 
substantial influence on the dependability of a computer-
based system. 

Randell describes dependability in terms of failures,
faults and errors, arguing that they follow a “fundamental 
chain” [6], thus: 

…�failure � fault � error � failure � fault �…

More abstractly, this can be described by the sequence: 

…�event � cause � state � event � cause �…

For example, the failure of a system (event) occurs 
when a fault is encountered during its operation (cause), 
because of an error in its implementation (state). This 
might be attributed to a failure in the test process (event) 
because the relevant code was not exercised (cause), 
meaning that the test suite was incomplete (state).  

These chains may, of course, be broken at any stage in 
the chain by effective fault means (fault prevention, fault 
tolerance, fault removal and fault forecasting, as shown in 
Figure 2).  

Overall, the breadth of issues involved suggests the 
need for a holistic approach to designing dependable 
systems [36]. 
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Figure 2 The Dependability Tree Figure 3 Autonomic Computing Tree 

3.2 Autonomic Computing 

Autonomic Computing, launched by IBM in 2001 
[2], [10]-[13], is emerging as a significant new strategic 
and holistic approach to the design of computing 
systems. Two of IBM’s main objectives were to reduce 
the total cost of ownership of systems and to find better 
ways of managing their increasing complexity. 

In addition to IBM, many major software and system 
vendors, such as HP, Sun, Cisco, and Microsoft, have 
established strategic initiatives to help create computer 
systems that manage themselves, concluding that this is 
the only viable long-term solution. 

As the name implies, the influence for the new 
paradigm is the human body’s autonomic system, which 
regulates vital bodily functions such as the control of 
heart rate, the body’s temperature and blood flow―all
without conscious effort. 

The desire for automation and effective robust 
systems is not new; in fact this may be considered an 
aspect of systems and software engineering best practice. 
Similarly, the desires for system self-awareness, 
awareness of the external environment, and the ability to 
adapt, are also not new, being major goals of artificial 
intelligence (AI) research for many years. What may be 
considered new in Autonomic Computing is its overall 
breadth of vision and scope.  

Research in Autonomic Computing is likely to see a 
greater collaboration between the AI and software 
engineering fields. Such collaboration has been 
motivated by increasing system complexity and a more 
demanding user community. For example, software 
engineers have used AI techniques to provide more 
sophisticated support for user interfaces, better and 
faster search techniques, and to help address soft issues 

in the development and operation of software.  Similarly, 
the AI community has increasingly been looking to 
software engineering for disciplined methodologies to 
support the development of complex intelligent systems. 

Consequently, Autonomic Computing is perhaps best 
considered a strategic refocus for the engineering of 
effective systems, rather than a revolutionary new 
approach [14], that said the overarching vision may be 
considered revolutionary.  

The overall goal of Autonomic Computing is the 
creation of self-managing systems: these are proactive, 
robust, adaptable and easy to use. Such objectives are 
achieved though self-protecting, self-configuring, self-
healing and self-optimizing activities, as indicated in 
Figure 3 [36].  

To achieve these objectives a system must be both 
self-aware and environment-aware, meaning that it must 
have some concept of the current state of both itself and 
its operating environment. It must then self-monitor to 
recognize any change in that state that may require 
modification (self-adjusting) to meet its overall self-
management goal.  This means that a system must have 
knowledge of its available resources, its components, 
their desired performance characteristics, their current 
status, and the status of inter-connections with other 
systems.  This self-monitoring and self-adjusting forms a 
feedback control loop between the managed component 
and the autonomic manager. 

The ability to operate in a heterogeneous 
environment requires the use of open standards to 
understand and communicate with other systems. 

In effect, autonomic systems are proactive in their 
operation, hiding away much of the associated 
complexity from users. 

Self-healing is concerned with ensuring effective 
recovery under fault conditions, without loss of data or 
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noticeable delays in processing, while identifying the 
fault and repairing it, when possible. Fault prediction 
techniques may also be used, leading to re-configuration 
to avoid the faults concerned, or to reduce the likelihood 
of their re-occurrence. 

