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Abstract
Geographically weighted regression (GWR) 

has been recognized in the assessment com-
munity as a viable automated valuation model 
(AVM) to help overcome, at least in part, mod-
eling hurdles associated with location, such as 
spatial heterogeneity and spatial autocorrelation 
of error terms. Although previous researchers 
have adjusted the GWR weights matrix to also 
weight by time of sale or by structural similarity 
of properties in AVMs, the research described 

in this paper is the first that has done so by 
all three dimensions (i.e., location, structural 
similarity, and time of sale) simultaneously. Us-
ing 24 years of single-family residential sales 
in Fairfax, Virginia, we created a new locally 
weighted regression (LWR) AVM called geo-
graphically, temporally, and characteristically 
weighted regression (GTCWR) and compared 
it with GWR-based models with fewer weight-
ing dimensions. 

GTCWR was the only model to achieve 
IAAO-accepted levels of the coefficient of 
dispersion (COD), price-related differential 
(PRD), price-related bias (PRB), and median 
assessment-to-sale price ratio in both the train-
ing and testing samples, although it did not 
fully correct the existence of heteroscedasticity. 
With lower PRD and PRB levels, the applica-
tion of temporal weighting to this data set did 
appear to help reduce indicators of vertical in-
equity. Along with an equitable, uniform, and 
defensible methodology that mirrors the sales 
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comparison, GTCWR presents a new AVM that 
demonstrates an ability to value over 24 years 
of sales at IAAO standard levels, without the 
creation and implementation of time-based 
variables, the trimming of outliers, and time-
intensive model specification and calibration. 

Introduction 
Inequitable real estate valuations used for 

property tax assessments lead to excessive bur-
dens of time and cost for taxpayers and local 
governments alike. For municipalities, such 
inconsistencies result in a higher number of 
tax appeals. More equitable, research-backed 
valuations help local governments defend and 
explain their assessments, ideally (for local 
governments) resulting in fewer appeals, more 
appeals settled out of court, and more court cas-
es won. Improved valuations help shift funds 
more equitably by helping to correct for previ-
ously undervalued and/or overvalued proper-
ties. By increasing the precision of valuation 
models, this research aimed to mitigate the fi-
nancial costs and political ramifications of sub-
par valuations. 

The sales comparison approach is a real estate 
valuation method by which an appraiser arrives 
at an estimate of value for a property (as of a 
specified valuation date), based on sales that 
have occurred within a specific time frame (gen-
erally, but not exclusively, 6–12 months prior) 
and that are both structurally and geographi-
cally similar to the subject property (Fannie 
Mae 2017). If executed properly, this approach 
produces a reasonable and defensible estimate 
of value based on what a given property would 
sell for in the specified market. This approach 
identifies determinants of value based on sup-
ply and demand (Gloudemans and Almy 2011).

Although the comparable sales approach ar-
guably has its advantages (e.g., fewer compu-
tational requirements than other approaches, 
familiarity among the real estate community, 
logical and economical explanation and defen-
sibility), it is potentially prone to errors. Small 
sample sizes, subjectivity of comparable se-
lection, user error, and failure to exclude non-
arm’s-length transactions are examples of po-
tential reasons the comparable sales approach 
may fail to produce consistent, uniform, and eq-
uitable results. Such errors are greatly mitigated 
with the implementation of an AVM.  

AVMs are programmed statistical models 
used to predict values of large sets of real es-
tate properties at once. These models (often 
referred to as computer-assisted mass appraisal 
[CAMA] models or hedonic pricing models) 
have been steadily increasing in popularity in 
both the public and private sectors since the 
1970s, primarily because of advancing technol-
ogy, increasing computational power and speed, 

and changing methodologies that continuously 
make valuations more accurate and easier to ex-
ecute. Although there are a number of types of 
models and algorithms that fall under the AVM 
umbrella, the most common types are based on 
ordinary least squares (OLS) multiple regres-
sion. When combined with professional judg-
ment, AVMs been shown to improve valuation 
equity, uniformity, and accuracy. Modifications 
that allow AVMs to emulate the comparable 
sales approach have resulted in better perfor-
mances. 

