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Abstract 11 

Nearshore bathymetry is likely to be the coastal variable that most limits the 12 

investigation of coastal processes and the accuracy of numerical models in coastal areas, 13 

as acquiring medium spatial resolution data in the nearshore is highly demanding and 14 

costly. As such, the ability to derive bathymetry using remote sensing techniques is a 15 

topic of increasing interest in coastal monitoring and research. This contribution focuses 16 

on the application of the linear transform algorithm to obtain satellite-derived 17 

bathymetry (SDB) maps of the nearshore, at medium resolution (30 m), from freely 18 

available and easily accessible Landsat 8 imagery. The algorithm was tuned with 19 

available bathymetric Light Detection and Ranging (LiDAR) data for a 60-km-long 20 

nearshore stretch of a highly complex coastal system that includes barrier islands, 21 

exposed sandy beaches, and tidal inlets (Ria Formosa, Portugal). A comparison of the 22 

retrieved depths is presented, enabling the configuration of nearshore profiles and 23 

extracted isobaths to be explored and compared with traditional 24 

topographic/bathymetric techniques (e.g., high- and medium-resolution LiDAR data and 25 

survey-grade echo-sounding combined with high-precision positioning systems). The 26 

results demonstrate that the linear algorithm is efficient for retrieving bathymetry from 27 

multi-spectral satellite data for shallow water depths (0 to 12 m), showing a mean bias 28 

of −0.2 m, a median difference of −0.1 m, and a root mean square error of 0.89 m. 29 

Accuracy is shown to be depth dependent, an inherent limitation of passive optical 30 

detection systems. Accuracy further decreases in areas where turbidity is likely to be 31 

higher, such as locations adjacent to tidal inlets. The SDB maps provide reliable 32 

estimations of the shoreline position and of nearshore isobaths for different cases along 33 

the complex coastline analysed. The use of freely available satellite imagery proved to 34 

be a quick and reliable method for acquiring updated medium-resolution, high-35 
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frequency (days and weeks), low-cost bathymetric information for large areas and 36 

depths of up to 12 m in clear waters without wave breaking, allowing almost constant 37 

monitoring of the submerged beach and the shoreface. 38 

 39 

Keywords: Satellite-derived bathymetry; Landsat; LiDAR; linear transform algorithm; 40 
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 42 

1. Introduction  43 

Updated and detailed coastal topography and bathymetry are increasingly being 44 

required for a wide variety of purposes including research, management, and marine 45 

spatial planning. With the expansion of coastal and marine economic activities, there is 46 

a growing need to develop fast and accurate measurements of nearshore regions, as well 47 

as to describe the physical features of the sea bottom and adjoining coastal areas, 48 

particularly for the purposes of modelling and monitoring. Coastal observation systems 49 

continue to be developed for measuring parameters of and processes related to water 50 

quality, hydrodynamics, meteorology, and ecology, as well as submarine 51 

geomorphology (analysed using bathymetric data). 52 

Accurate bathymetries are the most essential data for driving coastal modelling and 53 

monitoring. Currently, two of the most widely used techniques for acquiring 54 

bathymetric data rely on single- or multi-beam echo-sounding and airborne Light 55 

Detection and Ranging (LiDAR). However, the cost and logistical difficulties of 56 

obtaining nearshore bathymetry using these methods makes survey updates rare or 57 

allows them to be conducted only on sites of special interest. As such, the ability to 58 

derive continuous bathymetry from satellite images has become a topic of increased 59 

interest for coastal monitoring. Such an approach exploits the fact that different 60 

wavelengths of the light spectrum are attenuated by water to varying degrees. Initially, 61 

these approaches could not be used for marine mapping applications owing to the 62 

unique optical properties of water and to highly variable parameters such as turbidity. 63 

However, advances in the optical sensors on board remote sensing satellite platforms 64 

have improved the ability to detect the spectral properties of aquatic targets such as 65 

bottom reflectance, which can then be inverted to yield direct estimates of depth 66 

(Mobley et al., 2005). 67 
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The present work explores the retrieval of satellite-derived bathymetry (SDB) for 68 

shallow coastal areas, aiming to provide a straightforward and inexpensive method for 69 

obtaining and updating bathymetric data relevant to coastal research and management. 70 

The study takes advantage of several improvements introduced in the latest generation 71 

of Landsat imagery that were included in the Landsat 8 mission launched in early 2013. 72 

Furthermore, the Landsat 8 satellite images the entire Earth at approximately fortnightly 73 

intervals (every 16 days) and the data collected by the instruments onboard the satellite 74 

are available to download at no charge. This paper details the processing of the satellite 75 

images required to derive bathymetric maps using the water radiance of three bands 76 