With self-optimization, the system seeks to optimize 
its operations in both proactive and reactive ways. 

With self-protection, a system will defend itself from 
malicious attack and may also have to self-heal when 
problems are detected, or self-optimize to improve 
protection.  

With self-configuring, the system may automatically 
install, configure, and integrate new software 
components seamlessly to meet defined business 
strategies. 

IBM discusses the characteristics or “elements” of 
Autonomic Computing in more detail in its manifesto 
[10]. This is being expanded throughout the research 
community, as witnessed by the uptake of workshops 
and conferences on the topic (e.g., [22]-[27]). 

3.3 Autonomic Computing and Dependability 

Randell and colleagues [7]-[9] give two main reasons 
for their interest in and focus on the concepts and 
definitions of dependability, failures, errors, faults and 
tolerance.  First, there is a need to clarify the subtleties 
involved.  Secondly, and possibly more importantly, is a 
desire to avoid dependability concepts being reinvented 
in other research domains such as safety, survivability, 
trustworthiness, security, critical infrastructure 
protection, information survivability, etc. [6]. Often the 
associated research communities do not realize that they 
are dealing with different facets of the same concept, and 
are failing to build on existing research advances and 
insights [6]. 

This focus on concepts and definitions is also critical 
for Autonomic Computing. Research and development 
from many disciplines will be required and, as already 
mentioned, the successful integration of AI and software 
engineering, will be particularly important.  

In the IBM manifesto for Autonomic Computing 
[10], success is linked to the use of open standards, open 
source code, and open technologies in general. Yet there 
is also a need for common concepts and indeed common 
or open definitions for researchers from the many 
disciplines that are needed to make Autonomic 
Computing a reality. 

On first consideration, dependability and fault 
tolerance would appear to be specifically aligned to the 
self-healing facet of Autonomic Computing. Yet any 
system that is incorrectly or ineffectively configured 
and/or inefficiently optimized is likely to lead to failures 
in the future.  Similarly, any system that is not 

adequately protected is vulnerable to malicious faults, 
whether from hackers or viruses. Thus, essentially all 
facets of Autonomic Computing are concerned with 
dependability [36]. 

Referring again to Randell’s fundamental chain: 

…�failure � fault � error �…

and its abstract form: 

…�event � cause � state �…

then each facet of Autonomic Computing (Figure 3) can 
be considered “states of undependability” or “states of 
dependability” according to how well they are addressed 
in a system. 

States of Undependability
Faulty (unhealthy) 

Ill-configured 
Sub-optimal 
Unprotected 

That is, if any of these states exist within a system, they 
are liable to lead to subsequent errors; in turn, that may 
lead to subsequent faults and on to failure. Autonomic 
Computing, through self-healing, self-configuring, self-
optimization and self-protection, will therefore increase 
dependability. 

4. Towards Autonomicity in Complex 
Systems 

This section takes a look at some exemplar complex 
areas to highlight the need for autonomicity. 

4.1 Telecommunications Systems 

As the size and complexity of networks and 
communications continue to grow, there is a heightened 
need to develop new techniques capable of achieving a 
level of service with successful operations upon which 
users can place even more reliance.  Key emerging 
strategies for meeting this demand are “autonomic 
networks” and “autonomic communications”, concepts 
similar to Autonomic Computing, while specific to the 
communications field. 

The Autonomic initiatives are about much more than 
faults and self-healing, yet this is a critical area to 
address considering that it has been estimated that 
companies spend 33% to 50% of their total cost of 
ownership recovering from or preparing against failures 
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[28].  All properties within self-management can also be 
related to a fault focus. 

The Internet, with its vast infrastructure supporting 
millions of interconnected computers is perhaps the most 
significant development. The complexity of networks 
has grown in various ways [29].  As user demands and 
expectations become more varied and complex, so too 
do the networks themselves.   

