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Abstract 

At the heart of the Internet revolution is global 
telecotnmunication systems. These systems, initially 
designed for  voice trafJic, provide the vast backbone 
bandwidth capabilities necessar)l for  Internet trafJic. 
They have built-in redundancy and complexity to ensure 
robustness and quality of service. To facilitate this, this 
requires complex fault identification and management 
systems. Fault identification and management is 
generally handled by reducing the amount of alarm 
events (symptoms) presented to the operating engineer 
through monitoring, filtering and masking. The ultimate 
goal is to determine and present the actual underlying 
fault. While en-route to automated fault identification it is 
useful to derive rules and techniques to attempt to present 
less symptoms with greater diagnostic assistance. With 
these objectives in mind computer-assisted human 
discovery and human-assisted computer discovery 
techniques are discussed. 

[2] and other international standard bodies, with rule- 
based type systems for assistance to the operator. Yet 
often it  is left to the operator’s expertise to determine the 
actual fault or multiple-faults from the filtered set of 
alarms reported. 

1.2. Event Correlation 

At the heart of alarm event correlation is the 
determination of the cause. The alarms represent the 
symptoms and as such, in the global scheme, are not of 
general interest once the failure is determined [3]. There 
are two real world concerns: ( I )  the sheer volume of alarm 
event traffic when a fault occurs; ( 2 )  the cause not the 
symptoms. 

Alarm monitoring, filtering and masking meet criterion 
(l) ,  which is vital. They focus on reducing the volume of 
alarms but do not necessarily meet criterion (2) to 
determine the actual cause - this is left to the operator to 
resolve from the reduced set of higher priority alarms. 
Ideally, a technique that can tackle both these concerns 
would be best. 

1. Introduction 
1.3. Towards Intelligent Fault Management 

1.1. Fault Management 

High-speed broadband telecommunication systems are 
built with extensive redundancy and complex management 
systems to ensure robustness. The presence of a fault may 
not only be detected by the offending component and its 
parent but the consequence of that fault discovered by 
other components. This often results in  a net effect of a 
large number of alarm events being raised and cascaded to 
the element controller. 

The behaviour of the alarms is so complex it appears 
non-deterministic [ I ] .  It is very difficult to isolate the true 
cause of the fault. Failures in the network are unavoidable 
but quick detection and identification of the fault is 
essential to ensure robustness. To this end the ability to 
correlate alarm events becomes very important. 

The major telecommunication equipment 
manufacturers deal with alarm correlation through alarm 
monitoring, filtering and masking as specified by ITU-T 

A technique that can suggest the fault and not just  deal 
with the sheer volume of alarm event traffic when a fault 
occurs would be ideal. AI offers that potential and has 
been and still is an active and worthy area of research to 
assist in fault management. 

Yet telecommunication manufacturers have shown 
reluctance in incorporating AI, in particular those 
techniques that have an ’uncertainty’ element, directly into 
their critical systems. Rule-based type systems h.ave 
achieved acceptance largely because the decisions 
obtained are deterministic, they can be traced .and 
understood by domain experts 

1.4. Rule Development and Maintenance 

The time to market and the R&D lifecycle of these 
products are continuously being squeezed while at the 
same time market demands for features and functionality 
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increase with each release. It is also the nature of the 
domain that customers expect legacy support with the new 
systems as well as multi-vendor support. 

This not only creates challenges for rule-based systems 
development but also creates a substantial rule-base 
maintenance burden [4]. As such techniques to assist in 
discovery and development of rules in heterogeneous 
network environments is also essential. 

1.5. The Challenge 

There is a predicament. AI would seem to offer the 
potential of achieving automated fault diagnosis for these 
complex systems while there is doubt if i t  would be 
accepted as the engine within the fault management 
system. 

While en-route to automated fault identification and 
with the previously mentioned domain challenges in mind 
i t  is useful to utilise AI to derive rule discovery techniques 
to attempt to present less symptoms with greater 
diagnostic assistance. 

As such computer-assisted human discovery and 
human-assisted computer discovery techniques are 
discussed. 

