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Clinical research is often delayed by the lack of data and the need for ethical approval. We suggest that this need could
be initially satisfied by synthetic data that has the same characteristics as those from patient records. The generation of
this data requires some domain knowledge to ensure appropriate data management. As an exemplar of this concept we
generate patients presenting with undifferentiated chest pain at Emergency Department (ED). Their diagnosis uses
biochemical markers indicative of myocardial cell damage. Efficient diagnosis is paramount and a number of different
competing protocols have been advocated. Analysis of resulting data shows that while the measurement of cardiac
markers may not register above a cut-off value that the time differentiated rule-out protocols are valuable indicators of
disease. We therefore demonstrate both concept and value of the use of synthetic data that would have taken years to
gather and not have been reproducible or repeatable.
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Introduction

Clinical data is a valuable commodity and difficult to obtain.

Often the reason being espoused for the non-proliferation of

data are the ethical issues associated with patient informa-

tion. The incentive to share the object of their research

should be good science. Good science should be reprodu-

cible and verifiable but how can this be if the original data is

not made available to others who may wish to understand

how and from where the summary statistics were derived.

The NHS (www.connectingforhealth.nhs.uk/systemsandser

vices/infogov) and the Ministry of Justice have deliberated

on these issues and have recommended in the Data Sharing

Review (www.justice.gov.uk/docs/data-sharing-review-report.

pdf) that there is a need to develop mechanisms whereby

research and statistical analysis for public benefit can be

carried out while still safeguarding the privacy of individuals.

The aim of this paper is to explore a technique of using

machine generated patient data for the investigation of

clinical procedures. Our eventual aim is to be able to

produce synthetic patient data sets with more variables,

which have the same statistical properties and interdepen-

dencies as the original sample data set. The essential feature

of these data is that they do not relate to any individual

patient (unlike re-sampling methods) but are entirely artificial.

As such, confidentiality and ethical issues will not apply.

We are not advocating that simulations fed with synthetic

data should form the basis for policy changes in patient care.

Rather, that those simulations can be used to explore

procedures; the economic value of novel medical devices can

be evaluated and that researchers can hone their hypotheses

in a virtual world before the clinical trials are conducted live.

Simulation is increasingly being used to study patient

pathways (Lattimer et al, 2004) and to study diagnostic

practice using a manikin with appropriately generated

symptoms (Brendan et al, 2002; DeVita et al, 2005). On a

systems scale, the East of England SHA in collaboration

with Simul8 corporation have created a Scenario Gen-

erator—a simulation tool that will facilitate investigation

into the logistics of patient access, staffing and costing

(www.healthcareworkforce.nhs.uk/workforceplannermenus/

index.php?option¼com_docman&task¼doc_view&gid¼3).
Only recently has synthetic patient data been used to feed

such simulations (Dutta et al, 2005; McCabe et al, 2008). We

believe that this is one possible way to assist the design of

experiments and clarify the process that will lead to

obtaining ethical approval for clinical trials. The freedom

from the ethics restrictions imposed will, at least in part,
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remove the disincentive to share data and thereby encourage

knowledge generation through openness of research findings.

This study presents an exemplar case for patients

presenting at ED with chest pain, a scenario that is of great

clinical and economic importance to the NHS. An estimated

500 000 patients present to ED with chest pain each year,

which is 25% of all admissions and at a cost of some

d15 billion (Fox, 2005; Rajappan et al, 2005). However,

a general analysis has shown that some two-thirds of

presenting patients have non-cardiac chest pain. Of those

that are cardiac related, 40% of these patients will have low

risk of Acute Myocardial Infarction (AMI) (Turab et al,

2006). Although it is clear that misdiagnosis incurs

additional cost and jeopardises patient wellbeing, these

patients may have to be admitted due to insufficient clinical

evidence to allow their safe discharge. This contributes

a significant and unnecessary cost burden to the NHS.