Data, voice, image, and other information now 
travels under the control of different protocols through 
numerous physical devices manufactured and operated 
by different vendors.  It is expected that the trend 
towards increasing complexity will continue, due to 
several factors such as the increasing complexity of 
individual network elements, the need for sophisticated 
network and communication services, and the 
heterogeneity of connected equipment [30].  The 
promise of Autonomic Networks, networks that manage 
themselves, will substantially abate this complexity 
crisis. 

Survivable Network Architectures demonstrate some 
autonomic behavior in the physical layer of the 
telecommunications networks, yet this is just the 
beginning of the autonomic vision: zero touch, self-
sensing, context-aware, dynamic, self-programming and 
evolvable networks.  To create Autonomic Networks 
will require the cooperation of the industry to develop 
open standards to evolve from the current network 
elements (NEs) to autonomic network elements (ANEs).  
From a Telco’s perspective, the physical layer tends to 
be outside their immediate design control as the NEs are 
supplied by third party vendors. 

Telcos offer communications and services across a 
large variety of technologies.  Each technology within 
the network; SDH (SONET in USA), PDH, ATM, IP, 
and so on, all have their own specific domain technology 
fault managers.  SDH frames may be carrying ATM 
frames which may be carrying IP and so on.  As such, at 
the physical layer, Autonomic Networks may resolve 
their own management issues, but these may have 
affected the traffic/service they are carrying.  This can 
only be determined at a higher layer. 

Essentially, due to complexity, the situation has 
arisen that a large number of uncorrelated alarm event 
messages may reside on a network at any one time.  One 
estimate concerning BT’s UK network was that 95% of 
all alarm events raised remain uncorrelated, amounting 
to tens of thousands of alarm events being active at any 
one time.   

Over time this amounts to a substantial load of data.  
Another concern is that these problems with root cause 
analysis are preventing the development of further 
autonomics particularly in self-healing, and with 
increasing mean-time to human intervention. 

Autonomic Networks in themselves will not be an 
easy goal to achieve, yet the longer term goal of 
Autonomic Communications is much more than this, 
having commonality with Ubiquitous and Pervasive 
Computing, a vision of communications services 
anytime, anyplace, from any device, adapting to the 
user’s current needs and situation.  Effective problem 
determination in the networks will assist in enabling 
other autonomics to advance. 

The introduction of autonomic principles requires the 
monitoring of individual system components through 
sensors and the ability of those components to respond 
to requests through effectors.  Monitoring will typically 
involve the correlation of several related pieces of 
information.  Correlation is important in both self-
assessment (self-awareness) and in the assessment of a 
component’s operating environment (environment 
awareness).  This helps in deciding when action is 
required and what should be done. 

By analogy with the human autonomic nervous 
system, event messages are similar to the electric pulses 
that travel along nerves.  When a fault occurs in an SDH 
network, a series of triggered events are usually reported 
to the element controller (manager).  The behavior of the 
alarms is often so complex that it appears non-
deterministic [31], making it very difficult to isolate the 
true cause of the fault [32].  Yet at this level this is one 
of the primary goals of Autonomic Networks. 

Currently, the skill of the operator is central to 
identifying faults.  So, although automation prevents the 
immediate loss of traffic and preserves the general 
function of the system (as in the SNA), intervention is 
necessary to determine and resolve problems that arise. 
The promise of autonomic networks would bring about a 
significant reduction in the role of the operator. 

IBM concurs with this assessment that root cause 
analysis in complex systems is key to achieving 
autonomics.  In their white paper “Autonomic problem 
determination: A first step towards self-healing 
computing systems” [33] they state that, in effect, 
complexity in problem determination is diluting the 
effectiveness of computing in the corporate 
environment.  The same can be said for communications 
and networks.   

One of the major differences that the vision of 
autonomicity brings to the existing efforts aimed at 
advanced automation (often including AI research) is the 
situated aspect ― the goal being to deal with the 
problem as locally as possible, and within the context of 
the situation.   