2. Human and Computer Discovery 

It may be proposed that a flaw in data mining or 
Knowledge Discovery (KD) is that it is not user-centered. 
It would be helpful to visualise the data at all stages to 
enable thc user to gain trust in the process and hence have 
more confidcnce in the mined patterns. The 
transformation from data to knowledge requires 
interpretation and evaluation, which also stands to benefit 
from multi-stage visualisation of the process [5]. 

2.1. Computer-aided Human Discovery 

The aim is to discover hidden knowledge, unexpected 
patterns and new rules from data mountains. Visualisation 
techniques of vast amounts of data allow the remarkable 
perceptual abilities that humans possess to be utilised, 
such as the capacity to recognise images quickly, and 
detect the subtlest changes in size, colour, shape, 
movement or texture - and thus potentially discover new 
event correlations in the data. 

2.2. Human-aided Computer Discovery 

Data mining (discovery algorithms) may reveal hidden 
patterns and new rules yet these require human 
interpretation to transform them into knowledge. 

The human element attaches a more meaningful insight 
into the decisions allowing the discovered correlations to 
be coded as useful rules for fault identification and 
management. 

2.3. A Three-Tier Discovery Process 

Computer-assisted human discovery and human- 
assisted computer discovery can be incorporated together 
via a three tier process, specifically providing a 
mechanism for discovery and learning of rules for fault 
management. 

The tiers are; 
Tier 1 - Visualisation Correlation 
Tier 2 - Knowledge Acquisition or 

Tier 3 - Knowledge Discovery Correlation 
Rule Based Correlation 

The top tier (visualisation correlation) allows the 
visualisation of the data in several forms. The 
visualisation has a significant role throughout the 
knowledge discovery process, from data cleaning to 
mining. Therefore allowing analysis of the data with the 
aim of identifying other alarm correlations (knowledge 
capture). The second tier (knowledge acquisition or rule- 
based correlation) aims to define correlations and rules 
using more traditional knowledge acquisition techniques - 
utilising documentation and experts. The third tier 
(knowledge discovery correlation) mines the TMN 
(Telecommunications Management Network) data to 
produce more complex correlation candidates. 

The application of the 3-tier process is iterative and 
flexible in nature. The visualisation tier may require the 
knowledge acquisition tier to confirm its findings. 
Likewise visualisation of the Knowledge Discovery (KD) 
process could facilitate understanding of the patterns 
discovered. 

3. Correlations and Discoveries - The Process 

3.1. Correlation Discovery via Visualisation 

Knowledge Discovery is considered to be “the non- 
trivial extraction of implicit, previously unknown, and 
potentially useful information from data” [6].  This 
implies a focus only on the discovered information, yet 
the current opinion is that KD means more than this. KD 
refers to the over-all process of discovering useful 
knowledge from data, while data mining refers to the 
application of algorithms for extraction purposes [7]. 
Brachman and Anand present a process that includes human 
intervention [8]. Although autonomous KD may be 
desirable in the long run this is not the current state of 
affairs. It has therefore been highlighted that KD 
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researchers need to place more emphasis on the overall 
KD process and on tools to support its various stages [9]. 

It is prevalent in  the literature that upon engaging in 
real-world discovery tasks it has been found that they can 
be extremely complex [8]. Adding visual tools to the 
process can reduce this complexity by facilitating 
understanding of the data and patterns discovered. 

Visualisation applied to KD can offer 'human-assisted 
computer discovery' and 'computer-assisted human 
discovery'. Such a visual environment, by reducing the 
time to understand complex data, would enable practical 
solutions to many real world problems to be developed far 
more rapidly than either human or computer operating 
independently [9]. 

As such there are two distinct roles for the visualisation 
tier; (1) specifically to facilitate human discovery of 
correlations/potential rules and (2) visualising the KD 
process (tier 3). 

Figure 1 portrays how visualisation tools and 
techniques can enable discovery of potentially useful 
correlations between events in the telecom data. Those 
that hold up to scrutiny could then be developed into rules 
for a fault management system or other diagnostic tool. 

4 3 

Figure 1. Discovering Rules through Visualisation - 
generic view of tier 1 

The tools developed are; 
- Event Analyser - to facilitate the study of the 

frequency of events 
- Stimuli-Event Correlation Analyser - to facilitate 

the study of the events over time 
- Contingency Table Analyser - to facilitate the 

study of the frequency of events occurring within 
the same time period 

- Cause and Effect Graph Analyser - to facilitate the 
study of the mined probabilistic network of events. 