Furthermore, Turab et al (2006) reported that between 2 and

10% of the presenting patient group are inappropriately

discharged with undiagnosed AMI.

There is a need for an improved rapid rule-out diagnostic

test to differentiate these patients and contribute to reducing

hospital admission costs. Benger et al (2002) cites that in the

United Kingdom 300000 people suffer an acute heart attack

each year, of whom 50% die. Of those, about one-third of all

deaths occur within the first hour (NICE, 2002) giving a

narrow time window for diagnosis and intervention. Any

time delay taken to initiate treatment is therefore significant.

A preferred treatment of AMI is with thrombolytic drugs

administered intravenously. This therapy operates by

dissolving the offending clot formation in the coronary

artery; however its effectiveness is greatest when it is

administered early (Carley, 2002; Heath et al, 2003).

However, there are risks associated with thrombolytic

therapy and it must only be administered to those with

confirmed AMI and only then with caution. Accurate and

rapid diagnosis is therefore highly desirable. Efficient

diagnosis of AMI is paramount and the most effective

identifiers of myocardial cell damage are the presence of

the cardiac markers myoglobin, troponin I and CK-MB in

the blood. These proteins that originate within the cells of

the heart can be measured by a Point-of-Care device (PoC)

and if found to be elevated are strong evidence of cellular

damage. The testing for the cardiac marker troponin has

become a gold standard of AMI diagnosis rather than just

another indicator.

The essential advantages of identifying the elevation of

cardiac markers with PoC is the rapidity of the test

turnaround time and the resultant seamless and, consistent

approach to coronary care. The turnaround time is typically

between 12 and 20min for PoC as compared with about an

hour for a pathology laboratory, depending on proximity

and staff shift times. For cardiac patients this time difference

could be vital. It will allow ED staff to accurately identify

those patients that can start treatment immediately, thus

increasing their chances of survival.

A further significance of this rapid turnaround time is that

it provides for the possibility of alternative protocol path-

ways that otherwise would not be practical. A number of

different rule-out protocols have been advocated for the

diagnosis of patients using PoC (McCord et al, 2001;

Ng et al, 2001) in which the time differential of cardiac

marker levels is recorded and if it varies for any of the

cardiac markers by more than 25%, this can be deemed as

evidence of ischemic processes. By rule-out is meant to

establish beyond reasonable doubt that the patient is not

AMI. The relative benefits of these rule-out protocols have

been much debated (Goodacre et al, 2004, 2005; Collinson

et al, 2006; Body, 2008). Consequently, the protocols present

a paradigm shift from the early diagnosis of AMI. This

study seeks to obtain data that can quantify the clinical

benefit of PoC in cardiac screening. In this study we assess

the value of these alternative PoC protocols using synthetic

patient data generated with the same statistical characteri-

stics as that of the sample data set.

The results of the simulation study shows that while the

measurement of cardiac markers may not register above

a cut-off value before 6 h after onset, that the rule-out

protocols outlined by Ng et al (2001) and McCord et al

(2001) could be valuable indicators of cardiac necrosis. The

length of the time differential is important suggesting

a diminishing return of sensitivity with delay. Experimenta-

tion shows that the sensitivity of the rule-out test is 94.9%

at 90min, 98.4% at 120min and 99.0% at 180min.

Thus this paper demonstrates the value of synthetic data.

Although it would have taken years to gather such data, it

would not have been reproducible or repeatable. Such data

would permit free exchange of information without the need

for ethical approval. It is anticipated that the future will see

synthetic data generation that handles more variables

retaining interdependencies and passing the ‘Turing test’

(http://en.wikipedia.org/wiki/Turing_test) for clinical data.

