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Fusing Hard and Soft Computing for Fault
Management in Telecommunications Systems

Roy Sterritt, Member, IEEE,and David W. Bustard, Member, IEEE

Abstract—Global telecommunication systems are at the heart
of the Internet revolution. To support Internet traffic they have
built-in redundancy to ensure robustness and quality of service.
This requires complex fault management. The traditionalhard ap-
proach is to reduce the number of alarm events (symptoms) pre-
sented to the operating engineer through monitoring, filtering and
masking. The goal of thesoft approach is to automate the anal-
ysis fully so that the underlying fault is determined from the evi-
dence available and presented to the engineer. This paper describes
progress toward automated fault identification through a fusion
between these soft and hard computing approaches.

Index Terms—Fault identification, fault management, genetic al-
gorithms, hard computing, probabilistic reasoning/networks, soft
computing, telecommunication systems.

I. INTRODUCTION

SOFT computing differs fromhard (conventional)com-
puting in that it is tolerant of imprecision, uncertainty and

partial truth (Lotfi Zadeh) [1]. In general, soft computing aims
to exploit these properties to achieve tractability, robustness
and low cost in computing systems.

Currently, soft computing primarily comprisesneural net-
work theory, fuzzy logic, probabilistic reasoning(incorporating
belief networks),genetic algorithms, chaos theory, and sec-
tions of learning theory. It is an expanding field however and
a consensus as to the exact scope of the subject has not been
reached [2].

Soft computing offers a toolbox of techniques that can be used
in combination to address problems in the computing domain
[3]. With this perspective, the task is to find the complementary
techniques that best fit each specific application [4].

Hard computing techniques [5] are typically easier to apply.
Also the stability of resulting solutions is highly predictable and
the computational burden of practical algorithms is typically
low [6]. Just as soft computing brought together related tech-
niques for greater benefit [7], taking an even broader perspective
can bring further gain [8]. The purpose of this paper is to con-
sider the combined use of hard and soft computing techniques
in the domain of fault management in telecommunication sys-
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TABLE I
FAULT MANAGEMENT NOMENCLATURE

tems. Definitions of the necessary technical terms and acronyms
used in the paper are summarized in Table I. Alarm events used
in illustrative examples are summarized in Table IV.
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TABLE II
AN EXAMPLE SET OF ALARM EVENTS

TABLE III
EXAMPLE OF OTHER ALARMS GENERATED FROM COMMS FAIL ALARM

II. OVERVIEW OF TELECOMMUNICATIONS SYSTEMS

AND FAULT MANAGEMENT

High-speed broadband telecommunication systems are built
with complex management systems and extensive redundancy
to ensure robustness. The presence of a fault may be detected
by the offending network component, or its parent, and the con-
sequences of that fault may also be reported by other network
elements. This often results in a large number of alarm events
being raised and cascaded to the network Element Controller.

The behavior of the alarms is so complex it appears nondeter-
ministic [9], making it very difficult to isolate the true cause of
the fault [10]. Failures in the network are unavoidable but quick
detection and identification of faults is essential to ensure ro-
bustness. To this end the ability tocorrelatealarm events, iden-
tifying those that are related, is very important [11].

The major telecommunication equipment manufacturers deal
with alarm correlation through alarm monitoring, filtering and
masking as specified by ITU-T [12] and other standards bodies.
Resulting rule-based diagnostic systems provide assistance to
the operator whose expertise is then required to determine the
underlying fault (or faults) from the correlated set of alarms re-
ported.

There are two real world concerns in handling faults:

1) coping with the sheer volume of alarm event traffic re-
sulting from a fault;

2) locating the cause of the fault quickly and efficiently from
these symptoms [13].

Alarms monitoring, filtering and masking reduce the number
of events to help address the first concern. The skill of the op-
erator is central to addressing the second.

This description implies that fault detection is a two-stage
process but that need not be the case. Artificial intelligence (AI)
techniques can be applied directly to fault symptoms to help
locate the source of faults. Telecommunication manufacturers
have been reluctant to make full use of AI techniques, however,
especially those with an “uncertainty” element. Rule-based ap-
proaches dominate, largely because the conclusions drawn are
deterministic, and thus can be traced and understood by do-
main experts. Rule-based approaches, however, cannot easily
handle uncertainty and pose substantial maintenance problems

[14]. Techniques to assist in the discovery and development of
rules in heterogeneous network environments are also essential.