Although complex telecoms systems have automated 
fail-over by having alarm event messages passed off to 
an element manager, the vision of Autonomic 
Computing is to have each component with its own 
manager. 
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4.2 Space Flight Systems 

Complexity in Space Systems has been well 
documented [18],[19],[21].  New paradigms in 
spacecraft design are leading to radical changes in the 
way NASA designs spacecraft operations [16]. 
Increasing constraints on resources, and greater focus on 
the cost of operations, has led NASA, and other 
agencies, to use adaptive operations and move towards 
almost total onboard autonomy in certain classes of 
mission operations [17],[18].  

NASA missions, particularly those to deep space, 
where manned craft cannot currently being sent, are 
considering the use of almost wholly autonomous 
decision-making to overcome the unacceptable time lag 
between a craft encountering new situations and the 
round-trip delay (of upwards of 40 (Earth) minutes) in 
obtaining responses and guidance from mission control.     

More and more NASA missions will, and must,
incorporate autonomicity as well as autonomy [19],[20], 
and the Autonomic Computing initiative has been 
identified as having potential to contribute to NASA’s 
goals of autonomy and cost reduction in future space 
exploration missions [18],[19],[20].   

ANTS, Autonomous Nano-Technology Swarm, is a 
NASA concept mission that will launch sometime 
between 2020 and 2030 (“any day now” in terms of 
NASA missions).   The mission is viewed as a prototype 
for how many future unmanned missions will be 
developed and how future space exploration will exploit 
autonomous and autonomic behavior.    

The mission will involve the launch of 1000 pico-
class spacecraft swarm from a stationary factory ship, on 
which the spacecraft will be assembled.  The spacecraft 
will explore the asteroid belt from close-up, giving 
scientists data that heretofore has not been available. 

As much as 60% to 70% of the spacecraft will be lost 
on first launch as they enter the asteroid belt.   The 
surviving craft will work as a swarm, forming smaller 
groupings of worker craft (each containing a unique 
instrument for data gathering), a coordinating ruler, that 
will use the data it receives from workers to determine 
which asteroids are of interest and to issue instructions 
to the workers and act as a coordinator, and messenger
craft which will coordinate communications between the 
swarm and between the swarm and ground control.   
Communications with Earth will be limited to the 
download of science data and status information, and 
requests for additional craft to be launched from earth as 
necessary.  

A current project (FAST) is studying advanced 
technologies for the verification of this incredibly 
complex mission; the reader is directed to [18],[20] for a 
more detailed exposition of the ANTS mission and the 

FAST (Formal Approaches to Swarm Technologies) 
project.   Formal approaches to verification of such 
complex autonomic systems are essential, as all possible 
behavior cannot possibly be determined in advance, and 
no a priori testing plan is likely to be realistic. 

4.3 Towards an Autonomic Grid 

Virtualization of resources such as machine, memory 
storage, and I/O are enabling virtual, collaborative 
organizations sharing applications and data in an open 
heterogeneous environment.  This empowers the 
organization yet also creates a more complex 
infrastructure to manage. 

A grid infrastructure promises seamless access to 
computational and storage resources, and offers the 
possibility of cheap, ubiquitous distributed computing.  
Grid technology is beginning to have a fundamental 
impact on the economy by creating new areas, such as e-
Science, e-Government and e-Health, new business 
opportunities, such as computational and data storage 
services, and changing business models, such as greater 
organizational and service devolution [37],[38].  The 
Grid is a very active area of research and development; 
with the number of academic grids jumping six-fold in 
the last year [41]. 

Historically, the Grid arose out of a need to perform 
massive computation, the current direction demonstrates 
the potential to change the structure of electronic service 
provision and create a new grid service economy. The 
success of the Grid will be founded on the development 
of new grid-enabled software systems and the evolution 
of legacy systems to grid-enabled systems.  There are 
many middleware frameworks for distributed computing, 
many modeling techniques for software artifacts, and 
many development processes for controlling the creation 
of new software systems and managing the evolution of 
existing software systems. 