Materials and method

The seed data for this study comprise the records of

137 patients that presented with chest pain at the ED at

the Royal Victoria Hospital, Belfast between October 2007

and January 2008. The data recorded includes aspects of

their medical history; arrival times; details of the patient

diagnostic pathway and results of those tests; their

preliminary diagnosis; ED departure time; hospital admis-

sion or otherwise and if they were admitted, the date of

release from hospital and discharge diagnosis. Cardiac

markers are tested using a Biosite Triage PoC device. These

data are supplemented with summary statistics from a

related study of 546 patients at the same hospital between

2004 and 2005 (Hamilton et al, 2008). These data can be
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assumed to have the same demographic characteristics as

our data taken at a later date. Information is also

sequestered from other literature (Goodacre et al, 2007).

The aim is to assess the likely benefits of different AMI

rule-out protocols that have been suggested in the literature

using simulated patients. The patient generator tool uses

Weibull distributions for troponin levels in the blood for

diseased and non-diseased patients. The parameters gener-

ated for each patient are a subset of those that would

generally be taken at triage on entry to ED. The model

assumes a likelihood of a patient being AMI as the

prevalence in the population of 10.8% (Hamilton et al,

2008). Given that the patient is positive for AMI, the model

generates a severity index from a parametric distribution of

troponin values from our diseased population. If the patient

is not diseased, the troponin level is similarly selected from

the distribution for healthy patients.

The temporal profiles of these cardiac marker are taken

from an internally published presentation (Adams, 2008).

The cardiac markers are released from heart muscle cells as

they die. There are a number of such profiles published

showing the rise of cardiac markers and this representation

has a good conformity with the authors published works. As

can be seen from Figure 2 the time profile of each marker

has a characteristic delay before it is detectable and therefore

would not give a positive result with the PoC device until

levels increase to the threshold for that device. For example,

troponin levels are raised within 4–6 h after onset of chest

pain, peak at 12–20h and remain elevated for 3–10 days. The

elevation of the cardiac markers will depend on the severity

of the disease and each one, as indicated in Figure 2, will

remain proportionate to other markers for a given severity

and time from onset. It can be seen from this profile that it is

therefore important to know when the onset of AMI

occurred. This value has been recorded for the patient data

record and the model notes the delay after the time of onset

that the blood sample is taken for the cardiac marker.

A Judicious use of PoC

As the speed of diagnosis of chest pain is critical to prevent

further cardiac damage, the objective is to accurately and

efficiently assess the likelihood of AMI. The cardiac markers

however, may not be elevated and will not reach a cut-off

value for at least 3 h after onset. Until that time it is not

appropriate to test for cardiac markers. Traditionally the

cut-off value for troponin at which a patient is considered to

be diseased is arbitrarily set at the 99th percentile of the level

of a healthy population (Apple et al, 2005). Although this

definition is widely adopted, the critical value may vary with

demographics (Apple et al, 2003).

A number of authors have experimented with variations

of an AMI rule-out protocol (McCord et al, 2001; Ng et al,

2001; Dunn et al, 2006). They argue it has many advantages

over the traditional blood test for cardiac markers that use a

predefined critical cut-off value. The proposed rule-out

protocols are less concerned with the time of onset or critical

values. Using PoC to assess the three cardiac markers

(myoglobin, troponin I and CK-MB) on arrival an initial

base value is obtained. If it is within the normal range, then a

further blood test is taken at a later time, for example

120min. If any of the cardiac markers are elevated from

the base value by greater than 25%, even if those values are

within their normal range, then this is evidence that cardiac

cell damage is in progress and the patient is admitted. The

rule-out along with other diagnostic tests allows hospitals

some confidence in discharging patients as cited by Dunn

et al (2006) who reported some 40% reduction in admissions

with this protocol.

The model

The aim of this exemplar model is to compare the

effectiveness of a current chest pain protocol with what

has become know as the 90min rule-out (Ng et al, 2001) the

120min rule-out (Dunn et al, 2006) and to explore a 180min

rule-out. The characteristics of the synthetic data are

designed to conform to those of the data sample that has

been collected from hospital records of the Royal Victoria

Hospital (RVH). The data generation draws from empirical

knowledge obtained from the live data set and reasoned

principles of the parametric properties of those data guided

by domain knowledge. The data is also augmented from

similar studies and in particular summary data from

previous work by Hamilton et al (2008). The data related

to the same demographic population of patients at RVH

entering ED with chest pain.