This paper looks at techniques across soft and hard computing
that might be used beneficially in fault handling. What matters
most is improving effectiveness and at the very least the softer
techniques can be offered as additional support to more tradi-
tional approaches to fault detection.

III. I NDUSTRIAL APPLICATION OFFAULT MANAGEMENT

A fault is a malfunction that has occurred in either the hard-
ware or software of the network. This can be due to some ex-
ternal event such as, for example, a fiber cable being severed, or
an internal fault, such as a component failure.

An eventis an occurrence on the network. Events that relate
to the management of the network are recorded by the Element
Controller. In older releases each recorded event was an alarm.
This is no longer the case; other examples of events includeuser
loginsanduser actionssuch asswitch protection.

There are numerous types of alarm event that may be gener-
ated within a network element. For instance, a Nortel Networks
FiberWorld multiplexer (TN-1X, release 8) has 88 possible
alarm events. Other releases and other products have different
possibilities. An example of a critical alarm isComms fail—an
alarm raised by the Element Controller if it cannot maintain a
communications channel to another network element.

An alarm exists for a period of time so under normal circum-
stances analarm presentevent will be accompanied by analarm
clear. In the event records shown in Table II, for example, the
Comms failalarm exists for six minutes and 29 seconds.

Each alarm type is assigned a severity level ofcritical, major
or minorby the network management system, depending on the
severity of the event indicated by the alarm type. In the example,
the alarm typeComms failhas a critical severity level.

The instance of a fault can cause several alarm events to be
raised from an individual network element. Also a fault may
trigger numerous secondary alarms in other network elements
across the network. For example, theComms failalarm may
trigger an embedded control channel communications alarm
(Qecc-Commsfail), or even laser alarms, depending on the fault
and configuration. In theComms failalarm example (Table II),
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TABLE IV
ALARM EXPLANATIONS

otherQecc-Commsfail alarmswere raised (Table III), indicating
that thenetworkelementcannotcommunicatewith itsneighbors.

A. Alarm Monitoring, Filtering and Masking

Alarms can grow exponentially in the network under certain
fault conditions; the larger the network the greater the number
of alarms produced. It is therefore essential that the network
elements provide some correlation of these alarms so that the
Element Controller, or a higher level network manager, is not
overwhelmed and that only those with high priorities are trans-
mitted.

This is handled in three sequential transformations:alarm
monitoring, alarm filtering andalarm masking, as summarized
schematically in Fig. 1.

Alarm monitoring takes the raw state of an alarm and pro-
duces amonitoredstate. Alarm monitoring is enabled/disabled
for each alarm instance. If monitoring is enabled, then the mon-
itored state is the same as the raw state. If monitoring is dis-
abled then the monitored state isclear—that is the alarm is sup-
pressed.

Fig. 1. Alarm monitoring, filtering and masking sequential transformations.

Alarm filtering is also enabled/disabled for each alarm in-
stance. An alarm may exist in any one of three states:present,
intermittentor clear, depending on how long the alarm is raised.
Assigning these states, by checking for the presence of an alarm
within certain filtering periods, determines the alarm filtering
imposed.

Alarm masking is designed to prevent the unnecessary re-
porting of alarms. The masked alarm is inhibited from gener-
ating reports if an instance of its superior alarm is active and
fits the masking periods. Amasking hierarchydetermines the
priority of each alarm type. Alarm masking is also enabled/dis-
abled individually for each alarm. If an alarm changes state at
any time the network management system is informed.

The simple example above and its associated processing, il-
lustrate that fault determination is not a straightforward process.
There are numerous combinations of possible alarm events, with
differing arrival orders at the Element Controller. Added to this
complexity is the fact that within the same physical network
configuration, individual alarms can be configured in different
states such asmasking disabledor masking enabledand the net-
work itself may be switched between different levels of protec-
tion, resulting in different symptoms being presented under the
same fault conditions.
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Fig. 2. Output from NxGantt, an event correlation analyzer.

B. Alarm Correlation

At the heart of fault management isalarm correlation[9],
[11]. The alarm events may be the first indication that a fault has
occurred. Since the primary concern is to avoid network traffic
interruption, a quick diagnosis is essential.

