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Abstract— The recognized significance of rumen microbiome 

has inspired efforts to examine the composition of rumen 

microbial communities in a large scale. One of the key research 

areas is to infer association and dependencies between members of 

rumen microbial communities through correlation analysis. 

However, it has been found that due to the compositional nature 

of data, simply applying correlation-based techniques to the 

analysis of relative abundance of microbial genes may produce 

artefactual correlation and loss of information. In an attempt to 

mitigate the compositional effect on the analysis of rumen 

microbiome data, this study applied a framework including a 

compendium of two correlation measures and three dissimilarity 

metrics that are intrinsically robust to compositionality. Based on 

the inference of significant positive and negative associations, co-

presence and mutual-exclusion networks were constructed. The 

corresponding modules associated with methane production were 

identified. The modules are highly enriched with microbial genes 

associated with methane emissions and encoding enzymes involved 

in the methane methanogensis pathway. In comparisons to 

previous studies, our analysis demonstrates that deriving 

microbial associations based on the correlations between relative 

abundances may not only lead to missing information but also 

produce spurious associations. 

Keywords—rumen microbiome; compositional data; methane 

emission; co-occurrence networks; correlation analysis 

I.  INTRODUCTION 

Thanks to their unique digestive system, ruminant livestock 
play an important role in human food production, producing 
high-quality milk and meat products from otherwise indigestible 
food components. Nevertheless, as a direct result and an 
inevitable outcome of rumen fermentation, methane production 
from ruminants contributes significantly to global anthropogenic 
greenhouse gas emissions [1], [2]. It has been estimated that 
ruminant livestock produce around 100 million tonnes of 
methane to the atmosphere each year representing the biggest 
man-made methane source after rice agriculture [3].  

The fermentation process taking place in the rumen is a result 
of fine-tuned cooperation between the host animal and rumen 
microorganisms predominantly consisting of bacteria, archaea, 
protozoa and fungi [4]. These microorganisms play a vital role 
in their host’s physiology and without a healthy microbial 
population in the rumen, ruminants cannot function properly [5]. 

Various studies have demonstrated the influence of rumen 
microbial communities on animal phenotypes [6], [7].  

The recognized significance of rumen microbiome has 
inspired efforts to examine the composition of rumen microbial 
communities on a large scale. Due to the ability to reveal the full 
spectrum of microbial diversity, next-generation sequencing 
(NGS)-based metagenomics analysis has been widely applied. 
Examples include the study conducted by  Henderson et al. [8], 
which performed metagenomics analysis of 742 samples 
collected from 32 animal species and 35 countries and found that 
rumen microbial community composition varies with diet and 
host. However, similar bacteria and archaea are found to 
dominate in nearly all samples across a wide geographical range. 
Lengowski et al. [9] examined ruminal microbial community 
composition alterations during adaption to a rumen simulation 
system and to the forages. It has been shown that the ruminal 
microbial community can be influenced significantly by forage 
source and sampling time. Nevertheless, a dynamic stable 
microbial community composition was achieved after 48h under 
the given incubation conditions on the domain level. Using 
young ruminants subjected to different microbial-modulating 
interventions, Morgavi et al. [7] examined rumen bacterial and 
archaeal communities and the interactions between microbial 
populations and the association with the host. The recent study 
carried out by Roehe et al.  provides a comprehensive insight 
into host-microbe interaction in the rumen and highlighted that 
the host animal controls its own microbiota to a significant 
extent [6]. 

One of the key research areas in NGS-based metagenomics 
data analysis is to infer association and dependencies between 
members of microbial communities through correlation analysis 
[10]. For example, Williams et al. [11] introduced a framework 
to explore biological interactions occurring within microbial 
communities, in which the strength of correlation is derived 
from the calculation of the Spearman’s correlation. The co-
occurrence analysis can be performed at multiple scales ranging 
from the community level down to pairwise interactions 
between microbial taxa. Based on the relative abundance of 
1570 KEGG genes across 8 samples, Roehe et al. [6] constructed 
a co-abundance network where nodes represent microbial genes 
and edges reflect the correlation in their abundance. They have 
successfully identified a close sub-network of the microbial 
genes associated with feed conversion efficiency and methane 



emission respectively. Wang et al. [12] applied a random matrix 
theory-based approach for determination of the correlation 
threshold used to construct the co-abundance microbial network.  