From the above research we may take the population

prevalence of the cardiac disease (0.108), the sensitivity

(0.789) and the specificity (0.967) for Troponin T. Using

Equation (1) and (2), this information permits the construc-

tion of the matrix in Table 1 showing the probabilities of

a correct diagnosis of a patient’s condition given a positive

or negative test result for troponin.

Sensitivity ¼ Number of TruePositives

Number of TruePositives
þNumber of FalseNegatives

ð1Þ

Selectivity ¼ Number of TrueNegatives

Number of TrueNegatives
þNumber of FalsePositives

ð2Þ

Using the PoC device for the detection of troponin, the

cut-off of value is 0.09ng/ml above which the patient is

deemed to be AMI is which corresponds to the 99th

percentile of the healthy population distribution (Apple et al,

2003). It is also know that the healthy population typically

has a troponin profile described in Figure 1. The shape of the
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distribution to the left of the cut-off point is not of great

importance here, but its similarity to a Weibull distribution

is noted. This distribution is generally used in reliability

analysis and time-to-failure profiles in a variety of contexts.

As cardiac marker enzymes are an indicator of cardiac cell

death (component failure), which must occur occasionally

even in a healthy person and that blood troponin levels are

a direct consequence of those cell deaths, then it would seem

appropriate to use this distribution to describe the troponin

occurrence in both the healthy and the diseased population.

Although the distribution of troponin levels from the

available records of the diseased population bears a reason-

able likeness to the Weibull distribution, it is not so easily

parameterised with such low recorded values. This distribu-

tion has a correction factor added so as to be calibrated

against the reported sensitivity found using the PoC device

that was used at the optimum time for troponin detection.

The ED staff intent was to take a blood test some 6h after

onset though the exact timing cannot be certain.

The simulation interprets this distribution as an index of

the likely severity of AMI and is used to attenuate the

amplitude of the cardiac marker values found from the

cardiac marker profiles given in Figure 2. The matrix

(Table 1) shows that the diseased population has a

probability of 0.023 of being mistakenly identified as healthy

(false positive). That is 2.3% of the diseased population will

give values below that of the cut-off value. The data from the

hospital records shows a diseased troponin distribution

similar to that in Figure 1.

Each of the cardiac markers has a time related profile with

hours¼ 0 at the time of onset of the chest pain (Figure 2).

The first marker to become evident is myoglobin after

approximately 2 h, likewise CK-MB after 4–6h and troponin

I after 4–8h, each reaching a peak before slowly declining.

Figure 2 also shows the cut-off values for each of the cardiac

markers.

Patient records show the time of onset of chest pain

and the time of arrival. These values are plotted in Figure 3

and show some anomalies. From these data it appears that

patients who experience symptom onset between 18:00 and

21:00 will, on average, wait more than twice as long before

attending ED than those patients whose onset is between

22:00 and 13:00. This bimodal distribution of delays is

described with two Poisson distributions also shown in

Figure 3. To obtain a probability density function, the two

distributions are summed and the result normalised. The

rationale for this is that this distribution is often used

to describe random queuing events. It would be tempting

to surmise that those patients with the most acute symptoms

of AMI would attend ED without delay. Although a severe

Table 1 Confusion matrix derived from Equations 1 and 2

Test Diseased pop. Healthy pop. Total

þ ve 0.085 0.029 0.114
�ve 0.023 0.863 0.886
Total 0.108 0.892 1.00
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Figure 1 Probability distribution of troponin I in healthy and diseased population.
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attack should elicit an immediate transfer to hospital, there

is no evidence for this in the data. One relatively severe case

waited 3 days before attending ED. The profile of the

diurnal cycle of ED attendance on the other hand is a well-

defined bell curve with a mean of 15:00. It would appear

therefore that people wait for a convenient time to attend

ED. As a note of caution however, the delay between

onset and arrival at ED is not measured by hospital staff; it

is information volunteered by the patient. Although it is

accepted that this time cannot therefore be verified, it is the

only data that the hospital have to assess the progress of the

AMI and is therefore used in this model.

