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Abstract 

As the size and complexity of networks and communications continue to grow, there is a 

heightened need to develop new techniques capable of achieving a level of service with 

successful operations upon which users can place even more reliance.    Key emerging 

strategies for meeting this demand is ‘autonomic networks’ and ‘autonomic 

communications’, concepts similar to autonomic computing while specific to the 

communications field.  This paper considers the ‘self-healing’ aspect of autonomic 

networks, examining, in particular, techniques for event correlation to aid fault 

identification.  A three-tier rule-discovery framework and associated support and analysis 

tools are described. These assist with the development, management and maintenance of 

correlation rules and beliefs.  

1. Introduction 

Autonomic computing is rapidly becoming established as a significant strategic approach 

to the design of more reliable, easier-to-manage computer based systems. When launching 
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the autonomic computing initiative, IBM highlighted the growing complexity crisis in the 

IT industry, comparing it with telephony in the 1920s. There, the rapid increase in use of the 

telephone led to estimates that by the 1980s half of the population of the USA would have 

to be employed as telephone operators to meet the demand (Horn 2001).  The 

implementation of automated switching and other technological developments avoided this 

crisis. By analogy, IBM is expecting autonomic system implementations to achieve similar 

productivity gains. It is anticipated, however, that significant research and development will 

be required to achieve that goal.  

The envisaged goal of autonomic computing is the production of systems that are self-

managing in four main respects: self-configuring, self-healing, self-protecting and self-

optimizing.  Some of the prerequisites for autonomic computing include complete visibility 

of the managed platform, complete control of that platform without undesirable side effects, 

and complete knowledge of how to relate visible situations to concrete actions. Most 

importantly is the ability to capture and represent both enterprise and personal policy 

(rules). Because of the need for differing levels of human involvement, autonomic 

computing maturity and sophistication has been categorized into five “stages of adoption” 

(Bantz and Frank, 2003, IBM, 2003): Basic, Managed, Predictive, Adaptive, and 

Autonomic.  These prerequisites are priorities in the work reported in this paper while 

evolving along the autonomic computing maturity stages. 

There are two strategies for introducing autonomic behavior. The first is to engineer it 

into systems and the second is to achieve it through adaptive learning. The first approach 

can be progressed immediately, with human experts generating or overseeing the generation 
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of rules for autonomic functions. Over time, this could be increasingly supplemented with 

self-learning processes (Sterritt, 2002).  

During 2003 a research study took place with a large telecommunications company on 

Autonomic Computing and Telecommunications (Sterritt, 2003), the findings confirm and 

motivate the research in this paper, which is concerned specifically with the self-healing 

and problem determination aspects of autonomic communications, with particular focus on 

the analysis of alarm events in the telecommunication distributed systems.  After a 

discussion of the autonomic concepts, the paper presents an overview of problem 

determination through alarm event correlation in fault management and the three-tier 

process for correlation rule discovery which may be used to assist in engineering autonomic 

capability into the systems.  This extends earlier work in this area (Sterritt and Bustard, 

2002b) with two support tools: (i) HACKER to support the interactive identification and 

documentation of correlation rules; and (ii) acCAT to test potential rules.   

The Autonomic initiative is about much more than faults and self-healing, yet it is a 

critical area to address considering that it has been estimated that companies spend 33% to 

50% of their total cost of ownership recovering from or preparing against failures (Patterson 

et al, 2002). 

2. Towards Autonomic Networks 

Since the 1920’s, automation in telephony has evolved substantially.  The Internet, with 

its vast infrastructure supporting millions of interconnected computers is perhaps the most 

significant development. The complexity of networks has grown in various ways (Oates, 

1995).  As user demands and expectations become more varied and complex so too do the 
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networks themselves.  Data, voice, image, and other information now travels under the 

control of different protocols through numerous physical devices manufactured and 

operated by different vendors.  It is expected that the trend towards increasing complexity 

will continue, due to several factors such as the increasing complexity of individual 

network elements, the need for sophisticated network and communication services and the 

heterogeneity of connected equipment (Cheikhrouhou et al, 1999).  The promise of 

Autonomic Networks, networks that manage themselves, will substantially abate this 

complexity crisis. 