Geographically Weighted Regression 

LWR is a modeling technique that has been 
shown to significantly improve the predict-
ability power of traditional OLS-based AVMs 
(Brunsdon, Fotheringham, and Charlton 1996; 
McMillen 1996; Brunsdon 1998). Arguably, the 
most prevalent LWR methodology that has been 
implemented as an AVM is GWR. Similarly to 
the comparable sales approach, GWR allows 
observations in closer geographic proximity to 
the subject sale to receive more consideration 
than those further away (Fotheringham, Bruns-
don, and Charlton 2002). Because real estate 
markets behave so differently over geographic 
space and location plays such a large role in 
price formation, conventional OLS models are 
often unable to accurately account for spatial 
variation. This results in a correlation of error 
terms across a geographic plane (spatial auto-
correlation). Although spatial consideration in 
the form of dummy variables or distance coef-
ficients can help improve models, it may fail 
to fully correct for spatial autocorrelation, and 
hedonic parameter averages may be skewed or 
averaged out (Fotheringham, Brunsdon, and 
Charlton 2002; McMillen and Redfearn 2010). 

IAAO develops and maintains statistical 
standards by which assessing jurisdictions can 
measure, track, and compare valuations with re-
spect to various performance measures, includ-
ing assessment uniformity and equity (IAAO 
2003). Valuation estimates produced by GWR 
AVMs have been shown to achieve superior 
results with respect to such IAAO standards 
when compared to valuations produced by OLS 
AVMs (Borst and McCluskey 2008; Moore 
2009; Moore and Myers 2010; Lockwood and 
Rossini 2011; McCluskey et al. 2013; Bidanset 
and Lombard 2014a). 

Modifying GWR AVMs to Allow 
for Additional Weighting Parameters

GWR AVMs that allow the weighting of ad-
ditional parameters have demonstrated a higher 
predictability power than those that do not, both 
inside and outside of the property tax indus-
try. The introduction of a temporal weighted  
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regression (TWR) modifies the weighting 
scheme with a time component, in which ob-
servations that occurred more recently to the 
regression point receive a higher weight than 
those that occurred further away. This spatio-
temporal LWR approach is often referred to as 
GTWR, and it is suggested that it outperforms 
both GWR and OLS with respect to housing 
price predictions (Crespo, Fotheringham, and 
Charlton 2007; Huang, Wu, and Berry 2010; 
Fotheringham, Crespo, and Yao 2015). Borst 
(2014) demonstrated the ability of spatiotempo-
ral weighting to improve assessment valuations, 
as evidenced by more uniform and equitable re-
sults across stratum.

In 2006, Shi, Zhang, and Liu modified the 
spatial weights matrix of a GWR model (used 
to predict spatial patterns of trees) to also take 
into account similarity of tree attributes, so that 
not only trees closer to the subject tree but also 
those trees more physically similar to the sub-
ject tree (e.g., trunk diameter) are more heavily 
considered. This resulted in smaller residuals 
and improved predictions. Similarly, Moore 
and Meyers (2010) utilized such a spatial- 
attribute weighting function (coined  
geographic-attribute weighted regression 
[GAWR]) that achieves higher accuracy and 
uniformity than an AVM with a spatial weight-
ing function (e.g., GWR) alone. 

Justification for Research
Because independent weighting of time and 

attribute improves GWR AVMs, a logical hy-
pothesis follows that weighting by all three 
dimensions simultaneously would produce op-
timal property valuations. Surprisingly, there 
has yet to be research that has done so (to our 
knowledge). Jiang et al. (2013) modified the 
GTWR weights matrix of Huang, Wu, and Bar-
ry (2010) to allow for various attribute similari-
ties of sales, with respect to both physical char-
acteristics and location, and disseminated their 
research at the 12th International Conference on 
GeoComputation at Wuhan University. 