The simulation involves the generation of a series of

patient instances that have a time delay since chest pain

onset taken as a random variable from the distribution

described in Figure 3. This time value is used as an index to

obtain the cardiac enzyme profile from Figure 2 for that

time. A further random variable is used to select a severity

for the AMI from the diseased population distribution in

Figure 1. This value is used to attenuate the values of the

cardiac enzymes established above. With this method it is

possible to create a realistic stochastic representation of the

cardiac marker values for each patient with respect to the

delay since onset. The diagnostic model receives this data as

input. The simulation records the troponin level at the time

of arrival and at 90, 120 and 180min after arrival. If any of

the readings are above the critical threshold (see Figure 2)

for any of the markers or the subsequent reading shows

more than a 25% increase in troponin I, CK-MB or

myoglobin than the first reading, then the patient is regarded

as having AMI.

For the AMI positive patients, one thousand patients

were generated for each of the 90min rule-out, the 120min

rule-out and the 180min rule-out protocols. The possible

outcomes for each patient are that they were diagnosed at

the first blood test or at the second blood test or, if both were

negative; then the results of the two tests are compared to see

if any of the cardiac markers in the second test are more

than 25% more or less than the first test. It is noted that

because of the excessive delay of ED presentation after

the chest pain onset, the cardiac markers may be on the

decline. Regardless, the 25% change is recorded as an AMI

indicator. The experiment is repeated 100 times.

Results and discussion

The model creates a series of patients with a 10.8%

probability of AMI. For those deemed to have AMI, the

delay since the onset is assigned to the patient from the

distribution in Figure 3. That value indexes the distributions

in Figure 2 to give the level of cardiac markers. The severity

of disease is chosen from the disease profile in Figure 1.

Those patients that are healthy are taken to have a troponin I
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level from the healthy profile in Figure 1 and as such, the

probability of the patients having a troponin level higher

than the cut-off value is 1%, this being the prerequisite for

this distribution. It is not known from the literature how the

troponin level of a healthy person varies with the period of

the rule-out interval of between 90 and 180min. If the

patient is healthy, there is little reason to believe that it

would change at all though there are random errors within

the PoC device (Purchasing and Supply Agency, 2006) that

may give some anomalous readings.

The virtual experiment involving 1000 patients was

repeated 100 times for each of the three rule-out protocols.

Table 2 gives the percentages that would have been

accurately diagnosed by the first test at presentation. Failing

diagnosis at presentation, the percentage that would be

diagnosed at the second test at the rule-out interval is given.

The third column shows the percentage that would be

diagnosed by the comparison of the first test and the second,

given that neither individually had diagnosed AMI. The

fourth column shows the percentage that is misdiagnosed by

these protocols.

The most critical value is the false negative diagnosis for

each of protocols. The 90min rule-out has a sensitivity of

94.9% that may be compared with Ng et al (2001) and

McCord et al (2001) who found sensitivity of 100% and

96.9%, respectively, for their 90min rule-out. The 180min

rule-out has 99% sensitivity. Some 70% of those presenting

are dependent on the second test for diagnosis. This of

course requires a delay of a critical 3 h before the second test

result becomes known. Although it is critical that delay is

kept to a minimum, the increased accuracy of the test may

be important, though of diminishing return value. That is,

that the increase in sensitivity may be worth waiting 120min

for but not 180min.