2.1. Telecommunication Networks 

Telecommunication networks are designed to be robust as it is simply not acceptable for 

millions of calls/connections to be cut-off due to a faulty network element or a software 

upgrade.  This leads to design approaches that incorporate back-up mechanisms that allow 

for recovery from certain classes of fault. One technique, for example, is the use of a ring 

topology for node connection as in the Survivable Network Architectures (SNA) illustrated 

in Figure 1.  In SDH/Sonet systems, traffic travels in both directions. Any fault occurring 

that prevents progress in one direction will cause an automatic switch in traffic direction to 

avoid the failure area, thus sustaining traffic throughput. This fits with the autonomic goal 

that there should be no failure at the system level. Components of the system will fail but 

self-configuration is used to ensure minimal disruption (Ganek, 2003). 
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Figure 1 Survivable Network Architectures (SNA) 

For major hub traffic applications, survivability tends to be implemented through an 

additional dedicated protection ring (Figure 1).  In metropolitan, junction and trunk network 

applications this robustness may be achieved through the less expensive option of a shared 

protection ring, which reserves protection capacity in the existing ring in case of failure. 

Robustness, in general, is achieved through redundancy in the hardware and software 

components of the network.  Unfortunately this can increase complexity even further, made 

worse by facilitating (legacy) non-synchronous traffic to co-exist with synchronous traffic.  

2.2. Autonomic Networks Scope 

The preceding presentation of the SNA demonstrated some autonomic behavior in the 

physical layer of the telecommunications networks, yet this is just the beginning of the 

autonomic vision; zero touch, self-sensing, context-aware, dynamic, self-programming and 

evolvable networks.  To create Autonomic Networks will require the co-operation of the 
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industry to develop open standards to evolve from the current network elements (NEs) to 

autonomic network elements (ANEs).  From a Telco’s perspective the physical layer tends 

to be outside their immediate design control as the NEs are supplied by third party vendors.   

Telco’s offer communications and services across a large variety of technologies. Each 

technology within the network; SDH (SONET in USA), PDH, ATM, IP and so on, all have 

their own specific domain technology fault managers.  SDH frames may be carrying ATM 

frames which may be carrying IP and so on.  As such at the physical layer Autonomic 

Networks may resolve their own management issues, but these may have affected the 

traffic/service they are carrying.  This can only be determined at a higher layer. 

Essentially due to the complexity the situation has arisen that a large number of 

uncorrelated alarm event messages may reside on a network at any one time.  One estimate 

concerning BT's UK network was that 95% of all alarm events raised remain uncorrelated, 

amounting to tens of thousands alarm events being active at any one time.  Over time this 

amounts to a substantial load of data.  Another concern that is these problems with root 

cause analysis are preventing the development of further autonomics particularly in self-

healing and with increasing mean-time to human intervention. 

Autonomic Networks in themselves will not be an easy goal to achieve, yet the longer 

term goal of Autonomic Communications is much more than this, having commonality with 

Ubiquitous and Pervasive Computing, a vision of communications services anytime, 

anyplace from any device adapting to the users current needs and situation.  Effective 

problem determination in the networks will assist in enabling other autonomics to advance. 
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2.3. Autonomic Architecture 

The basic building blocks of any autonomic system architecture include sensors and 

effectors (Ganek and Corbi, 2003).  By monitoring behavior through sensors, comparing 

this with expectations (historical and current data, rules and beliefs), planning what action 

is necessary (if any) and then executing that action through effectors, creates a control loop 

(IBM, 2001). The control loop, a success of manufacturing science for many years, provides 

the basic backbone structure for each system component (Ganek, 2003). 

Figure 2 is IBM’s view of the necessary components within an autonomic manager. (For 

an alternative artifacts view, see Sterritt and Bustard, 2003). It is assumed that an autonomic 

manager is responsible for a managed element within a self-contained autonomic element. 

Interaction will occur with remote autonomic managers through virtual, peer-to-peer, client-

server (Bantz et al, 2003) or grid (Dean et al 2003) configurations. 