They did not, however, specify whether mod-
els were applied to and validated using holdout 
samples. This is important as decreasing band-
widths in GWR models can result in overfit-
ting (Guo et al. 2008), and applying additional 
weighting components will therefore likely 
have a similar effect, as both reduce the magni-
tude other observations have in fitting each re-
gression point. This is also particularly relevant 
in the assessment community, as the IAAO’s 
AVM standard states: “the AVM also should 
be tested on a holdout sample, which is a set of 
properties and their selling prices that were not 
used in the calibration process” (IAAO 2003).

The research described in this paper addressed 
the current literature gap by creating and evalu-

ating a model that is an extension of GWR and 
that accounts for variations in locational, tem-
poral, and physical similarity of properties by 
incorporating concurrent spatial, temporal, and 
physical weighting functions and by evaluating 
the respective impacts of their modifications on 
uniformity and equitability of CAMA valua-
tions used for property tax purposes. This was 
done by replacing the GWR weighting function 
with a locally weighted regression scheme that 
simultaneously:

• Weighted observations (from 0 to 1) based 
on geographic proximity to the subject property, 
in which the weight decays as the observation 
becomes further away.

• Weighted observations (from 0 to 1) based 
on time proximity to the subject property, in 
which the weight decays as the time since the 
sale increases.

• Weighted observations (from 0 to 1) based 
on some calculated degree of similarity in char-
acteristics to the subject property, in which the 
weight decays as dissimilarity increases.

All results were validated using a randomly 
selected holdout sample, which was omitted 
from model specification and calibration.

Although the primary intended audience of 
this paper is professionals in property tax as-
sessment valuation, this new AVM we have 
coined GTCWR has implications for anyone 
who must produce and/or rely upon accurate, 
large-scale real estate valuations at a reasonable 
cost—portfolio valuation analysts, loan origina-
tors, mortgage companies, and other real estate 
professionals.

Methodology
GWR is represented by the following formula 

(Fotheringham, Brunsdon, and Charlton 2002, 
61):

(1)  yi = β0(xi , yi ) + ∑ βk (xi  , yi  ) xik + εi

where
yi  = i-th sale
β0 = model intercept
βk = k-th coefficient
xik = k-th variable for the i-th sale
εi  = error term of the i-th sale
(xi  , yi ) = x-y coordinates of the i-th regression 
point. 

The bandwidth in GWR specifies the radius of 
the weighting function. It is either fixed, based 
on absolute distance, or adaptive (fluctuating), 
based on a predetermined number of nearest 
neighbors. An optimized bandwidth may be 
identified based on various conditions, but most 
commonly it is that which corresponds to mini-
mized cross-validation or Akaike information 
criterion-corrected (AICc) scores (Fothering-
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ham, Brunsdon, and Charlton 2002) or, in the 
case of assessment AVMs, that which yields 
superior ratio study scores. For this research, 
an adaptive geographical bandwidth of the 33 
nearest neighbors was identified as optimal.

The kernel specifies how weights are calculat-
ed and assigned to the observations. Although 
there are a number of kernels that may be imple-
mented and each may have a different impact on 
ratio study performance (Bidanset and Lombard 
2014b, 2017), an exponential weighting kernel 
function (equation 2) was used in this research. 
In GWR, an nXn spatial weights matrix is con-
structed to indicate the weight each observation 
is assigned relative to the subject, based on geo-
graphic distance.

(2)  wij = exp[−(|dij|/ b)]         

where 
wij = weight applied to the j-th property at 
regression point i
dij  = geographical distance in kilometers be-
tween regression point i and property j 
b  = geographical bandwidth.

A visual depiction of the respective exponen-
tial kernel weighting distribution is shown in-
Figure 1.

To exemplify how the weights matrices 
were constructed for this research, the existing 
weights matrix used in GWR was adjusted to 
consider, in part, both structural and temporal 
(time-of-sale) similarity. 