It is interesting to review the profile of the patients that

would be diagnosed at each stage in Figure 4. Those dia-

gnosed by the first or second test are typically in their 10–15h

since onset of chest pain which is slightly earlier for those

diagnosed by the second test only. Those for whom the

diagnosis is a false negative are on average tested 18h after

onset and typically only have mild AMI. For these patients,

the delay of further diagnosis may not be a life-threatening

situation. It can be seen that the rule-out comparisons are

a most powerful diagnostic test especially where the first two

tests alone provided insufficient evidence of AMI. The profile

of the patients that were diagnosed by the rule-out were on

average tested 2.7 h since chest pain onset at presentation,

much earlier than is generally recommended for a first test.

Given the urgency for early diagnosis and treatment with

thrombolytic drugs, the rule-out protocols would seem to be

a valuable course of action. There is considerable difference

in comparison with non-rule-out protocols. Hamilton et al

(2008) records a sensitivity of 78.9% with troponin and

Goodacre et al (2005) records a sensitivity with troponin of

83.3% at a 0.1 ng/ml cut-off. Both these diagnostic tests

would have conducted over 6h after onset.

Table 2 Showing the percentages diagnosed as AMI at the first test, second test or by 25% elevation of cardiac markers at second
test. Also shown, those patients for whom AMI was not diagnosed

Test 1 (presentation) Test 2 (rule-out interval) 25% elevation False negative

Minutes Mean (%) Sd (%) Mean (%) Sd (%) Mean (%) Sd (%) Mean (%) Sd (%)

90 26.2 1.5 3.0 0.5 65.8 1.5 5.1 0.7
120 26.4 1.3 5.6 0.7 66.5 1.4 1.6 0.4
180 26.1 1.2 8.4 0.9 64.5 1.4 1.0 0.3
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The evidence from the model suggests that rule-out

protocol is a useful tool to have in the toolbox. It is not

the only tool however, and it of course has to be used

in conjunction with ECG, TIMI scores and with the wisdom

and experience accrued by healthcare professionals working

many years in cardiac care. It must be pointed out that,

however valuable the rapid rule-out protocol is, cardiac

markers will not identify disease where there is insignificant

myocardial necrosis, such as may be found with unstable

angina. Similarly, myoglobin is not specific to cardiac

necrosis and may not indicate AMI if it is the only cardiac

marker present. Studies by the International Liaison

Committee on Resuscitation (2005) suggest that rapid rule-

out protocols as suggested above should not be recommend

before 6 h since onset. This would seem to be missing the

point of rapid rule-out and to negate its key strength.

Conclusion

The aim of this paper was to demonstrate that while there

may be some apprehension in the use of synthetic data, there

is significant value in the practice. Although this exemplar

is little more than a proof of concept, it can clearly be seen

that the quality of data can be improved with time

and experience until it will eventually pass the ‘Turing Test’

of medical data. Given sufficient true information, methods

of principal components or Bayesian belief networks can

be used to reproduce probabilistic interdependencies thus

allowing diagnostic inference to be learned from the

synthetic data.

In a hospital environment the data generated in this

analysis would have taken years to accumulate and multiple

repetitions would just not have been possible. Using this

data to research the use of cardiac marker rule-out protocols

permits the exploration of these protocols without endanger-

ing lives. It allows one to examine which parameters the

model is most sensitive to highlight the information that

needs to be gathered and to design better trials to test

hypothesis. It also permits the open sharing of data between

co-workers so that the experiment will be reproducible and

open to scrutiny.

There will always be dangers involved in the use of

synthetic data. Where it is seeded from sample live data there

is the risk of bias. If the original sample were biased, maybe

as a result of being taken from a small sample, the generated

data will also reflect that bias. Although this is true, the same

problem could as easily arise if real data were used in a pilot

study. However, there is here an advantage of synthetic data.

Given that such bias will in all probability arise inadvertently

anyway, the synthetic data has the ability to test the

sensitivity to such a bias by actively loading the data. As

mentioned above, the data is not intended to change clinical

practice, but to provide a tool to explore issues in clinical

practice and design better experiments to verify new

procedures. In the words of Alfred North Whitehead, ‘Seek

simplicity, and distrust it’.
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