The monitor and analyze parts of the structure process information from the sensors to 

provide both self-awareness and an awareness of the external environment.  The plan and 

execute parts decide on the necessary self-management behavior that will be executed 

through the effectors. The simple correlator in the monitor parts and the rules engine in the 

analyze part use correlations, rules, beliefs, expectations, histories and other information 

known to the autonomic element, or available to it. 
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(a) General concept of an   
     Autonomic Element 

(b) Necessary Components within the Autonomic Manager 

Figure 2 IBM’s view of the Architecture of an Autonomic Element 

3. Problem Determination 

3.1 Event Correlation 

The introduction of autonomic principles requires the monitoring of individual system 

components through sensors and the ability of those components to respond to requests 

through effectors.  Monitoring will typically involve the correlation of several related 

pieces of information (Figure 2).  Correlation is important in both self-assessment (self-

awareness) and in the assessment of a component’s operating environment (environment 

awareness).  This helps in deciding when action is required and what should be done. 

By analogy with the human autonomic nervous system event messages are similar to the 

electric pulses that travel along nerves.  When a fault occurs in an SDH network a series of 

triggered events are usually reported to the element controller (manager).  The behavior of 

the alarms is often so complex it appears non-deterministic (Bouloutas et al, 1994), making 
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it very difficult to isolate the true cause of the fault (Klemettinen, 1999).  Yet at this level 

this is one of the primary goals of Autonomic Networks. 

Problems and failures in the network are unavoidable but quick detection and 

identification of their source is essential to ensure robustness. The correlation of alarm 

event messages is an important part of this analysis (Jackobson and Weissman, 1993). The 

major telecommunication equipment manufacturers deal with event correlation through 

alarm monitoring, filtering and masking as specified by ITU-T (ITU-T, 2000) and other 

international standard bodies. Resulting rule type diagnostic systems provide assistance to 

the operator whose expertise is then used to determine the underlying fault (or faults) from 

the filtered set of alarms reported. 

Currently, the skill of the operator is central to identifying faults. So although automation 

prevents the immediate loss of traffic and preserves the general function of the system (as in 

the SNA), intervention is necessary to determine and resolve problems that arise. The 

promise of autonomic networks would bring about a significant reduction in the role of the 

operator. 

Event correlation is a conceptual interpretation of multiple events, giving them a 

collective meaning. This produces a new higher-order compound event that helps determine 

what action is required.  Jakobson and Weissman (1993) describe correlation as a generic 

process involving six operations: Compression, Suppression, Count, Boolean Pattern, 

Generalization, and Specialization. 

The principle aim of event correlation is the interpretation of the events involved.  The 

event signals or messages represent symptoms.  Rules and beliefs identify which events to 

correlate and how they should be transformed.  These tend to vary over time creating a 
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significant maintenance burden (Bratko and Muggleton, 1995).  Machine learning, data 

mining and other AI techniques can assist in the discovery of correlation rules and beliefs 

(Sterritt, 2002a, Sterritt and Bustard, 2002a). However, a human-centred discovery process 

is more effective than either a human or computer operating independently (Uthurusamy, 

1996). For example, it is useful to provide various visualizations of data throughout the 

knowledge discovery process to build user trust in the process and hence instill more 

confidence in the mined patterns. The transformation from data to knowledge requires 

interpretation and evaluation, which can also benefit from visualization of the processes 

involved.  Visualization techniques can make use of the highly tuned perceptual abilities 

that humans possess, such as a capacity to recognize images quickly and to detect the 

subtlest changes in size, color, shape, movement or texture.  Any patterns that emerge may 

indicate the presence of potential for new rules. Human interpretation is then required to 

transform them into 'knowledge'.  Human input typically produces more meaningful 

insights into the discovered correlations, enabling them to be coded as useful rules for fault 

identification and management. 

The next section describes a framework and support tools to assist such rule discovery. 

3.2 Event Correlation Framework and Tools 

A three-tier architecture model for rule discovery is shown in Figure 3. This extends 

earlier work described in (Sterritt, 2001, Sterritt and Bustard, 2002b). The main difference 

is enhanced management control and co-ordination across the three tiers, achieved through 

the newly created HACKER and acCAT tools.  It also makes explicit a recommendation for 

extending tier 2 activities from the development phase into the operational phase by using 



11 

knowledge management techniques to capture operators’ manual live correlations of 

alarms, bring this knowledge into the development lifecycle and test to see if the rules are 

of general use. 

 

Figure 3 Three-tier alarm event correlation rule discovery process 

The right-hand side of the diagram represents the managed operational network and the 

left-hand side the discovery or learning process. Data flows from the network to the 

discovery process; while rules flow from the discovery process to the network manager. 