Despite encouraging results have been obtained, the 
correlation-based approaches to the inference of associations 
between microbial genes exhibit some limitations [10], [13].  
Due to the nature of data generation and the normalization 
process involved, the abundance derived from NGS is a relative 
measurement associated with each microbial gene. As a such, 
abundances of microbial genes estimated under certain 
condition are not completely independent of each other. It has 
been shown that simply applying correlation-based techniques 
to the analysis of such compositional data may produce 
misleading results [13]. 

This study aims to apply a new framework including a 
compendium of correlation and dissimilarity measures to 
mitigate the effect of compositionality on the analysis of rumen 
microbiome data. The main objective is to infer both co-
presence and mutual exclusion networks associated with 
methane emission. The remainder of this paper is organized as 
follows. Section II briefly describes the framework and 
methodology used in this study, including dataset and an 
ensemble of correlation of dissimilarity metrics. Section III 
presents the results and discussion. The paper concludes with a 
summary of contributions and limitations of this study followed 
by the direction of future research. 

 

II. METHODOLOGY                                                                                                                          

We followed the approach introduced in [13] by using a 

compendium of similarity/dissimilarity measures for the 

analysis of rumen metagenomics data which include the relative 

abundance of 1570 microbial genes [6]. Without loss of 

generality, a network including 1000 top-ranking and 1000 

bottom-ranking edges was constructed for each measure. To 

assess the significance of scores associated with each edge, we 

applied the Permutation-Renormalization and Bootstrap 

(ReBoot) method [13], which can construct a null distribution 

that reflects the compositional nature of the data. After merging 

p-values and multiple testing corrections, a final network 

consisting of significant co-presence (positive interaction) and 

mutual-exclusion (negative interaction) patterns was extracted. 

The resulting network was further examined in terms of 

topological analysis, biological relevance and pathway 

involvement. The key steps involved in the study are illustrated 

in Fig. 1. 

A. Rumen Meteganomics Data 

The data applied in this research was released by Roehe and 

his colleagues in a study [6] in which a 2 × 2 factorial design 

experiment of breed types and diets was performed using 72 

steers from a two-breed rotational cross between Aberdeen-

Angus (AA) or Limousin cattle (LIM). Based on genomic 

analysis of rumen contents taken from 8 extreme animals 

balanced for breed type and diet, a total of 3970 KEGG gene 

orthologues were identified, of which 1570 genes showed a 

relative abundance of more than 0.001%. The detailed 

description of data generation can be found in [2] and [6]. 

B. An Emsemble of Similarity and Disimilarity Measures 

In order to mitigate the effect of compositionality on the 

analysis of rumen microbiome data, a compendium of two 

correlation measures, i.e. Spearman and Pearson correlations, 

and three dissimilarity metrics that are intrinsically robust to 

compositionality [13], i.e. Bray-Curtis dissimilarity (BC), 

Kullback-Leibler dissimilarity (KL), and Jensen-Shannon 

dissimilarity (JS) were utilized.  

Let x and y be two vectors containing relative abundances 

across samples for two microbial genes. The three 

dissimilarities are defined as follows. 

 

𝐵𝐶(𝑥, 𝑦) = 1 −
2∑ |𝑥𝑘 − 𝑦𝑘|𝑘

∑ 𝑥𝑘𝑘 +∑ 𝑦𝑘𝑘
 (1) 

 

 

𝐾𝐿(𝑥, 𝑦) =∑ (𝑥𝑘 × log
𝑥𝑘
𝑦𝑘𝑘

+ 𝑦𝑘 × log
𝑦𝑘
𝑥𝑘
) (2) 

 

 

𝐽𝑆(𝑥, 𝑦) =∑ (𝑥𝑘 log
2𝑥𝑘

(𝑥𝑘 + 𝑦𝑘)𝑘
+ 𝑦𝑘 log

2𝑦𝑘
(𝑥𝑘 + 𝑦𝑘)

) (3) 

 

C. Statistical Significance of Emsemble Scores 

To evaluate the significance of the association accounting 

for compositionality, we applied a nonparametric test based on 

the ReBoot method introduced in [13]. Unlike a standard 

procedure based on permutation test that essentially removes 

compositional effects and thus fails to identify spurious 

compositional correlations, the ReBoot method introduces 

sample-wise renormalization after permuting the abundance 

across samples. Such an approach leads to the construction of 

compositionality-aware null distribution. Comparing this null 

distribution to a standard bootstrap confidence interval, an 

appropriate significance level of the observed correlation can 

be established. 