To modify an existing nXn spatial weights 
matrix to also account for similarity of prop-
erty characteristics, a separate weights matrix 
is calculated using each variable by which the 
model is to be weighted. The following kernel 
was used:
(3)  wij = exp[−|1 − ( jk ÷ ik   )|]

where
wij = weight applied to the j-th property at 
regression point i
j   = value of quantitative physical characteris-
tic variable k of property j
i   = value of quantitative physical characteris-
tic variable k of regression point i.

A separate matrix is created for each of the 
following characteristics: number of rooms, 
number of bedrooms, and total land area. These 
matrices are multiplied together to produce 
one product matrix of characteristic similarity 
weights. The product matrix is multiplied by 
the existing spatial weights matrix already cali-
brated for the GWR, resulting in a spatial-attri-
bute-weighted model we refer to as geographi-
cally and characteristically weighted regression 
(GCWR). 

Moore and Myers (2010) similarly utilized 
total living area, grade, and land value and 
referred to this method as GAWR. Allowing 
for observations more similar to the subject 
to receive a higher consideration in price esti-
mation than less similar properties results in a 
more flexible modeling approach that mirrors 
the comparable sales approach, as well as the 
actual real estate buying process—supply and 
demand of one submarket may not have an 
impact on another, or at least arguably not to 
the same extent as properties within the same 
submarket. For example, although the price of a 
larger house with more bedrooms and a higher 
land price may follow the same upward and 
downward cyclical market trends as a smaller 
house with fewer bedrooms, the two are likely 
not viewed by a potential buyer as substitutes. 

To modify an existing spatial weights matrix 
to also take into consideration temporal similar-
ity of sales, a separate weights matrix was cal-
culated using the sale date:

(4) wij = exp[−|( dij
2 ÷ b2

 )|]

where
wij = weight applied to the j-th property at 
regression point i
dij = the temporal distance in days between 
regression point i and property j 
b  = temporal bandwidth. 

This matrix is multiplied by the existing spa-
tial weights matrix, a modification that allows 
for temporal consideration: GTWR (Huang et 
al. 2013; Fotheringham et al. 2015). The tempo-
ral bandwidth, similar to the geographic band-
width, may be optimized with respect to a num-
ber of factors such as AICc, cross-validation, or 
ratio study standards. For this research, a tem-
poral bandwidth of 1,400 days was identified as 

Figure 1: Exponential kernel weighting 
distribution

Source: Gollini et al. 2013, p. 6 (used with permission).
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optimal. (Optimal bandwidths likely increase 
[decrease] with data spanning longer [shorter]) 
lengths of time.)

When the spatial weights matrix of GWR is 
multiplied by both the product matrix of char-
acteristic similarity weights and the matrix of 
temporal weights, a new nXn product matrix is 
created, and when it is applied to the model, a 
locally weighted regression model is produced 
that accounts, simultaneously, for geographic, 
characteristic, and temporal similarity: GTC-
WR. Assigning a higher weight to sales that 
have occurred within a more recent window al-
lows for local parameter estimates to be more 
reflective of the market at the desired time of 
valuation. Similarly to the comparable sales ap-
proach, sales occurring closer to the valuation 
date should theoretically produce more accurate 
value estimates than those occurring much ear-
lier or later, also resulting in a more defensible 
approach.

Evaluating Results 
IAAO has established statistical standards by 

which assessments may be evaluated for accu-
racy, equity, and uniformity.

The COD measures the uniformity of an as-
sessment stratum. It is the average percentage 
of dispersion around the median assessment-to-
sale price ratio and is calculated as follows:

(5)

where
Rm = median assessment-to-sale price ratio
Ri  = observed assessment-to-sale price ratio of 
the i-th sale
n  = number of properties sampled.

IAAO ratio study standards state the COD for 
non-new, single-family homes should be less 
than or equal to 15.0. Values below 5.0 indicate 
potential sampling error or sales-chasing.