The representation suggests a cycle of activity, reflecting the necessary review that must 

take place after changes have been made to the network. Computer-assisted human 

discovery and human-assisted computer discovery techniques can be integrated in the three-

tier framework for the discovery of alarm correlations to support the deduction of fault 

management rules. The responsibility of the tiers is as follows: 

Tier 1. Visualization Correlation (Computer-aided, human discovery). New alarm 

correlations are discovered from visualizing the fault management data. 
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Tier 2. Knowledge Acquisition or Rule Based Correlation. New alarm correlations are 

discovered through consultation with experts and analysis of documentation. 

Correlations from tiers 1 or 3 may also be validated in this tier. 

Tier 3. Data Mining Correlation (Human-aided, computer discovery). New alarm 

correlations are revealed by mining the fault alarm data.  

New rules may emerge from any of these tiers. The first tier, visualization correlation, 

supports the visualization of data in several forms.  Visualization has a significant role 

throughout the knowledge discovery process, from data cleaning to mining.  In particular, it 

facilitates the analysis of data to help identify alarm correlations (knowledge capture).  The 

second tier aims to identify correlations and rules using more traditional knowledge 

acquisition techniques, with experts and documentation.  At the same time it has a 

supporting role to confirm that discoveries from tiers 1 and 3 are indeed new and useful 

information. The third tier mines the telecommunications management network data to 

produce more complex correlation candidates. 

The rest of this section describes two new prototype tools, HACKER and acCAT, which 

assist knowledge discovery, integrating analysis activity across all three tiers of the 

discovery framework. Previously (Sterritt and Bustard, 2002b), there was no automated 

linkage across the tiers. This meant that it was difficult to appreciate if the same rules were 

being discovered in different tiers or indeed if contradictions were present. Such issues 

were left to the human expert to resolve. Another advantage of the cross-tier support is that 

it enables potential rules emerging from any tier to be tested against other data sets before 

adding them to the rule base. 
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3.2.1. HACKER Tool 

The HACKER tool supports (i) the human visual discovery of rules; (ii) knowledge 

capture from the experts explaining the discovered rules; and (iii) visual presentation of 

data mined rules. The starting point for tool development was an existing visualization tool 

(Sterritt et al, 2000), NxGantt-SEA (SEA: Stimuli-Event correlation Analyzer). Its role was 

within tier 1 to present alarm and other event data (found in element controller event logs) 

in a visualized tabular form (Figure 4).  It uses a Gantt chart to represent the life span of 

each alarm.  The tool can reveal patterns of occurrence, which suggest possible correlations 

(as illustrated).  The tool was found to be a great improvement on scanning through tens of 

thousands of events in ASCII text logs in an attempt to gain an indication of a problem. 

 

 
(a) Tier 1 visualization tool  

 

 
 
Rule portDisabled { 
   when { 
      ?x PPI-Unexplained_Signal, …, 
      ?y LP-PLM, …, 
   } then { 
      retract ?x 
      retract ?y 
      assert portDisabled, …, 
   } 
} 
 
(b) potential rule from 
discovered correlation 
 

Figure 4 NxGantt-SEA Stimuli-Event correlation Analyser 

 

The illustration, Figure 4 (a), highlights a potential (human discovered) alarm correlation 

from scanning through the event logs using the tool (Sterritt 2001).  The two alarms are 

raised on two different NEs within the same time window (display shows on eight 
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occasions).  From expert knowledge this could be used to manually develop a rule or belief 

to replace the alarms with the root cause (simplified example in Figure 4 (b)). 

NxGantt-HACKER is an extension of this tool into tiers 2 and 3. It may also collect 

information from the domain expert (tier 2) to explain why a certain correlation should or 

should not be used to develop a rule.  This facility is similar to the ‘trouble ticket’ approach 

used in many commercial fault management systems. It semi-automates the rule and case 

coding, for instance the rule in Figure 4 (b) produced automatically in the correct syntax 

(e.g. ILog rules), given information found and additional details supplied by the operator.  

One of the goals is to capture additional information and develop a ‘case’ as well as a 

‘rule’. This will facilitate the future automation, for instance the introduction of case-based 

reasoning, firstly as part of a fault management system using the correlations and expert 

case knowledge; and secondly in automating more fully the rule discovery process by taking 

into account what lessons and beliefs can be learnt from the historical information on 

correlations chosen or rejected by the expert.  