(coastal aerosol: 433–453 nm; blue: 450–515 nm; and green: 525–600 nm). The 77 

processing steps include the radiometric rescaling of the images, the application of 78 

adapted Lyzenga’s (1985) depth-retrieval algorithm that uses existing bathymetric data 79 

for tuning the image-to-depth conversion, and an averaged and depth-dedicated error 80 

analysis. The SDB maps generated have medium resolution (~30 m) and are used to 81 

provide cost-effective, frequent, high-density data in raster map format.  82 

 83 

2. Study area 84 

The nearshore coastal waters adjacent to the Ria Formosa system in southern Portugal 85 

were chosen as the test case in which to derive satellite bathymetric maps (Fig. 1A) 86 

because of the complexity and variability of this coastal environment. The Ria Formosa 87 

is a coastal lagoon bordered by a multi-inlet barrier island system, and the adjacent 88 

coastal areas have several different morphologies such as tidal inlets, alongshore bars, 89 

crescentic bars, shoals, and ebb channels. The total length of the system is 60 km, 90 

presently comprising five islands and two peninsulas separated by six tidal inlets. The 91 

inlets comprise three artificially opened or relocated inlets (Ancão, Fuseta, and Lacém), 92 

two artificially stabilised inlets (Faro–Olhão and Tavira), and one natural inlet 93 

(Armona). Tides in the area are semi-diurnal, with average ranges of 2.8 m and 1.3 m 94 

for spring and neap tides, respectively. Maximum ranges of 3.5 m can be reached during 95 

spring tides. Wave energy is moderate with an average annual offshore significant wave 96 

height (Hs) of 1.0 m and an average peak period (Tp) of 8.2 s. Dominant incident waves 97 

are from the W–SW, representing 71% of occurrences, although E–SE conditions 98 

represent 23% of the observations (Costa et al., 2001). Net littoral drift and alongshore 99 

currents are typically from west to east. The cuspate shape of this coastal area induces 100 
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two behaviours in terms of exposure to wave action: the west coast is more energetic, 101 

being under the direct influence of the dominant wave conditions (W–SW), whereas the 102 

east coast is directly exposed only to the E–SE waves. The nearshore morphology also 103 

reflects this cuspate shape, with the bathymetry being generally shore parallel, although 104 

incorporating complex areas such as shoals, ebb deltas, alongshore and swash bars, and 105 

ridge and runnel systems (Pacheco et al., 2011).  106 

 107 

3. METHODS 108 

3.1. Physical assumptions 109 

The physical concept underlying the ability to estimate bathymetry from multi-spectral 110 

imagery is the wavelength-dependent attenuation of light in the water column. The 111 

transformation of subsurface reflectance to the bottom albedo is based on analytical 112 

equations for irradiance reflectance ( ) and remote-sensing reflectance (   ) for both 113 

deep- and shallow-water applications parameterised by Albert and Mobley (2003). In 114 

shallow waters,     is the fundamental property for the inversion of subsurface 115 

properties such as water depth or bottom composition.     depends not only on the 116 

absorption and scattering properties of dissolved and suspended material in the water 117 

column, but also on the bottom depth (  ) and the reflectivity of the bottom, or the 118 

bottom albedo (  ) (Albert & Mobley, 2003; Dekker et al., 2011). The spectral     is 119 

given by: 120 

 121 

                                          (1) 122 

where      is the absorption coefficient,       is the backscatter coefficient,       is 123 

the benthic spectral reflectance (i.e., bottom albedo),    is the bottom depth,    is the 124 

sub-surface solar zenith angle,    is the sub-surface viewing angle from nadir, and   is 125 

the viewing azimuth angle from the solar plane. The result is a complete set of 126 

analytical equations for the remote sensing signals   and     in both deep and shallow 127 

waters (Albert and Mobley, 2003; Albert and Gege, 2006). The input variables for the 128 

parameterisation are the inherent optical properties of the water mentioned above, that 129 

is,      and      . Additionally,    and    are considered.  130 

 131 
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3.2.  Dataset  132 

The Landsat 8 satellite images consist of 11 spectral bands providing moderate-133 

resolution (15–100 m) imagery of Earth’s land surface. The spatial resolution of the 134 

spectral bands is 30 m for Bands 1 to 7 and 9, 15 m for Band 8 (panchromatic), and 135 

100 m for Bands 10 and 11. The approximate scene size is 170 km north–south by 183 136 

km east–west. Landsat 8 has many differences compared with previous Landsat 137 

missions. Particularly relevant was the introduction of the new band 1 (ultra-blue and/or 138 

coastal aerosol), which is useful for coastal studies. Further details on Landsat 8 139 

products and scientific applications can be found in Roy et al. (2014). The standard 140 

Landsat 8 products provided by the United States Geological Survey (USGS) consist of 141 

quantised and calibrated Digital Numbers (DNs) representing multi-spectral image data 142 

acquired with both the Operational Land Imager (OLI) and the Thermal Infra-Red 143 