In this study, both permutation and bootstrap score 

distributions were computed with 100 iterations. Any edge with 

a score that falls outside of the bootstrapped confidence interval 

was removed. 

D. Network Merging 

After constructing a measure-specific network in which a 
node stands for a microbial gene and a score associated with 
each edge represents the strength of the association between two 
genes, we combined all the networks using Brown’s method [14] 
which is an extension of Fisher’s method for combining 
dependent p-values. The merged p-values on each final edge 
were adjusted using the Benjamini-Hochberg false discovery 
rate (FDR) correction and the final network was thresholded at 
a q-value less than 0.05.  

 

 



 

III. RESULTS 

A. Co-presence and Mutual-exclusion networks 

The final association networks were constructed using the 

CoNet app [15] which offers a variety of approaches for 

inference of biological meaning using Cytoscape [16]. Only the 

interactions with an FDR corrected p value (q-value) less than 

0.05 were kept. The co-presence network (Fig. 3) consists of 

790 nodes (microbial genes) and 2106 edges with positive 

scores while the mutual-exclusion network is composed of 763 

negative interactions between 473 microbial genes as shown in 

Fig. 4. The top 5 hub nodes are shown in Tables 1 and 2 

respectively.  

 
TABLE I TOP5 HUB NODES IN THE CO-PRESENCE NETWORK 

Node 

degree 

KEGG 

orthologue 
Description of microbial genes 

30 K07161 Uncharacterized protein 

29 K00805 EC:2.5.1.30 

25 K00169 EC:1.2.7.1 

25 K06310 Spore germination protein 

24 K02007 
Cobalt/nickel transport system permease 

protein 

24 K04070 EC:1.97.1.4 

24 K00111 EC:1.1.5.3 

 
TABLE II TOP5 HUB NODES IN THE MUTUAL-EXCLUSION NETWORK 

Node 

degree 

KEGG 

Orthologue 
Description of microbial genes 

77 K02986 Small subunit ribosomal protein S4 

59 K06013 EC:3.4.24.84 

57 K03780 EC:4.2.1.32 

35 K02874 Large subunit ribosomal protein L14 

35 K02931 Large subunit ribosomal protein L5 

35 K02837 Peptide chain release factor RF-3 

 

The distribution of the number of the interactions supported 

by the metrics is shown in TABLE III. There are 537 and 382 

edges in co-presence and mutual-exclusion networks, 

respectively, which are supported by at least two metrics with a 

q value below 0.05. Interestingly all the pairs supported by the 

Spearson’s correlation in the co-presence network exhibit a 

perfect monotonic relationship. None of links in the mutual-

exclusion network is supported by all the 5 metrics used while 

in the co-presence network a total of 10 pairs are significantly 

supported by all 5 metrics as shown in TABLE IV. 

 

Fig. 1 A diagram to illustrate the key steps involved in the study. 



TABLE III DISTRIBUTION OF THE NUMBER OF INTERACTIONS SUPPORTED BY 5 

METRICS 

Metrics 

Co-presence 

network 

Mutual-exclusion 

network 

Threshold 
Number of 

pairs 
Threshold 

Number of 

pairs 

Pearson 

correlation 
0.996 775 -0.913 397 

Spearman 

correlation 
1.0 975 -0.952 335 

Bray-

Curtis   
0.049 490 0.917 135 

Kullback-

Leibler 
0.018 441 9.17 136 

Jensen-

Shannon 
0.0017 36 0.563 140 

 

 
TABLE IV INTERACTIONS SUPPORTED BY BOTH CORRELATION METRICS AND 

THREE DISSIMILARITY MEASURES 

Interaction 

type 
Interactor A Interactor B 

Corrected p 

value 

co-presence K13812 K00577 0.000 

co-presence K13812 K00400 0.000 

co-presence co-presence K14105 0.000 

co-presence K00577 K00400 0.000 
co-presence K00320 K14127 0.000 
co-presence K07388 K01623 0.000 
co-presence K00123 K14128 0.000 
co-presence K00123 K03388 0.000 
co-presence K09154 K03042 0.000 
co-presence K03832 K03303 0.000 

 

 

Fig. 3 Significant co-presence relationships among the abundances of KEGG 

microbial genes in the rumen microbiome. The width of edges is proportional 
to the level of significance of supporting evidence. Red nodes represent genes 

encoding enzymes that are directly involved in the methane production 

pathway. 