Alarm correlation is a conceptual interpretation of multiple
alarms, giving them a new meaning [11] and from that, poten-
tially, creating derived higher order alarms [15]. Jakobson and
Weissman proposed correlation as a generic process involving
six operations:compression, suppression, count, Boolean pat-
terns, generalization, andspecialization.

Some of the definitions of these operations that follow use the
set of alarms shown in Fig. 2. This is part of a screenshot of an
alarm analysis tool [16] that displays an event log’s alarm events
(horizontal bars) against user action events (vertical lines) over
time. It shows a small time window on a multiplexer (Enfield)
that has alarms active on all 16 ports on the tributary card in slot
2, on November 9 1998; for example, the alarm on slot 2 port 8
was active from 2:28:36 pm to 2:29:30 pm.

1) Compression : Multiple occur-
rences of an alarm can be compressed into a single alarm. In the
example, PPI-AIS, anAlarm Indication Signal(AIS) has been
detected in the incoming traffic. In the test configuration used it
is common practice to connect the tributary ports together. Thus
the PPI-AIS alarms are the same and can be compressed to one
PPI-AIS alarm.

2) Suppression : A low-pri-
ority alarm may be inhibited in the presence of a higher alarm.
This is generally referred to asmasking. A consequence of
the PPI-AIS in Fig. 2 is that an INT-TU-AIS alarm is raised
briefly. This is of higher priority so the PPI-AIS alarm can be
suppressed.

3) Count : A specified number of occurrences
of an alarm can be substituted with a new alarm. If the alarms
in Fig. 2 were not from a test configuration the 15 occurrences
of PPI-AIS could indicate a fault with the tributary card. If so,
an NE-CardFail alarm could be substituted for the 15 PPI-AIS
alarms.

4) Boolean Pattern : A new
alarm can be substituted for a set of alarms satisfying a
Boolean pattern. An MS-AIS alarm in a network indicates that

an AIS alarm has been detected in the traffic address, implying
a failure at the far multiplexer. If AU-AIS injection is enabled
for the MS-AIS alarm then MS-FERF will always be raised.
Thus, MS-AIS MS-FERF AU-AIS.

5) Generalization : An alarm can be
generalized to its super class. PPI-AIS is the lowest of the AIS
alarms. It may be superseded by other higher priority AIS alarms
(INT-TU-AIS, TU-AIS, INT-AU-AIS, AU-AIS).

6) Specialization : An alarm can be
specialized to a subclass. Alarm specialization is the opposite of
alarm generalization and provides for substitution of an alarm
by a more specific subclass of the alarm. In telecommunications,
alarms are usually thought of in terms of generalizations—that
is, higher order alarms mask lower order alarms. When looking
for the root cause of an alarm, however, consideration of the
low-level alarm can be helpful.

This section has considered how alarm correlation can reduce
the number of alarms presented under fault conditions to the
operator. This reduced set of symptoms may also be used by
soft computing techniques to predict the underlying fault(s).

IV. FUSING HARD AND SOFT APPROACHES

TO FAULT MANAGEMENT

Ideally a fault management system should be able to facilitate
fault prediction. There are two aspects to prediction [18].

• Fault identification/diagnosis—prediction of the fault(s)
that have occurred from the alarms present.

• Behavior prediction—warn the operator in advance of
possible severe faults inferred from the alarms that are
appearing.

Soft computing techniques can be used in both cases.

A. Soft Computing in Fault Management

Artificial neural networks is one of the main techniques
in soft computing. Neural networks have given good pre-
dictive performance in several application areas, including
pattern recognition, signal processing, time series processing,
unsupervised clustering, visualization of complex data, data
compression, control problems and image processing.

Their possible use in fault management has been considered
in [19]–[22]. Specifically, neural networks can be used to

• identify fault-prone modules in software;
• learn index rules and adaptation functions for communi-

cation network fault resolution;
• identify faults in switching systems;
• act as a preprocessor for a fault diagnosis expert system.

Comprehensibility, however, is an issue [23] and telecommu-
nication companies are reluctant to use such “black box” tech-
niques in their fault management systems [24].