The PRD is an indicator of potential equity 
or inequity. It is represented by the following 
formula:

(6) 

where

      = predicted sale price of the i-th sale
Yi   = observed sale price of the i-th sale
n    = number of properties sampled.

An acceptable PRD value falls between 0.98 
and 1.03; anything below (above) this range 
suggests evidence of progressivity (regressiv-

ity) (Gloudemans and Almy 2011). 
The PRB is another indicator of potential eq-

uity or inequity across valuations. It represents 
an estimated percentage change in assessment-
to-sale price ratio as values double (or halve). It 
is calculated using the following formula:

(7) 

where
Rm = median assessment-to-sale price ratio
Ri  = observed assessment-to-sale price ratio of 
the i-th sale
β0  = model intercept
β1 = PRB coefficient
    = predicted sale price of the i-th sale 
Yi = observed sale price of the i-th sale
εi = error term of the i-th sale.

An acceptable, statistically significant PRB 
coefficient falls between −5.00 and 5.00, with 
a positive (negative) statistically significant co-
efficient indicating progressivity (regressivity) 
(Gloudemans and Almy 2011).

Assessment-to-sale price ratios are calculated 
to show over- or undervaluations, both for in-
dividual properties and on the aggregate level 
(i.e., median assessment-to-sale price ratio).

To exemplify the impacts of adjusting the 
GWR weights matrix to allow for additional 
weights matrices, the following models were 
compared with respect to COD, PRD, PRB, and 
median assessment-to-sale price ratio:

• GWR
• GCWR
• GTWR
• GTCWR
Note that because there are no time-related 

variables (e.g., time splines; monthly, quarterly, 
or annual time variables), the purpose of the re-
search was to evaluate, not each model’s ability 
to handle valuation estimates over time, but the 
potential performance enhancement of a model 
by additional weighting components. 

Data
The initial data consisted of 27,101 single-

family home sales (of dwellings at least 3 years 
of age) from Fairfax, Virginia, between January 
1967 and December 1990. A randomly selected 
subsample of 5,420 observations (20 percent) 
was then randomly divided into model training 
and testing samples (n = 4,878 [90 percent] and 
n = 542 [10 percent], respectively). The holdout 
testing sample was used for validation and to 
protect against model overfitting. No observa-
tions were trimmed due to outliers. 

Table 1 shows the dependent variable and in-
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dependent variables of the models, their respec-
tive descriptions, and descriptive statistics. The 
dependent variable, SalePrice, is the sale price 
of the home in December 1990 dollars, trans-
formed using the monthly consumer price index 
(CPI) of the U.S. Bureau of Labor Statistics. 
LandArea is the size of the parcel (measured in 
square feet) on which the house is built. Rooms 
is the total number of rooms of the dwelling. 

The size of a dwelling is usually represented 
in CAMA models by the total square feet of 
structure or finished living area, which is argu-
ably both more specific and less vague than a to-
tal room count (due to variations in room size), 
but this information was not included in the data 
set. (The number of bedrooms was also provid-
ed in the data set, but did not offer an increase in 
explanatory power, measured by AICc).

Baths and HalfBaths indicate the number of 
full bathrooms (including a shower or bath) and 
half-bathrooms (sink fixture only), respectively. 
Age is the number of years since the home was 
built. Because the age of the dwelling demon-
strated a statistically significant parabolic effect 
on the dependent variable, both squared (Age2) 
and cubed (Age3) transformations of Age are in-
cluded. Fire represents the number of fireplaces 
within the home. All variables are reflective of 
the property at the time of the sale.

Results
Each model’s respective assessment-to-sale 

price ratio based on holdout sample predictions 
is plotted in figure 2. Figure 2 demonstrates 
an increased predictability power and equity 
with each additional weighting component. 