3.2. Correlation Discovery via Knowledge 
Acquisition 

Many of the problems encountered using traditional 
Knowledge Acquisition (KA) and Rule-Based Systems 
(RBS) such as; the KA bottleneck, their inability to  handle 
uncertainty well and the "maintenance burden" have 
emphasised the success of data mining. Yet there is still a 
place for it in a discovery process. To  move from 
discovered patterns (event correlations), be they through 
visualation or data mining, to knowledge (interruption, 
validation and coded rules) will require consultation with 
experts and/or documentation. 

KA also offers the potential of discovering implicit 
hidden knowledge from experts or documentation that can 
also form the basis of rules for a fault management system 
(Figure. 2). 

Figure 2. Discovering Rules through Knowledge 
Acquisition - generic view of tier 2 

3.3. Correlation Discovery via Knowledge 
Discovery and Data Mining 

As has been stated data mining deals with the 
discovery of hidden knowledge, unexpected patterns and 
new rules from large databases and that i t  is now generally 
considered as the discovery stage in a much larger process 
[9][7] - Knowledge Discovery (KD). These discoveries 
could be harnessed for a fault management system (Figure 
3). Adriaans and Zantinge presents a comprehensive 
introduction for undertaking Data Mining and KD, 
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including all the stages; , Data selection, Cleaning, 
Enrichment, Coding, Data Mining, and Reporting [ 101. 

Rules could be written from mined results from such 
tools as Clementine. For example; when a Comms fail 
alarm occurs it is likely a Qecc-CommsJail alarm will be 
injected into the network. This information may then be 
encoded as a rule. 

-. ~ . ... .I' 
* i  .... .; ,, 

'\: ... ) 

Figure 3. Discovering Rules through Data Mining - 
generic view of tier 3 

3.3.1 Mining rules for other uses. The emphasis so far 
has been on using the discovered and developed rules for 
inclusion in a fault management system. Yet the approach 
is open to developing rules for different implementations 
for instance a rules system for the testing environment. 

Complementary research [ 111 which data mines 
probabilistic networks / cause and effect graphs [12] (as 
opposed to rules) does deal with the previously mentioned 
criteria (volume of alarms and cause not the symptoms). 
Yet the approach does have its problems that could 
benefit from a pre-processing alarm correlator [ 131. 

The cause and effect graph can be considered a 
complex form of alarm correlation. The alarms are 
connected by edges that indicate the probabilistic strength 
of correlation. Yet the cause and effect network can 
contain more than just alarms as variables - actual faults 
can be included as variables. 

Data Mining is used to produce the probabilistic 
network by correlating offline alarm event data, and 
deducing the cause using this probabilistic network from 
live alarm events. 

In this case, as in many cases, the structure of the 
graphical model (the Bayesian belief network - a 
specialised form of probabilistic network) is not known in 
advance, however a database is available which includes 
information concerning the frequencies of occurrence of 

combinations of different variable values (the alarms). 
Therefore the problem is that of induction - to induce or 
learn the structure from the data. Heckerman details a 
good description of the problem [ 14][ 1.51. 

There has been a lot of research involved with the 
induction of probabilistic networks for example Cooper 
and Herskovits' algorithm [ 161. Unfortunately the general 
problem is NP-hard [ 171. For a given number of variables 
there is a very large number of potential graphical 
structures which can be induced. To determine the best 
structure, then in theory, one should fit the data to each 
possible graphical structure, score the structure, and then 
select the structure with the best score. Consequently 
algorithms for learning networks from data are usually 
heuristic, once the number of variables gets to be of 
reasonable size. 

In practice, when it comes to learning the cause and 
effect graph, the volume of event traffic and correlation of 
alarms can be reduced by simple first stage correlation 
(the discovered rules defined from all tiers). The expert 
system approach (in this case the deduction from the 
probabilistic network) could then handle the remaining 
more complex problems, taking advantage of the much 
reduced and enriched stream of events. 

3.3.2 Developing rules from the probabilistic network. 
Another source of rules is to actually extract correlations 
from the induced probabilistic network for those variables 
that have an exceedingly high probability of cause and 
effect. 