Figure 5 shows the two main threads of activity supported by HACKER: (i) automated 

alarm correlation discovery (data mining); and (ii) manual alarm correlation discovery 

(visualization).  The basic process is one of rule discovery, case description, and rule 

specification. 

It is important in any automated process to avoid placing too much trust in the analysis 

software. The design of the application thus allows manual adjustment of the produced 

rules and cases as well as visual feedback on how the candidate correlations have been 

discovered. 
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In the example in Figure 4 the visual correlation between alarms PPI-Unexp_Signal 

(unexplained signal on the PDH physical interface) and LP-PLM (lower order path - path 

label mismatch) was discovered, Figure 4 (a), and manually coded as a rule, Figure 4 (b). 

With HACKER, in Figure 9, screenshots (a)-(c) show the manual/human discovery 

approach that matches the right hand side of the flow in Figure 5.  Screenshots (d)-(f) show 

automated/computer discovery that matches the left hand flow in Figure 5.  Screenshot (a) 

depicts the visualization of data in the standard form used in the original tool (Figure 4), 

with two alarms highlighted and the ‘rule writer’ option selected.  Screenshot (b) shows the 

system requesting (i) a rule name; (ii) a higher order rule name that will be used in the 

system to represent the set of correlated alarm events; (iii) some explanatory reasoning from 

the expert on why this should be considered a correlation rule; and (iv) a diagnostic 

explanation that may be supplied to a user encountering this set of alarms.  Screenshot (c) 

then shows the resulting rule that emerges, in the required format, with the facility to edit or 

save. 

Screenshot (d) shows the (semi) automatic ‘find correlations’ option being chosen, with 

the results from the mining analysis given in (e).  Choosing to develop a rule from a 

discovered correlation will lead to the same position, shown in (b); (f) illustrates the case 

where a user has decided to ignore the correlation and provides an explanation for this 

decision. The rule discovery is semi-automatic since not all information is available to 

construct a complete rule—hence the need for a case dialog.   

The mining algorithm searches for instances of alarms occurring at the same time.  This 

is problematic in that often the local clock on a network element will not be synchronized 

with clocks in other network elements. Relying instead on the network manager’s time 
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stamp does not solve this problem since there is no guarantee that the alarms take the same 

time to arrive with the manager and so match their order of occurrence.  This is handled by 

using ‘time windows’ that in effect, events are considered potentially related, if they both 

fall within the defined time range of the window.  This can, however, result in some 

spurious suggestions for relationships.  Rule development will favor combinations that 

occur frequently, though, ultimately, the decision lies with the domain expert. 

 

Figure 5 HACKER Computer and Human discovery options 

The rule visually discovered in Figure 4, may also be discovered by a mining algorithm 

in tier 3.  HACKER’s incorporation of all three tiers allows instances of the mined pattern 

to be visualised in the tool, while also recording expert’s details (tier 2) concerning why it is 
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valid or invalid; the rule may also be automatically generated from the tool in the correct 

format (e.g. ILog JRules) from this fuller knowledge. 

Possible extensions to HACKER include the use of a more sophisticated mining 

algorithm to better handle the uncertainty in the data and a case-based reasoning capability, 

taking advantage of the additional rule correlation information now recorded.  

3.2.2. Autonomic Computing Correlator Analysis Tool (acCAT) 

The acCAT prototype is an interactive tool to test and execute discovered correlation 

rules, discovered in any tier, using the six transformation rules identified in the previous 

section: compression, suppression, count, Boolean patterns, generalization, and 

specialization.  As such the rule discovered in Figure 4 may be tested using acCAT against 

large sets of historical event logs to confirm if the rule holds while also identifying other 

possible problem scenarios that may conflict. 

Figure 6 shows the high-level structure of the tool.  The inference engine comprises: 

1. The user interface—through which the user is able to influence the analysis strategy. 

2. The control process—which controls the sequencing of the strategy and the 

components which perform the control. 

3. The correlation engine—which contains the lower level components for performing 

the correlation. 