Variable Description Minimum First Quartile Median
Third 

Quartile Maximum Mean

Dependent Variable

Sale Price Price of dwelling (in 
12/1990 dollars)

$20,800 $98,000 $139,500 $190,000 $885,000 $161,318

Independent Variables

Land Area Size of parcel (square 
feet) 

637 637 10,452 15,566 217,316 13,199

Rooms Number of rooms 4.00 4.00 8.00 8.00 16.00 7.54

Baths Number of full 
bathrooms

1.00 1.00 2.00 2.00 5.00 2.62

Half Baths Number of half-
bathrooms

0.00 0.00 1.00 1.00 3.00 0.80

Age Age of dwelling (years) 3.00 3.00 10.00 16.00 77.00 12.75

Age2 Squared age of 
dwelling (years)

9.00 9.00 100.00 256.00 5,929.00 251.70

Age3 Cubed age of dwelling 
(years)

27.00 27.00 1,000.00 4,096.00 456,533.00 6,862

Fire Number of fireplaces 0.00 0.00 1.00 1.00 4.00 0.94

Table 1: Descriptions and descriptive statistics of model variables

Model COD PRD PRB

Median 
Assessment-
to-Sale Price 

Ratio COD PRD PRB

Median 
Assessment-
to-Sale Price 

Ratio

GWR 17.08% 1.05 −0.08 1.02 18.75% 1.06 −0.07 1.02

GCWR 12.77% 1.04 −0.08 1.01 16.50% 1.05 −0.10 1.01

GTWR 11.33% 1.03 −0.05 1.01 15.44% 1.04 −0.03 1.01

GTCWR 7.51% 1.02 −0.05 1.00 13.38% 1.03 −0.05 1.01

Training Sample Testing Sample (Holdout)

Table 2: Ratio study by performance model
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Figure 2: Assessment-to-sale price ratios by model (holdout testing sample)

The inclusion of each weights matrix promoted 
linearity across predictions, as well as a reduc-
tion in heteroscedasticity, although the largest 
improvement, GTCWR appears to still exhibit 
slight heteroscedastic errors. Each weighting 
component improved the baseline GWR model 
with respect to COD (table 2). 

The most uniform predictions for both the 
training and testing samples (COD values of 
7.51 percent and 13.38 percent, respectively) 
were achieved by GTCWR. GWR and GCWR 
failed to achieve acceptable PRD or PRB 
scores. Although GTWR did achieve an ac-
ceptable PRD score for the holdout sample, the 

negative PRB score was not statistically sig-
nificant, suggesting inconsistent indications of 
vertical inequity. In both the training and testing 
samples, GWR yielded the highest COD (17.08 
percent and 18.75 percent, respectively) and the 
highest PRD (1.05 and 1.06, respectively). The 
only model that achieved IAAO-accepted levels 
of COD, PRD, PRB, and median assessment-
to-sale price ratio across both samples was 
GTCWR. 

In both samples, additional weights matrices 
reduced COD, PRD, and PRB to levels more in 
line with IAAO standards. 
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Conclusions
GWR has been recognized in the assessment 

community as a viable AVM to help overcome, 
at least in part, modeling hurdles associated 
with location such as spatial heterogeneity and 
spatial autocorrelation of error terms. By al-
lowing model coefficients to vary over space, 
the mechanisms of GWR enable sales closer 
to a subject property to have more influence in 
the calculation of its respective value estimate 
than sales further away. This notion is similar 
in rationale to the sales comparison approach, 
in which an appraiser selects properties in the 
similar geographic submarket of the subject 
property to determine an estimate of value. 

The weighting scheme of GWR inherently ig-
nores time and structural similarity of sales used 
in the modeling process—two dimensions that 
are very much deterministic of a real estate sub-
market and are usually represented in a model 
by covariates.