4. Case Study 

4.1. An experiment - inducing simple commands 
to simulate faults 

The following case study demonstrates the simulation 
of simple faults into a test network via a command line 
user Interface (CLUI) on the element controller. The 
network consists of two multiplexers named Enfield and 
Acton. The faults were induced on Enfield. The sample 
commands shown demonstrate the disconnection of a 
tributary port 1 (in slot 2 of the multiplexer) then its 
reconnection after a time period, followed by the 
disconnection and reconnection of port 2. In the sample 
test, ports 3 - 8 were also disconnected then after a time 
period reconnected in the same way. 

Cmd=c/n/d S6-kl118rS7-klIl S2-I 
Cmd=c/n/c S7-I-Jl-K1 1 I&S6-I-JI-K1 1 I S2-1 
Cmd=c/n/d S6-kl12&S7-kl 12 S2-2 
Cmd=c/n/c S7-1-JI-KI 12&S6-1-JI-K112 S2-2 

Thus in total 16 commands were performed (8 sets of 
disconnection and reconnections). Table 1 displays a 
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breakdown of the event types that were recorded in the 
event log on the element controller during this test. Note 
no other activity was occurring on the network during the 
experiment. 

Table 1. Breakdown of recorded events during 
experiment 

~~~ 

Event TvDe Total 
Alarm Events 
Login Events 
User Action Events 

476 
106 
16 

Message Tool Events 159 
System Error Events I 
Total number of events 758 

For 16 commands (recorded as user action events) 476 
alarms instances occurred, yet only 5 actual alarm types 
transpired which are shown in table 2. 

Table 2. Alarm types that occurred during the 
experiment 

Alarm Event Explanation 
Type 
PPI-AIS PDH Physical Interface - 

Alarm Indication Signal 

PPI- PDH Physical Interface - 
Unexp-Signal Unexpected Signal 

LP-PLM Lower order Path - Path Label 
Mismatch 

INT-TU-AIS Internal - Tributary Unit - 
Alarm Indication Signal 

INT-TU-LOP Internal - Tributary Unit - 
Loss of Pointer 

4.2. Visual Correlation - Computer-assisted 
Human Discovery 

In this simple experiment, approximately 10,100 lines 
were recorded in the event log as 758 event records. It 
can be easily envisaged that the event log grows into a 
data mountain over a relatively short time period and thus 
requires visualisation and mining techniques. 

Figure 4 displays a possible correlation discovery 
through using one of the developed visualisation tools [SI. 
The alarms' life span (horizontal Gantt bars) is between 
the commands disconnect and connect (vertical command 

bars) indicating a causal effect. Also note that when PPI- 
Unexp-Signal is active on Enfield so is LP-PLM on 
Acton presenting a possible correlation. 

On investigating the standards specifications it is found 
that a PPI-Unexp-Signal causes no impacts nor has no 
consequent actions. LP-PLM affects traffic and can have 
consequent actions of injecting an AIS and LP-RDI alarm 
depending on configuration (consequent actions for LP- 
PLM can be enabled/disabled, the default being disabled). 
Thus there is no explicit connection defined for these two 
alarms. 

Figure 4. Screenshot of NxGantt with comments 
displaying a human discovered correlation 

4.3 Defining a rule from the discovered 
Correlation 

Since this human discovered correlation is an 
unexpected pattern it may be considered of interest and be 
coded as a rule for a commercial fault management system 
or other diagnostic tool. The First stage Alarm Correlator 
(FAC) [ 131 is a part of a prototyped fault management 
system where simpler correlations that initially tended to 
be defined from knowledge acquisition (tier 2 - figure 2) 
are handled. In the prototype more complex correlations 
would be passed onto the deduction component (inference 
engine) that has causal information about the alarms (a 
Bayesian Belief Network -BBN) at its core. The causal 
information is initially produced and updated via data 
mining (tier 3 - figure 3). The rule below demonstrates 
how the discovered correlation can be coded for the FAC. 
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rule portDisabled 
{ 
when 
I 
?x Form(alarm==PPI-Unexpl-Signal; 

?y Form(alarm==LP-PLM; port==?p; 
port==?p; mux==?a); 

mux==?b) ; 
1 
then 
{ 
retract ?x 
retract ?y 
assert ? z  Form(JigA1m-portDisabled, 

port==?p, mux==?int) ; 

I 
1 

The rule states that when PPI-Unexpl-Signal and LP- 