Sensor (TIRS). The products are delivered in 16-bit unsigned integer format and can be 144 

rescaled to Top Of Atmosphere (TOA) reflectance and/or radiance using radiometric 145 

rescaling coefficients provided in the product metadata file (MTL file). Two satellite 146 

scenes from April and June 2013 were downloaded based on survey time, geographic 147 

extent, and environmental conditions (e.g., an absence of cloud cover), and were 148 

georeferenced to the WGS84 datum, UTM projection Zone 29 (Table 1). 149 

To tune the satellite image-to-depth conversion, up-to-date and detailed bathymetric 150 

information was obtained from the May 2011 topographic–bathymetric LiDAR dataset 151 

of the Portuguese coast, with the subset of waters in the Ria Formosa system being of 152 

particular interest (Table 1). The combined topographic and bathymetric LiDAR 153 

datasets were assembled to produce a model of the Portuguese coastal areas with 2-m 154 

resolution from 0 to 12 m depth, confirmed to Order 1A of the International 155 

Hydrographic Organisation standards s44 (2008). For the present study, XY positions 156 

from all the acquired survey data were also projected using UTM Zone 29, referred to 157 

the GRS 80 ellipsoid and to the WGS84 datum. Depth (Z) measurements were referred 158 

to mean sea level (MSL). 159 

 160 

3.3. Depth-retrieval algorithm 161 

The method that was used to derive bathymetry from variable bottom types is an 162 

adapted version of the linear transform bathymetry algorithm originally developed by 163 
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Lyzenga (1978, 1985) and was applied to the Landsat 8 scene to match with the 164 

available LiDAR bathymetric reference dataset. The method uses the reflectance for 165 

each satellite imagery band, calculated with the sensor calibration files and corrected for 166 

atmospheric effects. The reflectance of water (  ), which includes the bottom where 167 

the water is optically shallow, is given by: 168 

 169 

   
      

     
          (2) 170 

where    is the water-leaving radiance,    is the downwelling irradiance entering the 171 

water, and   is the spectral band.    and     refer to values above the water surface. 172 

   is determined by correcting the total reflectance    for aerosol and surface 173 

reflectance, as estimated by the near-IR band, and for the Rayleigh reflectance    by: 174 

 175 

                                   (3) 176 

where   is the constant to correct the spectral variation and is aerosol dependent, 177 

subscript   denotes a visible channel, and subscript    denotes the near-IR (NIR) 178 

channel.    is found by: 179 

 180 

       
              

                       
       (4) 181 

where    is the (total) radiance measured at the satellite,    is the solar constant,   is 182 

the Earth–Sun distance in astronomical units,    is the solar zenith angle, and    and    183 

are the transmission coefficients for Sun-to-Earth and Earth-to-satellite, respectively 184 

(Stumpf et al., 2003). 185 

The atmosphere has a significant impact on satellite data, such as information loss, 186 

caused by scattering by atmospheric constituents and aerosols. Atmospheric correction 187 

over coastal waters is particularly challenging because of the much lower signal-to-188 

noise ratio (SNR) compared with that of land. Consequently, water-specific Landsat 8 189 

atmospheric correction techniques are being developed that take advantage of the new 190 

shorter-wavelength coastal blue band (Roy et al., 2014).  191 
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For Landsat 8, the number of steps necessary in the atmospheric correction process can 192 

be reduced when compared with previous Landsat missions because terms have been 193 

embedded in Landsat 8 DN values. For the present paper, atmospheric corrections were 194 

performed using the Dark Object Subtraction (DOS) method. DOS assumes that dark 195 

objects (e.g., deep water and shadows) have near-zero-percent reflectance. Thus, the 196 

signal recorded by the sensor from these features includes a substantial component of 197 

atmospheric scattering, which must be removed (Chavez, 1988, 1996). The basic 198 

assumption is that within the image, some pixels are in complete shadow and their 199 

radiances received at the satellite are due to atmospheric scattering (i.e., path radiance, 200 

Chavez, 1996). This assumption is combined with the fact that very few targets on 201 

Earth’s surface are absolutely black. In the present study, the minimum scatter radiance 202 

(i.e., the 1% radiance of a dark object) was determined (Nazeer et al., 2014) as: 203 

 204 

    
          

     

             (5) 205 

where       
 is the exo-atmospheric solar irradiance for band    (Wm

−2
μm

−1
), and   is 206 

the Earth–Sun distance (in astronomical units). The value     was then subtracted from 207 

each corresponding        to remove the path radiance. This method has an advantage 208 

over other methods as it does not require any in situ atmospheric information and has 209 

been consistently used for atmospheric corrections of multi-spectral imagery in diverse 210 

coastal settings (Keith et al., 2014). Recent evaluations have confirmed the performance 211 

of the DOS method for precise atmospheric corrections of Landsat imagery over coastal 212 

areas (Nazeer et al., 2014). 213 

Following Lyzenga (1978, 1985) and Stumpf et al. (2003), two or more bands can 214 

provide an independent correction for bottom albedo in finding the depth as well as a 215 

linear solution between satellite-derived depth (      ) and water reflectance, which is 216 

given by: 217 

 218 

                                    (6) 219 

where 220 

                               (7) 221 
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                                (8) 222 