B. Biological relevance 

Given that the extreme animals selected in the data collection 
carried out by SRUC [2], [6] were based on methane emissions, 
we first checked the distribution of methane specific-microbial 
genes in both networks. The level of the enrichment of trait-

specific genes can be quantitatively expressed by the 
hypergeometric distribution probability calculated as follows. 

where m is the number of microbial genes found in a module, 
i is the number of genes in the module associated with certain 
trait, N is the total number of microbial genes contained in the 
network and n is the number of trait-specific genes associated 
found in the network. 

We found that, out of 31 genes that are directly involved in 
the methane production pathway studied in Wallace et al. [2], 
twenty-two and nineteen were found in the co-presence and 
mutual-exclusion networks respectively and all of them are 
grouped in Module A and B respectively (p < 10-15). 
Furthermore, nineteen out of 20 methane emission specific 
genes identified by Roehe et al. [6] are contained in the co-
presence network and grouped together in Module A (p < 10-11). 
Based on these figures, one may confidently assume that 
Modules A and B are co-occurrence networks significantly 
associated with methane production. 

We then turned to the topological analysis of Modules A and 

B. As depicted in TABLE V, both modules have a low average 

path length of less than four in comparison to 6 found in random 

networks on average [13]. Surprisingly, the clustering 

coefficient of Module B is equal to 0, indicating that none of 

the neighbours of nodes in Module B are connected. Moreover, 

Module B is more heterogeneous than Module A as indicated 

by the metric of network heterogeneity which reflects the 

tendency of a network containing hub nodes. 

 

 

𝑝 = 1 − ∑ (
𝑚
𝑖
) (
𝑁 − 𝑚
𝑛 − 𝑖

) (
𝑁
𝑛
)⁄

𝑚−1

𝑖=0

 

 

(4) 

Fig. 2 Significant mutual-exclusion relationships among the abundances of 
KEGG microbial genes in the rumen microbiome. The width of edges is 

proportional to the level of significance of supporting evidence. Red nodes 

represent genes encoding enzymes that are directly involved in the methane 

production pathway. 

 



TABLE V THE CHARACTERISTICS OF MODULES A AND B 

Parameters Module A Module B 

Nodes 143 186 

Edges 694 444 

Clustering coefficient 0.572 0.000 

Characteristics path length 3.628 3.777 

Average number of neighbours 9.706 4.774 

Network heterogeneity 0.676 1.517 

Network density 0.068 0.026 

Network centralization 0.145 0.296 

 

There are two hub nodes in Module B having a degree more 

than 50. The top node (K06013, STE24 endopeptidase 

[EC:3.4.24.84]) exhibits significant mutual exclusion patterns 

over samples with 59 microbial genes supported by all three 

dissimilarity measures (BC, KL and JS) with a q-value less than 

0.05. Similarly, K03780 is linked to 57 microbial genes in the 

form of strong mutual exclusions (q < 0.05). 

In Module A, the most connected node is an uncharacterized 

protein (K07161), which shows significant co-presence 

patterns with 30 microbial genes across samples with a 

corrected p value less than 0.00001. In particular, it exhibits a 

similar abundance pattern (Fig. 4) across 8 samples with five 
genes (K00581, K00125, K00202, K00402 and K00401) 

encoding enzymes involved in the methane production pathway 

and four microbial genes associated with methane emission 

(K00581, K00125, K01499 and K00169). As shown in Fig. 4, 

K07161 has a relative high level of abundance in the samples 

in the high methane emission group, suggesting this 

uncharacterized protein might be involved in the methane 

production pathway. 

 

 

Fig. 4 The absolute abundance profile of the co-presence pattern observed in 

K07161 and seven microbial genes relevant to methane emission. AA: 

Aberdeen Angus, LIM: Limousin, Conc: concentrate diet, Med: medium 
concentrate diet, L: Low methane emission, H: High methane emission. 

 

C. Pathway analysis 

The interaction partners in the co-presence network for 

genes encoding enzymes involved in methanogenesis are listed 

in TABLE VI. As expected, there are a number of strong positive 

interactions among methane specific microbial genes. For 

example, Fig. 5 shows the interactions among 19 methane 

emission specific microbial genes in the form of co-presence. 