PLM occur together on the same port number but different 
multlplexers then correlate these alarms raising an internal 
alarm JigAlm-portDisabled. The internal alarm in this 
prototype is a trigger to provide diagnostic assistance. 

Since the rule is coded using ILOG Rules it  is feasible 
that i t  could be adapted and used in any of the commercial 
fault management systems that use ILOG Rules as their 
chosen component library. 

4.4. Data Mined Correlation - Human-assisted 
Computer Discovery 

The induction of a probabilistic network from the set of 
data produced the following results (Figure 4 & Table 3). 

INT-TU-LOP INT-TU-AIS 

LP-PLM 

PPI-Unexp-Signal PPI-AIS 

Figure 5. Screenshot of NxGantt with comments 
displaying a human discovered correlation 

The algorithm used was based on Chow and Liu [ 181 
the mutual information between pairs of variables is 
calculated and those variables with the highest value are 
connected. The algorithm continues with successive 

elimination of variables. It has the advantage of simplicity 
but generates only tree structures. 

Table 3. Probabilistic network induction results 

Freauencies of Alarm Occurrence 

1, INT-TU-LOP, 0 
2, PPI-Unexp-Signal, 8 

4, INT-TU-AIS, 15 

Strength of EdPes (mutual information score) 
0 >:2, 0.121383 
2 >:3, 0.1 13237 
0 >:3, 0.0832668 
0 > 4, 0.0676941 
3 > 4. 0.0527 12 

0, PPI-AIS, 192 

3,LP-PLM, 8 

Probabilistic Connections 
p(PP1-Unexp-Signal I PPI-AIS) 
p(LP-PLM I PPI-AIS, PPI-Unexp-Signal) 
p(INT-TU-AIS I PPI-AIS, LP-PLM) 

Likely candidates for rule development based on the 
strength of connection are PPI-Unexplained-Signal & 
LP-PLM (which matched the visual correlation) and PPI- 
Unexplained-Signal & PPI-AIS. 

Upon consultation with engineers it was discovered 
that the PPI-AISs strong connections are specific to the 
test configuration set-up for the experiment since the 
signal was unstructured and tributaries daisy chained and 
as such may not be of generic interest. 

5. Summary and Conclusion 

This paper presented the complexities and open 
research issues in fault management and identification 
namely that commercial systems tend to present a reduced 
set of symptoms of the fault not the actual fault. It then 
presented a three-tier process to assist in the discovery of 
new rules that could potentially reduce that set of 
symptoms further, en-route to automated fault 
identification and management. 

The case study has demonstrated how a simple 
experiment, which simulated a port fault, raised a 
relatively sizable amount of event data and as such 
demonstrated how visualisation, data mining and in 
general discovery processes (be they computer assisted 
human discovery or human assisted computer discovery) 
can assist in fault identification and management. 

The study went on to show a discovered correlation via 
visualisation of the data. Since correlating events is at the 
heart of fault identification and management this process 
is significant in that newly discovered knowledge, 
unexpected patterns and rules can be used to greatly assist 
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the human operator. Finally it was demonstrated how a 
rule could then be coded in ILOG from the discovered 
correlation. 

5.1. Future work 

The trend is towards automation; but there is 
reluctance in the telecommunications industry to utilise, 
say for example UAI (Uncertainty in AI) techniques 
which may achieve this, directly in the fault management 
system. The aim here is still to achieve automation but by 
utilising the UAI techniques along with visualisation in 
the discovery of higher order rules and correlations for 
prediction. 

Faults are rare and as such fault data is limited from an 
operational network thus offering a challenge for this 
research approach. As such the data under study is 
gathered from a manufacturers' R&D captive office test 
rig where numerous faults are induced. Even when using 
only data from verification testing, changes can be 
expected before customer final release and as such 
represent a difference in captured behaviour. Therefore i t  
is planned to utilise a new private STM-4 radio network 
that has been set-up for academic research purposes, 
providing the certainty of a final product environment. 
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