B. Probabilistic Networks for Fault Management

An alternative to neural networks is Bayesian belief networks
(BBNs). These use probabilistic reasoning. BBNs meet the
requirements of comprehensibility and transparency through
their graphical structure and mathematical foundations. The
graphical representation, which can be easily interpreted, is
particularly attractive for appreciating and communicating fault
symptom relationships (Fig. 3).
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Fig. 3. Example induced probabilistic network (Bayesian belief network) from
alarm data for fault management.

Capturing the alarm data and extending it with fault nodes in
a BBN provides the basis of an expert system that can deal with
imprecision and uncertainty. The technique can infer possible
faults even when the available information is incomplete or in-
accurate.

BBNs consist of a set of propositional variables represented
by nodes in a directed acyclic graph. Each variable has a speci-
fied value taken from a set of possibilities. Directed arcs repre-
sent the probabilistic relationships between nodes. The absence
of an arc between nodes indicates their independence.

The BBN can be used for deduction in fault management. For
given alarm data, it will determine the most probable cause(s)
of the supplied alarms, thus enabling the process to act as a fault
identification or prediction system.

The graphical structure of potential causal relationships can
be considered a complex form of alarm correlation. The alarms
are connected by edges that indicate the probabilistic strength of
correlation. It is created byinduction, from stored alarm event
data. Additionally, faults can be incorporated as nodes in the
belief network. The belief network is then used todeducethe
cause of faults from live alarm events.

1) Learning the Graph—Induction:In general, the structure
of a Bayesian network is developed from a database of informa-
tion on the frequency of occurrence of combinations of different
variable values—the alarms in this case. The goal is to induce the
networkstructure fromthedata.Heckermanprovidesausefulde-
scription of the problem [25]. There has been considerable work
reported in the literature in this area, including that of Cooper and
Herskovits who developed a commonly used algorithm for in-
duction [26]. Unfortunately the general problem is NP-hard [27].
For a given number of variables there are a very large number of
potential graphical structures that can be induced. In principle, to
determine the best structure the data should be fitted to each pos-

sible graphical structure, that structure scored, and the structure
with the best score selected. This is expensive, so algorithms for
inducing networks from data need to take a more heuristic ap-
proach as the number of variables grows.

Specifically, there are possible independence
graphs for a -dimensional random vector. So, for example,
there are 64 probabilistic models for , and 32 768
models for , and 268.4 million for . Thus, without
applying any prior knowledge, the previously mentioned Nortel
multiplexer with 88 alarm types has approximately 9.22
possible belief networks.

Fig. 3 is an example of a network induced from alarm data.
The occurrence of an alarm changes the probabilities. For ex-
ample, if alarm type LP-PLM is observed, this increases the
probability that alarm PPI-UnexplSignal will be observed.

2) Using the Graph—Deduction:Once the BBN graph has
been developed [Fig. 4(a)] it can be used as the knowledge struc-
ture of an expert system [Fig. 4(b)]. The cause and effect rela-
tionships (the correlations between the alarms) may be deduced
or inferred from given alarm data to determine the underlying
fault or fault possibilities.

Once an alarm has been reported the effects of that observa-
tion are propagated throughout the network and the other mar-
ginal probabilities are updated. In simple or special case belief
networks the marginal probabilities (likelihoods) of each state
can be calculated from the knowledge of the joint distribution
using the product rule and Bayes’ theorem. Some algorithms
calculate the marginals exactly but the calculation on graphical
structures is NP-hard [28]. Therefore many researchers have de-
veloped algorithms that produce an approximate answer, sacri-
ficing accuracy for a lower computational overhead. These ap-
proximate algorithms have resulted in reasonable performance
for inference on belief networks that contain hundreds or even
thousands of nodes.

In fault management the BBN should be seen as an addition
to existing rule-based approaches rather than a replacement for
them. In effect, the BBN sits above the current system manager
using the reduced set of alarms that is normally presented to the
operator [Fig. 4(b)], and offering advice on possible faults.

This fusion means that when learning (inducing) the graph-
ical structure and parameters of a BBN, the volume of alarm
data may be reduced by using first-stage alarm correlation (in
this case the rule base system). The expert system fault iden-
tification approach—in this case the deduction from the belief
network—then operates on the reduced set of alarms. As a re-
sult, the BBN is much less complex which has the additional
advantage of being more likely to gain user acceptance.