Because submarkets are largely characterized 
by tastes, preferences, and other factors cor-
related with a demographic’s willingness and 
ability to purchase a home, there is a logical and 
reasonable hypothesis that the prices of homes 
more similar to a buyer’s ultimate purchase—
both with respect to the characteristics and the 
time of the market—will have had more of an 
impact on its sale price than those outside of the 
buyer’s demand. For this reason and others, the 
modification of GWR to allow for additional 
weighting considerations has become a topic 
of research among real estate valuation profes-
sionals.

Although previous researchers have adjusted 
the GWR weights matrix to also weight by time 
of sale or by structural similarity of properties 
in AVMs, there has yet to be research that has 
done so by all three dimensions (i.e., location, 
structural similarity, and time of sale) simulta-
neously.

Using more than 24 years of single-family res-
idential sales in Fairfax, Virginia, we created a 
new LWR AVM called GTCWR and compared 
it with other GWR-based models with respect 
to IAAO ratio study performance on a hold-
out testing sample. The additional LWR mod-
els evaluated were GWR (used as a baseline), 
GCWR, and GTWR. 

Despite the fact that inflation was accounted 
for in the form of CPI time-adjusted sale prices, 
temporal weighting still had an impact on per-
formance, indicating the presence of other time-
based impacts on price. Although temporal 
weighting improved the models in both training 
and testing samples, temporal bandwidths were 
set at 1,400 days; models could likely benefit 
from the inclusion of time-based variables to 
help model short-run market fluctuations. Note 
that further research should compare the per-

formance of GTWR or GTCWR against that of 
GWR incorporating traditional time-based vari-
ables (e.g., time splines; reverse-month-of-sale, 
quarterly, or seasonal dummy variables), as 
well as the inclusion of such variables within 
temporally weighted GWR models. 

GTCWR was the only model to achieve 
IAAO-accepted levels of COD, PRD, PRB, and 
median assessment-to-sale price ratio in both 
the training and testing samples, and the addi-
tion of temporal weighting on this data set did 
appear to help reduce indicators of vertical in-
equity, although it did not fully relieve the het-
eroscedasticity of the other models. It is perhaps 
not surprising, however, that a data set of such 
a long time span did not perform as well when 
time was not a weighting component, because 
there were no time variables in the baseline 
model.

The purpose of this research was not to com-
pare optimal methods of accounting for hetero-
geneity and autocorrelation across time, space, 
and characteristics, but rather to highlight the 
fluctuation in results that can be attained sim-
ply by adjusting a weights matrix to consider 
multiple criteria. Still, the remarkability that 24 
years of sales could attain such a performance 
with no time-based variables, no trimming of 
outliers, and minimal optimization during mod-
el specification and calibration should not be 
overlooked, and suggests great potential for 
GTCWR. Through additional research and 
model optimization, GTCWR performance 
should be expected to be further improved.

While performance statutes vary across lo-
calities, it is common for an assessor to be held 
to certain valuation performance levels with 
respect to assessment equity. Assessors should 
realize the potential ability of GTCWR to aid in 
attaining satisfactory equity levels across valu-
ations, as well as increasing the defensibility 
of their values in circumstances of appeals and 
even court cases. There are also implications 
that it may benefit professionals who are elected 
to their position or others who may be evaluated 
based on the performance of valuations. As with 
any AVM, GTCWR may estimate overall value 
or modify cost manuals (depreciation sched-
ules, factor adjustments, and so forth). 

The research described in this paper has laid 
the foundation of GTCWR as a viable AVM for 
ad valorem property tax assessment purposes. 
There is still a great amount of research on the 
subject to be done, for example, identifying a 
method of accounting for both short-run and 
long-run temporal changes using an optimal 
balance of time variables and temporal weight-
ing methods. Just as incorporating location-
based variables into a GWR model requires 
careful consideration and application in order 
not to bias results, careful consideration will 
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have to be given to finding such a balance in 
the temporal sense as well. Various combina-
tions of kernel specifications and bandwidth 
combinations should also be studied, because 
they have been shown to have an impact on  
ratio study performance (Bidanset and Lombard 
2014b, 2017).
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