The significant co-presence patterns were also observed among 

genes encoding interacting enzymes. Examples include 

significant positive associations between K00125 encoding 

formate dehydrogenase (EC:1.2.1.2) and K00201 encoding 

formylmethanofaran dehydrogenase (EC:1.2.99.5). Similar 

observation is made between genes K00443 and K03388 

encoding interacting enzymes, heterodisulfide reductase 

(EC:1.8.98.1) and coenzyme F420 hydrogenase (EC:1.12.98.1) 

respectively. However, no mutual exclusion patterns have been 

found among genes either associated with methane emissions 

or involved in the methane production pathway.  

 
TABLE VI INTERACTION PARTNERS IN THE CO-PRESENCE NETWORK FOR 

KEY UNITS INVOLVED IN METHANOGENESIS 

Enzymes 
Enzyme 

encoding genes 
Degree 

Methane specific interaction 

partners 

EC:1.2.1.2 

K00123 14 
K00125, K00201, K00399, K00401, 

K0051, K03388, K14128 

K00125 21 
K03388, K00402, K00202, K00443, 
K00123, K00401, K00581, K14128,  

K14128 

EC:1.2.99.5 

K00200 7 K00203, K00170 

K00201 6 K03388, K00123, K14128, K00399 

K00202 18 
K03388, K00581, K00125, K14128, 

K00401, K00402 

K00203 10 K14128, K00169, K00584, K00200 

K00205 3 K00672 

EC:2.3.1.101 K00672 9 
K00205, K00401, K00577, K00400, 

K12812 

EC:3.5.4.27 K01499 18 K00169 

EC:1.5.99.9/
EC:1.5.98.1 

K00319 11 - 

EC:1.5.99.11

/EC:1.5.98.2 
K00320 8 - 

EC:2.1.1.86 

K00577 17 
K00441, K00672, K03390, K13812, 

K00400, K14123 

K00581 20 
K00125, K00202, K00402, K14128, 

K00399, K00123, K02288 

K00584 5 K00169, K00203, K00169 

EC:2.8.4.1 

K00399 6 
K03388, K00201, K00123, K14128, 

K00581 

K00401 21 
K00125, K14128, K00202, K00402, 

K00123, K03388, K00443, K00440 

K00402 19 
K00125, K00581, K00202, K03388, 

K00401 

EC:1.12.98.1 

K00440 7 K00401, K00443 

K00441 7 K00672, K00577, K00400, K13812 

K00443 7 K00125, K00401, K03388, K00440 

EC:1.8.98.1 

K03388 18 

K00399, K00201, K00123, K14128, 

K00125, K00581, K00202, K00401, 

K00402, K00443 

K03389 3 - 

K03390 14 K00577, K13823, K00400,K14123 



 

 
Fig. 5 Positive interactions among 19 microbial genes associated with 

methane emission found in Module A.  

D.  Comparisons with previous studies 

In comparison to our previous studies [6], [12] in which a 

co-abundance network was constructed using Pearson 

correlation coefficient to measure the similarity between two 

genes based on their relative abundances, the current study 

introduces two major improvements: (1) the system is able to 

construct a network containing either co-presence or mutual-

exclusion patterns; and (2) the compositional effect in the 

analysis of rumen microbial communities based on relative 

abundance data is mitigated through an ensemble approach [13] 

containing two correlation measurements and 3 disisimilarity 

metrics. 

It has been shown that assessing relationships between 

relative abundance profiles purely based on correlation-based 

metrics may lead to spurious correlation. For example, the 

actual counts and relative abundances which sum to one of 

K02986 and K00790 are shown in Fig. 6. Two microbial genes 

only have a weak negative correlation with Pearson correlation 

coefficient equal to -0.291 in Fig. 6(a)  while they exhibit a 

strong negative correlation based on their relative abundance (-

0.995) in Fig. 6(b). Another example is the correlation between 

K07636 and K03742 which show a strong positive correlation 

well above the threshold (0.99) used in our previous study [12] 

to construct the co-abundance network. However, if we look at 

their actual abundance profile, they have a correlation of 0.948 

which is below the threshold identified (0.99). 