                               (9) 223 

where    is the water column reflectance in the case where the water is optically deep 224 

(presumed to be min(  ) in optically deep water, following Lyzenga, 1985).    and the 225 

constants   ,   ,   , and    are determined by multiple linear regression computed 226 

using the LiDAR bathymetric data (      ) for depths of 0–12 m;           are the 227 

indices representing the coastal aerosol, blue, and green bands ( ) of Landsat 8 scenes, 228 

respectively. 229 

To apply the multiple linear regression, the LiDAR data from May 2011 were extracted 230 

for the entire nearshore Ria Formosa area with 30-m resolution at exactly the same 231 

points as were the data retrieved by the Landsat 8 image of June 2013, comprising a 232 

total of 35,247 points (N). A limitation of this comparison is the fact that Landsat 8 233 

scenes of Ria Formosa have been available only since early 2013, whereas the depth-234 

retrieval linear algorithm applied to the Landsat 8 June 2013 scenes to derive the SDB 235 

maps was tuned with a LiDAR bathymetric dataset from May 2011; that is, there is a 2-236 

year difference. Therefore, a perfect agreement between SDB and LiDAR maps is not 237 

expected, given that morphological differences are likely to occur in a moderately 238 

energetic nearshore system comprising barrier islands and tidal inlets exposed to 239 

dynamic oceanographic conditions, and given that (in the case of adjacent areas of tidal 240 

inlets) dredging activities have taken place in the main navigable channels or ebb deltas. 241 

However, the number of points (N) retrieved and the fact that the analysis covers  a 60-242 

km-long coastal stretch ensure the robustness of the statistical comparison as a large 243 

number of Z points extracted at medium resolution are expected to remain unchanged. 244 

Moreover, the satellite image and the LiDAR data were both obtained in late spring 245 

(June 2013 and May 2011, respectively), implying that the main morphologies should 246 

be adjusted to similar energy conditions. 247 

LiDAR data points were referenced to MSL and were tide corrected, but the satellite 248 

image was acquired at a particular date and time. As such, a corresponding tide offset 249 

needs to be corrected before applying the regression model to obtain model coefficients. 250 

The correction of the satellite image was performed by matching the image time with 251 

tidal level using a tidal predictor (Pawlowicz et al., 2002). The processing steps are 252 

illustrated in Fig. 2. 253 



Pacheco et al. 

 

Retrieval of nearshore bathymetry from Landsat 8 images: a tool for coastal monitoring in shallow waters   9 

3.4. Data analysis 254 

The satellite-derived depths (      ) were compared against the LiDAR depths (      ) 255 

and separated into depth ranges (Table 2 and Fig. 3). The differences between        256 

and        were then analysed statistically (Table 2 and Fig. 4) and plotted against the 257 

X coordinate to evaluate their spatial variation throughout the study area (Fig. 3). 258 

During the calibration stage, and to better understand the coastal morphologies that 259 

SDB with a resolution of 30 m could distinguish, bathymetric charts were derived for 260 

particular areas of interest (AoI). AoI1 represents the Ancão Peninsula (Fig. 1) and 261 

includes: Bm1, a bathymetric map with 2-m resolution using the LiDAR high-resolution 262 

data (Fig. 5A); Bm2, a bathymetric map with 30-m resolution obtained from a 263 

resampling of the LiDAR data, which constitutes the reference dataset used for 264 

determining the constants   ,   ,   , and    in the multiple linear regression (Eq. 6 and 265 

Fig. 5B); and Bm3, the SDB map (Fig. 5C). 266 

The same interpolator was used to grid the bathymetric maps within the same limits and 267 

resolution following quality controls suggested by Hicks and Hume (1997). Differences 268 

between Bm2 and Bm3 were then determined by applying the difference map method 269 

(DMM) described by Stauble (1998) (Fig. 5D). The DMM is a straightforward method 270 

for computing vertical changes in cells by subtracting two comparison surfaces. An 271 

output map (hereafter referred to as “DMM”) is then created with the differences in Z 272 

between surveys, which is used to evaluate the relative error of the SDB against the 273 

LiDAR survey, namely, by assessing the spatial distribution of error and its association 274 

with specific morphological features (e.g., swash bars, isobaths, and inlet channels). 275 

Complementing this, three descriptive statistical parameters for assessing the overall 276 

performance of the depth-retrieval algorithm were computed (Brando et al., 2009): 277 