A fundamental challenge is creating correct, robust, 
flexible and cost-effective grid-enabled software [39].  
The Grid aims to be self-configuring, self-tuning and 
self-healing, similar to the goals of Autonomic 
Computing [40].  Its aim to fulfill the vision of 
Corbato’s Multics [42]– like a utility company, a 
massive resource to which a customer gives his or her 
computational or storage needs [40].  As such, 
Autonomic Computing will be required to provide some 
of the answers to achieve this vision. 

5. Discussion 

There is a need to establish standards and 
mechanisms in order for Autonomic Computing to work.  
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For instance, it is possible to develop a self-healing tool 
with a control loop that constantly monitors the 
applications (processes) running on your laptop [35].  If 
any of these applications (processes) should “hang”, the 
autonomic tool can restart that process.  Yet there is no 
means to inform the process where to restart (unless it is 
designed to do so) ― effectively it’s a process being 
started from fresh with any previous state lost, unless the 
process’s application itself handles this.  There is a need 
for standards for autonomic signals and communications 
to take place not only at this level―from autonomic 
manager to processes running on the managed 
component―but also from autonomic manager to 
autonomic manager.  Allowing standard “autonomic 
signal” routes into processes would raise security issues, 
yet this will need to be part of the self-protection 
autonomic property.   

This implies that all processes effectively need to be 
designed with autonomicity and self-managing 
capabilities in mind (not only from within, but taking 
direction from the external environment).  This not only 
raises issues of standards to achieve this but raises 
questions as to whether current design and development 
approaches meet the needs for developing autonomicity,  
and handling human error due to complexity.  The 
realization of self-managing systems, which will still be 
complex to design, may only move the human error 
aspect from the administrator (who had been manually 
managing the running systems) to the designer. 

The telecommunications domain was discussed as an 
exemplar as its alternative evolution may place it much 
further down this path than the computer industry.  That 
is, its systems have a management layer, with standards 
allowing heterogeneous elements to communicate 
management information.  Consider how often our 
phones go down compared to our PCs or Internet 
connections.  Yet the design of the management layer 
has created a complex system in itself, where, it has been 
claimed, 95% of the event messages under fault 
conditions cannot be automatically correlated, and this 
has created a bottleneck for further advanced 
automation.  

It is essential that the emerging Autonomic research 
community find a way forward to deal with this hard 
problem of root cause analysis from the start and avoids 
this situation. 

The NASA example illustrates a complex system that 
cannot be managed from Earth due to bandwidth limits 
and time delays.  Moreover, it is a complex system 
where decisions need to be made with real-time 
constraints.   Even without bandwidth issues, the system 
would likely be too complex to be managed in real-time 
by human beings.    

Fully autonomous behavior is realistically the only 
alternative.   But, in order for this to be successful, the 

mission must embody the autonomic properties of self-
healing, self-protecting, self-configuring and self-
optimizing.   In short: the mission must be self-
managing.

6. Conclusion 

Autonomic computing is an emerging holistic 
approach to computer system development that aims to 
cope with complexity and bring a new level of 
automation and dependability to systems through self-
healing, self-optimizing, self-configuring and self-
protection functions. 

To illustrate that autonomicity may assist with coping 
with complexity, examples from research in 
telecommunications and space systems were discussed. 

While Autonomic Computing may not be a panacea 
for complex computer system, it clearly does have a role 
to play in overcoming complexity, and offers a 
promising antidote to some of the problems of complex 
systems. 

Open standards and technologies are required for 
Autonomic Computing to reach its goals. The challenges 
of addressing these issues must be taken up by the wider 
computing community.  A remit needs to be established 
to encourage interaction and research among researchers 
and developers in industry, government, and academia, 
in determining standards, techniques, development 
processes and mechanisms that can be exploited in 
creating self-managing systems. 

As Bioinformatics produces even more complex 
applications, the Autonomic Computing initiative will 
have a role to play in ensuring the emergence of better, 
more reliable, and effective systems. 
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