Our results also provide the evidence that analysis of 

relative abundance profiles purely based on correlation-based 

metrics may lead to loss of information. For example, out of 31 

genes encoding enzyme directly involved in the methane 

production pathway, 22 were found in Module A which is 

strongly associated with methane emission while only 18 were 

included in the module found in our previous study [12]. Out of 

2106 positive interactions included in the co-presence network 

and 763 negative associations in the mutual-exclusion network, 

only 775 are found to have an absolute value of the Pearson 

correlation greater than the threshold identified in [12]. In 

particular, there is only one pair of microbial genes, i.e. K00790 

and K02986, having a negative correlation less than -0.99. On 

the other hand, the interactions supported by the Pearson 

correlation measure found in the co-presence network have a 

positive value higher than 0.995, suggesting that inferring a 

microbial association network solely based on a correlation 

measure may not only lead to missing information but also 

cause artefactual associations. A close examination of the 

interaction partners of K00123 (formate dehydrogenase major 

unit [EC:1.2.1.2]) in the co-expression network confirms our 

analysis. K00123 is found to be associated with methane 

emission [6] and involved in the methane production pathway 

[2]. It has 14 significant positive interactions with a corrected p 

value less than 0.05. However, more than half of interactions 

have a Pearson correlation coefficient less than 0.99 and thus 

were not included in our previous study including the 

interactions with another subunit of formate dehydrogenase 

(K00125) and K00201(formylmethanofuran dehydrogenase 

subunit B [EC:1.2.99.5]). 

 

  

 
Fig. 6 The abundance profiles of two microbial genes, i.e. K02986 and K00790 

across 6 samples: (a) actual counts; and (b) relative abundance 

IV. CONCLUSIONS 

Advances in NGS-based approaches have opened up new 

avenues in rumen microbial ecology studies. One of the key 

research areas is to infer association and dependencies between 

members of rumen microbial communities through correlation 

analysis. However, it has been found that due to the nature of 

data generation and the normalization process involved, 

traditional correlation-based analysis exhibits some significant 

limitations [10], [13].  Using a compendium of 2 correlation and 

3 dissimilarity measures, this paper applied a new framework 

for the analysis of rumen metagenomics data which include the 

relative abundance of 1570 microbial genes. Robust co-

presence and mutual exclusion networks were constructed 

which contains 1000 top-ranking and 1000 bottom-ranking 

edges with an FDR corrected value less than 0.05. Based on the 

assessment of level of enrichment of trait-specific microbial 



genes, co-presence and mutual-exclusion modules associated 

with methane production, i.e. Modules A and B, were 

identified. While there exist strong positive correlations 

between methane specific genes in Module A which 

includes143 nodes and 694 positive edges, no mutual-exclusion 

patterns were observed among genes associated with methane 

emissions and encoding enzymes included in the methane 

production pathway in Module B which consists of 186 genes 

and 444 negative associations. The results demonstrate that 

deriving microbial associations based on the correlations 

between relative abundances may not only lead to loss of 

information but also produce spurious associations. 

In this study, we adopted the parameters used [13] and the 

network construction was based on the analysis of the 2000 

edges with extreme scores, i.e. 1000 top-scores representing 

strong positive interactions and 1000 bottom scoring associated 

with negative association. An important direction for our future 

research is to develop an advanced approach for the automatic 

determination of the optimal number of edges to be included for 

the inference of microbial association networks. 

Currently the analyses of network topology and biological 

relevance were carried out by treating co-presence and mutual-

exclusion networks as two independent networks. We are now 

working on the development of a multiplex-network based 

approach (Fig. 7) in an attempt to bridge together different co-

presence and mutual-exclusion relations. As the first attempt, 

we applied the PageRank centrality developed for 

interconnected multilayer networks [17], [18] to rank the nodes. 

Different rankings were obtained as depicted in TABLE VII, 

however, the biological relevance of the results deserves further 

investigation. 
 

 

Fig. 7 An illustration of a multiplex network based approach for combining co-

presence and mutual-exclusion networks. 

TABLE VII THE TOP 5 MICROBIAL GENES IN THE CO-PRESENCE NETWORK 

AND IN BOTH CO-PRESENCE AND MUTUAL-EXCLUSION NETWORKS BASED 

ON USING A MULTIPLEX NETWORK-BASED PAGERANK CENTRALITY 

Rank 
Ranking in two 

networks 

Ranking in the co-

presence network 

1 K06013 K07161 

2 K03780 K00169 

3 K02837 K00401 

4 K01468 K02007 

5 K09824 K01622 
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