 278 

                                                 (10) 279 

                                                        (11) 280 

                                                   (12) 281 

where        is the LiDAR depth (from the 30-m-resolution resampled LiDAR dataset) 282 

and        is the depth estimated by applying inversion techniques to the Landsat 8 283 

multi-spectral data (i.e., the SDB, Fig. 2).      (m) and           (m) provide the 284 
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relative accuracy in the measurement, whereas      (Root Mean Square Error, m) 285 

includes both random errors (i.e., affecting the precision of the measurement) and 286 

systematic errors (i.e., affecting the accuracy of the measurement) (Table 3). Twelve 287 

cross-shore profiles spaced every 1000 m (P1 to P12, shown in Fig. 5D) were then 288 

extracted from Bm1, Bm2, and Bm3 to evaluate the performance of the SDB map in 289 

characterizing the nearshore morphological profile when compared with the high-290 

resolution LiDAR bathymetry (Bm1) and with the coarser grid resolution resample from 291 

the LiDAR bathymetric data (Bm2). Such nearshore profiles are represented in Fig. 6, 292 

whereas a comparison of the 2-m, 4-m, 6-m, and 8-m isobaths extracted from Bm1, 293 

Bm2, and Bm3 is presented in Fig. 7. 294 

AoI2 comprises the easternmost area of Tavira Island, the Tavira Inlet, and the 295 

westernmost area of Cabanas Island (Fig. 1C), and was chosen for several reasons. First, 296 

as mentioned above, Ria Formosa has a cuspate shape, and whereas AoI1 faces the 297 

prevailing SW oceanographic conditions, AoI2 faces the E–SE conditions. Second, 298 

whereas AoI1 encloses an artificially opened inlet that has been allowed to migrate 299 

naturally (Ancão Inlet), AoI2 encloses a stabilised inlet with two jetties (Tavira Inlet). A 300 

similar procedure to that used for AoI1 was adopted for analysing AoI2, and three 301 

bathymetric maps were derived: Bm1, a bathymetric map with 2-m resolution using the 302 

LiDAR high-resolution data (Fig. 8A); Bm2, a bathymetric map with 30-m resolution 303 

using the resampled LiDAR data (Fig. 8B); and Bm3, the SDB map (Fig. 8C). 304 

Differences between Bm2 and Bm3 were then determined by applying the DMM (Fig. 305 

8D). Univariate statistics of the DMM for each AoI are presented in Table 3. Because 306 

nearshore dynamics and morphological changes are assessed primarily by analysing 307 

variation in the nearshore profiles, cross-shore profiles spaced every 1000 m were also 308 

extracted from the bathymetric maps (i.e., from Bm1, Bm2, and Bm3) of AoI2 (Fig. 309 

8D). The cross-shore nearshore profiles are shown in Fig. 9, and the isobaths extracted 310 

from Bm1, Bm2, and Bm3 are displayed in Fig. 10. 311 

After calibrating and tuning the coefficients, two validation areas were selected and 312 

independently surveyed: AoI3, Barreta Island bathymetry (Fig. 1) obtained on 26 April 313 

2013; and AoI4, a bathymetry survey performed on 30 April 2013 at Tavira Inlet. Both 314 

bathymetries were compared with SDB maps created using the above-determined 315 

coefficients applied to a different Landsat 8 scene obtained for the closest possible date 316 

to the surveys (26 April 2013, Table 1). The bathymetries of both AoI3 and AoI4 were 317 
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established using a Real-Time Kinematics–Differential Global Positioning System 318 

(RTK–DGPS) synchronised with a single-beam survey-grade echo-sounder, the 319 

Echotrac CV100 (Odom Hydrographic System, Inc.) with a 200-kHz transducer. The 320 

echo-sounding bathymetries were performed under fair-weather southwesterly 321 

conditions. The datasets were collected to represent typical environments encountered 322 

in a bathymetric analysis of nearshore and coastal inlets, including complex 323 

morphologies such as ebb deltas and swash bars. Survey lines were spaced 25 m apart, 324 

with survey positions being referenced to the European Terrestrial Reference System 325 

1989 (ETRS89) and depth measurements being referred to MSL. More details on 326 

equipment, data acquisition, and data processing are given by Horta et al. (2014). Both 327 

echo-sounder + RTK–DGPS survey datasets were gridded at Landsat 8′ resolution (i.e., 328 

30 m, Figs 11A and 12A). The SDB maps were determined with the coefficients 329 

calculated using Eq. 6 (Figs. 11B and 12B). For the purpose of comparison, a DMM 330 

grid was produced to determine volumetric variations (Figs 11C and 12C). The spatial 331 

differences between the LiDAR and SDB maps were first evaluated visually by 332 

analysing the elevation-difference maps and afterwards by computing univariate 333 

statistics (Table 3). 334 

   335 

4. Results 336 

4.1. Depth-retrieval algorithm 337 

The spatial distribution of the residuals (N = 35,247) between depths determined using 338 

the depth-retrieval linear algorithm applied to the Landsat 8 scene (June 2013) and those 339 

acquired using LiDAR (May 2011) over 60 km of the nearshore are shown visually in 340 