C. Genetic Algorithms for Fault Management

Section IV-B1 discussed the induction or learning of belief
networks. A soft computing algorithm to induce cause and ef-
fect networks (probabilistic reasoning and specifically BBNs)
has been developed using a genetic algorithm [29]. The Cause
and Effect Genetic Algorithm (CAEGA) manipulates BBNs to
produce (breed) new, potentially better, belief networks. It has
given good results when applied to fault management telecom-
munications data [30]. This is used on large amounts of histor-
ical fault management data rather than a set of data specifically
collected from a known fault episode on the network.
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Fig. 4. Fusing soft computing and hard computing for fault management. Two target systems are depicted: (b) one incorporating a soft computing solution within
the network manager and the other (d) incorporating rules discovered via soft computing techniques. (a) Learning and (c) discovery processes for both approaches
may be complementary and cyclic in nature.

The algorithm takes as input a data (contingency) table, the
variables (nodes) and any existing beliefs. Each variable is speci-
fiedby itsname,adescription,and thenumberofvalues that it can
take, together with a descriptor for each value. In the data table,
each tuple is replaced by a vector of integer values—one integer
for each value—and the number of occurrences of each distinct
vector is also recorded. The optional user-specified list of belief
network structures, defined by child–parent lists, may have been
generated by other algorithms or be the beliefs of an expert.

The algorithm works in the following way. Internally, breeders
are specified by a square matrix of binary values in which a unit
value indicatesaparent–child relationshipbetween twovariables
and a zero indicates that there is no direct relationship. An initial
breeding stock is created from the breeders specified in the input
data file and by random creation of graphs that represent the be-
lief network structure. BBNs require acyclic graphs but not all
binary matrices define valid acyclic graphs, thus any invalid ma-
trices created by breeding or mutation are pruned until they are
valid. At eachgeneration, pairs ofbreedersare selected randomly
to exchange genetic material and thereby create new breeders.
Others are selected for random mutations. Scoring is performed
using theposteriorprobability functionofCooperandHerskovits
[26]. However, there is a problem of overfitting models when the
saturatedmodel isaperfectmatch to thedata.Apenalty isapplied
to the score to overcome this problem by limiting the number of
parents each child may possess.

Although not considering the work as soft computing, Lar-
rañaga has performed extensive research in the area of learning
belief networks by employing genetic algorithms. In 1997, he
also looked at using Cooper and Herskovits’ [26] K2 algorithm
in a genetic algorithm [31].

D. Using Soft Computing for Rule-Discovery

In the suggested approach, soft computing is not replacing the
conventional rule-based approach but fusing with it. Thus the
problems associated with rule-type systems still remain, namely

• the knowledge acquisition bottleneck;
• the inability to handle uncertainty;
• once developed, the burden of maintaining the rule-base.

Soft computing techniques can assist with such problems by
being used for rule discovery as suggested in Fig. 4(c) and (d).
It is also proposed that the induction of cause and effect graphs
from the data be used. Just as a rule base can be converted into
a belief network [32], strong relations from the belief network
can be converted into rules. Thus the two approaches are com-
plementary, leading to a cyclic process of refinement when the
system is under development or in maintenance [Fig. 4(a) and
(c)] [33].

V. CONCLUSION

Downtime in a network not only results in a loss of revenue but
can lead to serious financial contractual penalties. It is therefore
not surprising that network operators are extremely keen to
remedy faults as quickly as possible. To this end not only is the
identification of faults critical but a prediction of any likely faults
would greatly assist in managing and assessing maintenance
strategies.

Effective fault management means dealing efficiently
with the sheer volume of alarm event traffic that occurs and
helping the engineer locate a specific fault from the symptoms
presented. The rule-based approach of monitoring, filtering
and masking, currently used in telecommunication systems
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successfully reduces the number of alarms for analysis but
gives little further guidance on the source of a fault.

This paper considered how soft computing techniques might
be used to enhance the traditional hard approach. Specifically,
it presented the use of Bayesian belief networks and genetic
algorithms to supplement a rule-based approach.

In the future, the present convergence between the traditional
telecommunications industry and the data communications
market is likely to be viewed as only the starting point of the
merging of computing and telecommunications. From this
perspective every computer or device connected to a network
can be viewed as a network element potentially raising its own
alarm events resulting in even more complexity. The need for
improved techniques, such as those suggested in this paper,
will therefore become ever more acute.
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