Correlation rules are maintained in the rule base. To facilitate the addition of new rules 

discovered through other tools in the three-tier architecture, XML has been adopted as a 

standard rule format.  
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Figure 6 High-Level design architecture for acCAT 

The user interface is responsible for managing all interactions with the user.  It uses the 

API provided by the control process to perform all operations and is not directly aware of 

any of the underlying classes. Screenshot 1 to Screenshot 3 demonstrate some of the 

functions of the tool.  The control process provides methods to access alarms and objects.  

File processing is conducted from here, and it contains EventList, RuleList and 

CorrelationEngine objects that control the flow of data among these processes and between 

the objects and the user interface.  These objects contain the ‘knowledge’ of the system.  

The Log Processing object is responsible for taking in data from the Event Logs and 

creating Event Objects.   

Rule Base processing, like Log File Processing, is responsible for reading from a file and 

creating objects—in this case, Rule Objects. As rules can be created, edited and deleted this 
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component requires full privileges to the Rule Base database.  Rule Base processing is also 

responsible for allowing access to the Rule Objects. 

The correlation engine contains all the filters required to perform the correlation.  The 

EventList and RuleList (where required) are passed between these filters resulting in the 

return of a correlated EventList.  The engine contains seven filters, each partially 

configurable.  These filters include a Time Filter and filters for the six generic correlation 

transformations described above. 

Essentially acCAT can take discovered rules from tier 1 (visualization) or tier 3 (mined 

rules) in XML format and allow a user to experiment by applying the rules to event logs to 

see the effects of the new correlations (note there are colored visual indicators on the right-

hand side of the screenshots to indicate a rule has fired). 

 

Figure 7 acCAT - testing the previously discovered rule (magnified to illustrate) 

 

Figure 8 acCAT - rule test and resulting correlation as portDisabled (magnified to 
illustrate) 

Once again taking the discovered correlation coded as a rule; Figure 7 illustrates the two 

alarms located among the alarm event data in acCAT becoming active (present) within a 2 

second time window and Figure 8 illustrates once the rule has been executed. 
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The tool may assist in debugging as well as managing discovered rules and testing these 

and existing rules against new network equipment and situations. acCAT can also be used 

directly by an expert with implicit or tacit network knowledge to develop and experiment 

with rules. 

4. Related Work  

This is an inspiring time, whereby autonomic and self managing initiatives are providing 

a wealth of related and relevant work in this area.  These initiatives are also reaching out to 

existing research areas providing a focal point for cross dissemination and pollination. The 

key relevant aspects and a comparative analysis with the work presented in this paper are 

considered. 

IBM concurs with this assessment that root cause analysis in complex systems is key to 

achieving autonomics.  In their white paper ‘Autonomic problem determination: A first step 

towards self-healing computing systems’ (Oct. 2003) they state that in effect complexity in 

problem determination is diluting the effectiveness of computing in the corporate 

environment (IBM, 2003).  The same can be said for communications and networks.  It has 

been estimated that companies now spend from one third to one half of their total cost of 

ownership recovering from or preparing against failures (Patterson et al, 2002).  While 

many of these outages, with some estimates at 40%, are caused by operators themselves 

(Patterson, 2002). 

The IBM white paper highlights the multitude of ways that different parts of a system 

report events, conditions, errors and alerts as a major factor contributing to the complexity 

in problem determination.  They propose a common format for log/trace information, called 
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the Common Base Event (CBE) format, to create consistency across systems and ease 

cross-product problem determination and heterogeneity.  The paper also proposes a finite 

set of canonical situations to categorise the events and reduce the diversity between logs. 

The CBE format is accepted as an industry standard and is a significant evolutionary step 

forward.  In terms of the 3-tier framework it would substantially reduce the amount of data 

cleaning and data pre-processing (including the necessary development of propriety yacc, 

ack and perl scripts). 

Also in October 2003, IBM announced they had entered an agreement with Cisco 

Systems and released a joint white paper “Adaptive Services Framework”.  The 

collaboration is recognition of the synergies between Cisco’s next-generation Adaptive 

Network Care (ANC) solution and IBM’s Autonomic Computing initiative. The joint paper 

(IBM and Cisco Systems, 2003) proposed a set of common interfaces for remote service 

and support systems.  It sets out the stages of adaptive networking in Autonomic 

Computing as active (connected), reactive, predictive and adaptive.  The Adaptive Services 

Framework has two main goals from the specifications and standardization work; 

interoperability among different implementations and extensibility. 