Fig. 3 and given statistically in Table 2. The depth data were separated into 2-m classes 341 

to allow both methods’ strengths and limitations to be distinguished. The distribution of 342 

frequencies was determined to analyse differences between satellite-derived depth 343 

       ) and LiDAR depth        ) for each 2-m depth class (Fig. 4). Overall, and for 344 

all depth classes, the distribution of differences is contained within ±1 m, except for 345 

depths of 10–12 m (     = −1.16 m; Table 2 and Fig. 4), which is probably related to 346 

the inherent limitations of the bathymetric LiDAR dataset in water depths greater than 347 

10 m resulting from the small number of depth points retrieved (N = 208; Fig. 3, Table 348 

2). Maximum and minimum residuals within all depth classes correspond to depth 349 
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points where the depth-retrieval linear algorithm was ineffective in providing accurate 350 

depth values. Class 1 (Fig. 4 and Table 2), which covers a depth range in which it is 351 

reasonable to expect significant morphological changes over a 2-year period, also had 352 

higher values of       (0.61 m),           (0.60 m), and      (0.94 m). It is also 353 

within this class that a lower accuracy of the depth-retrieval method is expected because 354 

of the stirring of suspended sediment and increased turbidity related to wave breaking. 355 

The      decreases to values close to 0 for Class 2 (     = 0.01 m, 2–4 m) and Class 3 356 

(     = −0.07 m, 4–6 m), increasing to −0.26 m for Class 4 (6–8 m) and −0.31 m for 357 

Class 5 (8–10 m) (Table 2 and Fig. 4).      and          , the measures of precision, 358 

do not change much for Classes 1–4 but Class 5 presents a very low           359 

(−0.02 m) when compared with the      (−0.31 m), which indicates that outliers affect 360 

the      within this depth class more than in other classes (Table 2). The four classes 361 

comprising the depth range of 2–10 m (Classes 2 to 5) include 82% of the N sampled 362 

points (Fig. 4), whereas Class 1 contains 17% of the points. The spread in the data 363 

points can be evaluated by the variance (   ), which measures how far apart are the 364 

depth values retrieved using the linear algorithm from the corresponding LiDAR depths. 365 

Using all data except those in Class 6, which represents less than 1% of the dataset, the 366 

value of     is ~0.50 m
2
 for three depth classes (Classes 1, 3, and 4, 64% of the data 367 

points), ~0.70 m
2
 (Class 2, 27% of the data points), and ~1.12 m

2
 (Class 5, 9% of the 368 

data points) (Table 2). It is reasonable to assume that if outliers were removed and 369 

morphological variations neglected (inherent in nearshore dynamics for a 2-year 370 

period), the algorithm would be capable of retrieving depths within ±0.5 m of values 371 

acquired with LiDAR data for depths between 0 and 8 m. For the five shallowest depth 372 

classes (i.e., disregarding Class 6), the value of      ranges between 0.71 m (Class 3) 373 

and 1.10 m (Class 5), with a mean of 0.80 m. 374 

 375 

4.2. Nearshore satellite-derived map  376 

Fig. 5D, which masks data differences of <±0.5 m, shows that significant differences 377 

occur in the areas between profiles P1 and P2 and between P10 and P12, with the latter 378 

profiles being located in the area adjacent to the naturally migrating Ancão Inlet. The 379 

     and           for AoI1 are 0.01 m and 0.03 m, respectively, whereas     and 380 

     are 0.56 m2
 and 0.75 m, respectively. For AoI2, the differences are not 381 

concentrated in particular parts but are distributed over the entire area in the deeper 382 
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nearshore section (Fig. 8D). This behaviour was expected after analysing the spatial 383 

distribution of residuals in sector E in Fig. 3, where a reduction in the number of 384 

LiDAR data acquired for depths greater than 6 m can be observed. However, an 385 

exception to this, where LiDAR data for depths greater than 6 m were effectively 386 

acquired, includes the easternmost area of Tavira Island, adjacent to Tavira Inlet, that is, 387 

AoI2. For AoI2, the      and           are −0.69 m and −0.63 m, whereas     and 388 

     are 0.90 m
2
 and 1.17 m, respectively (Table 3). 389 

The DMM grid generated for AoI2 (Fig. 8) reveals large areas where the SDB depths 390 

are shallower than the corresponding LiDAR depths, especially for depths greater than 391 

6 m, which was not observed in the analysis of AoI1. This can be seen for all nine 392 

cross-shore profiles extracted for AoI2 (Fig. 9), in which the maximum SDB depths are 393 

close to 6 m, limiting the vectorisation of the SDB 8-m isobath (Fig. 10D). Inspection of 394 

the extracted nearshore profiles in both AoI1 (Fig. 6) and AoI2 (Fig. 9) reveals that the 395 

maximum deviation of the SDB in comparison with LiDAR data occurs between depths 396 

of 0 and 2 m (Table 2) and that variability in the depth range of 2 to 8 m is generally 397 

less than ±0.5 m. Regarding AoI1 (Fig. 6), two profiles (P1 and P11) show quite 398 

different behaviour between the SDB and both LiDAR (2- and 30-m resolution) 399 

extracted profiles. All the other profiles show the expected higher elevation differences 400 

between depths of 0 and 4 m, which are likely related to real morphological changes. 401 

This assumption seems to be confirmed by the close match between SDB extracted 402 

profiles and the LiDAR profiles for depths between 4 and 10 m. For AoI2, the 403 

agreement between SDB and both LiDAR extracted profiles is significantly better for 404 

depths from 0 to 6 m; however, the SDB profiles deviate significantly for the nearshore 405 

profile sections at depths greater than 6 m. As LiDAR data exist for depths greater than 406 

6 m, the discordance appears to be related to the optical properties of the water and/or 407 

bottom properties that interfere directly with the retrieval of depth using the linear 408 

algorithm (i.e., a constant and/or incorrect DN on one or more Landsat 8 bands).  409 

The 2-, 4-, 6-, and 8-m isobaths from the SDB extracted for both AoI1 (Fig. 7) and AoI2 410 

(Fig. 10) were compared with their equivalent LiDAR (2- and 30-m resolution) isobaths 411 

and show a very consistent spatial behaviour. Major differences can be seen in the areas 412 

adjacent to tidal inlets for the 2-m (Fig. 7A) and 4-m (Fig. 7B) isobaths in AoI1, as well 413 

as for the 6-m isobath immediately downdrift of Tavira Inlet (Fig. 10C), and for the 8-m 414 
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isobath (Fig. 10D) of AoI2. It was not possible to vectorise the 8-m isobath of AoI2 415 

given the limitation on retrieving bathymetry for depths greater than 6 m in AoI2. 416 

 417 

4.3. Validation of the depth-retrieval algorithm 418 

The reliability of the depth-retrieval algorithm to produce SDB maps was assessed 419 

using a third independent data source, that is, dedicated small-scale echo-sounder 420 

bathymetries acquired in AoI3 and AoI4 (Fig. 5). SDB maps were produced using the 421 

determined coefficients (Eq. 6) on a new Landsat 8 scene (26 April 2013, Table 1). 422 

Given the similar timings of the surveys and the satellite image, in this comparison it is 423 

possible to assume negligible bathymetric change between the surveys and the date of 424 

the image. Because the same  areas (AoI3 and AoI4) were surveyed and the XYZ data 425 

were interpolated using the same limits, method, and intervals, the DMM grid is (Figs 426 

11C and 12C) used to compare the echo-sounding + RTK–DGPS map with the SDB 427 

map is expected to be a reliable indicator of the SDB method for retrieving shallow-428 

water bathymetry. It also permits a direct comparison to be made of the SDB map with 429 

the results of conventional hydrographic methods, both geospatially and statistically, 430 

further allowing an assessment of the validity of using SDB maps for monitoring the 431 

dynamics of coastal sectors. In addition, a comparison of the LiDAR bathymetry and 432 

the echo-sounder data for AoI3 and AoI4 is provided in Figs 11D and 12D, 433 

respectively, to illustrate the degree of temporal change within a 2-year interval (i.e., 434 

LiDAR 06/2011 and echo-sounding 04/2013). Volumetric computations showing 435 

accretion/erosion morphodynamic variability are given in Table 3. 436 

Figs 11C and 12C show the DMM grids between the echo-sounding + RTK–DGPS and 437 

the SDB maps for AoI3 and AoI4, respectively. The DMM grids are useful for locating 438 

the higher deviations and for identifying possible reasons for such deviations. Most of 439 

the differences occur in areas with depths of 0–2 m (Fig. 11C) or with depths of >8 m 440 

(Fig. 12C). In general, differences only rarely exceed ±1 m, and there are extensive 441 

areas with depths of 4–6 m where differences are less than ±0.25 m. The SDB maps 442 

(Figs 11B and 12B) are effective for representing the nearshore isobaths as well as the 443 

shapes of the bottom morphologies. The contour limits of the swash bar (Fig. 11B) and 444 

of the ebb delta (Fig 12B), both identified on the SDB maps, are clearly defined (as 445 

shown by the deflection of isobaths) when compared with the echo-sounding + RTK–446 
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DGPS surveys (Figs 11A and 12A, respectively). This result is relevant because both 447 

surveys cover areas of complex environments: AoI3 is an area adjacent to a migrating 448 

inlet and AoI4 is situated in the vicinity of a stabilised inlet (Fig. 1). The results of the 449 

statistical analysis (Table 3) for AoI3 and AoI4 are similar:      is 0.01 m,     is 450 