The CBE format has been included in this initiative.  This collaboration should 

substantially benefit the developments in Autonomic Networks.  The greater the problem 

determination situated in the physical layer, the fewer problems requiring attention in 

higher layers and as such the lesser the burden on cross-domain problem determination. 

In terms of autonomizing legacy systems, agents are being utilised to add capabilities 

without requiring direct alterations to the legacy code (Haas et al, 2003, Kaiser et al, 2003). 
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This is occurring in areas such as instant messaging, spam detection, load balancing and 

middleware (Kaiser et al, 2003). 

Several tools with similar general aims to the three-tier rule discovery architecture and 

acCAT, have recently been released by IBM through their AlphaWorks autonomic zone 

website (IBM, 2003).  

• There is a generic Log and Trace tool (similar in purpose to acCAT) that correlates 

event logs from legacy systems to identify patterns.  

• The Tivoli Autonomic Monitoring Engine essentially provides server level 

correlation of multiple IT systems to assist with root cause analysis and automated 

corrective action. 

• The ABLE rules engine can be used for more complex analysis.  In effect it is an 

agent building learning environment that includes time series analysis and Bayes 

classification among others. It correlates events and invokes the necessary action 

policy. 

The three-tier framework is not prescriptive but an approach encouraging the 

prerequisites previously described; complete visibility, complete control, complete 

knowledge, capture and represent policy (rules and beliefs).  As such the state of the art 

described in this section are complementary to the three-tier framework approach with 

potential for integration.  

An EU brainstorming workshop in July 2003 discussed novel communication paradigms 

for 2020 and identified ‘Autonomic Communications’ as an important area for future 

research and development (EU IST FET, 2003, Smirnov and Popescu-Zeletin, 2003). This 

can be interpreted as further work on non-conventional networking (self-organizing 
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networks, ad-hoc, sensor, peer-to-peer, group communications, active networks, and so on) 

but is undoubtedly a reflection of the growing influence of IBM’s Autonomic Computing 

initiative launched in 2001 (Horn, 2001). In effect, autonomic communications (Clark et al, 

2003) has the same motivators as the autonomic computing concept with particular focus 

on the communications research and development community.  Hence Autonomic 

Communications is dependant on a successful Autonomic Networking infrastructure 

(Agosta and Crosby, 2003). 

5. Conclusion  

Although commercial networks achieve high reliability (99.999%) (Gray, 2001), their 

ever-growing size and stringent user demands mean that new techniques are needed to help 

manage their operation and communications. The autonomic communications paradigm 

promises to be a useful strategy for meeting these requirements and moving beyond. This 

will involve moving more decision-making down into the systems to enable them to self-

manage their activity, including self-healing.  

This paper has considered the general area of problem determination and rule discovery 

for fault identification in telecommunications systems based on the analysis of alarm 

events. To help understand the faults underlying the alarms, the alarm events can be 

reduced through a correlation process involving six standard operations and a developed 

rule base.  A three-tier framework has been outlined to support the identification and 

recording of rules. This is a collaborative process between domain experts and support 

software that has data mining capabilities that may be used in autonomic networks 
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development.  Progressively it is hoped to make more and more of the rule identification 

and verification process automatic, moving everything closer to the autonomic ideal. 

Two prototype tools were described: acCAT, which supports rule validation; and 

HACKER, which aids rule identification and documentation. The information recorded is 

in a form suitable for case-based reasoning and future work will progress in that direction. 

Since the telecommunication domain consists of systems within systems many of these 

systems will be at different maturity levels.  The ability to automatically determine the root 

cause of any event is clearly an enabler to opening new autonomic options that will assist in 

attaining higher levels of autonomic maturity within the systems.  As currently stands the 

ability to correlate event messages in complex telecommunications lies between managed 

and predictive.  The work described in this paper is an attempt to move to the predictive and 

adaptive space. 
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Screenshot 1 Viewing an Event Log and the Correlation Options 
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Screenshot 2 Correlation Results showing events that have been correlated 

 

Screenshot 3 Correlation Rule Editor 
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Figure 9 Screenshots of the Prototype "NxGantt - HACKER" -  
Human And Computer Knowledge discovered Event Rules 

 
 