0.38–0.39, and both values of      are 0.62 m, with           being the only 451 

parameter presenting a non-negligible difference (0.18 m and −0.07 m, respectively). 452 

Finally, Figs 11D and 12D present DMM grids to assess the degree of morphological 453 

change between the LiDAR and the SDB maps, given the time difference between the 454 

datasets (i.e., 2 years). The red/blue values in Figs 11D and 12D signify that 455 

accretion/erosion has occurred, respectively.  456 

AoI3 is located adjacent to a migrating inlet (Ancão Inlet), and significant changes are 457 

likely to occur during a 2-year interval (the inlet migrates from west to east, with the 458 

direction of net alongshore transport being related to prevailing southwesterly 459 

conditions) (Fig. 11D). Such changes include accretion in the west while the barrier 460 

builds up over the former channel, forcing channel migration eastwards and causing 461 

erosion of the eastern adjacent barrier (the westernmost part of Barreta Island, Fig. 1). 462 

Those patterns are clearly observed in Fig. 11D with the formation of the swash bar 463 

updrift (red areas), the formation of two consecutive channels in the area located in the 464 

centre of the image, and general erosion in the shallow area between 0 and 2 m depth 465 

(blue areas).The total surveyed area recorded erosion of ~0.66 m
3
/m

2
 for the 2-year 466 

period (Table 3). 467 

In AoI4, accretion is observed in the central area (inlet channel) and erosion in the 468 

western part of the survey area (where the ebb tidal delta is located). These observations 469 

are consistent with the recent evolution of the system, that is, the ebb delta is regularly 470 

dredged to counteract the sediment movement from the ebb delta towards the entrance 471 

channel through the delta terminal lobe. Overall, the total surveyed area recorded 472 

accretion of ~0.14 m
3
/m

2
 (Table 3) for the 2-year period, which is in agreement with the 473 

siltation tendency of this particular inlet, especially at the entrance channel. Excluding 474 

the ebb delta and the main channel, the elevation differences only rarely exceed ±1 m, 475 

with extensive areas where differences are less than ±0.25 m (Fig. 12D). 476 

 477 

 478 
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5. Discussion 479 

Here, the determination of nearshore bathymetry, shoreline position, and accurate 480 

nearshore isobaths for different cases were examined by comparing SDB maps with 481 

data from different topographic/bathymetric surveying techniques (high- and medium-482 

resolution LiDAR and RTK–DGPS + single-beam echo-sounder bathymetries). 483 

Bathymetric maps are conventionally represented by isobaths, which connect points of 484 

equal depth. The inner and offshore limits of several morphological features such as 485 

sand bars, deltas, and inlet channels can be both identified and spatially defined based 486 

on the configuration (including deflection) of isobath contours. The delineation of these 487 

morphological features is essential for performing volume computations and for 488 

estimating sediment paths and budgets within coastal cells. SDB nearshore profiles and 489 

isobaths retrieved for the selected areas of interest showed a very robust comparison 490 

with analogue determinations using both high- and medium-resolution LiDAR datasets. 491 

Discrepancies between SDB profiles and isobaths and LiDAR observations were 492 

noticeable only where prominent intertidal bars occur close to the inlets, as these are the 493 

areas where the most relevant morphological changes occur. It is also in these areas that 494 

the depth-retrieval algorithm records the worst results because the accuracy of the depth 495 

retrieval is limited by water turbidity caused by wave action, suspended sediment, and 496 

particulate matter, which limit the penetration of light (i.e., from both LiDAR and OLI 497 

sensors). 498 

After assessing and calibrating the linear transform model, the coefficients of Eq. 6 499 

were successfully used to derive SDB maps from another Landsat 8 image. Those maps 500 

were compared with independent bathymetric data acquired within the same time 501 

interval as the Landsat 8 image. The results presented confirmed the ability to use SDB 502 

maps to adequately identify nearshore isobaths, resolve nearshore bars, extract the 503 

nearshore profile, and delineate morphological features for areas with depths of <12 m 504 

in shallow coastal waters without significant wave breaking. The lower accuracy and 505 

precision of the SDB technique is considered to be related to the poor performance of 506 

the depth-retrieval linear algorithm for depths greater than 8 m. A possible explanation 507 

for this may be related to geographic and environmental controls, that is, the W and E 508 

sectors are exposed to different wave regimes, causing differences in optical conditions 509 

of the water (e.g., particles in suspension, chlorophyll-a, and bottom properties). Where 510 
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the depth-retrieval linear algorithm is successful in extracting depths, the extracted 511 

values present higher residuals (areas adjacent to Tavira Inlet, Fig. 3 Class 5). 512 

In this paper, a DOS method was applied to perform the atmospheric correction and a 513 

linear retrieval algorithm was applied using coefficients computed from a multiple 514 

linear regression performed with high-resolution LiDAR data. The adopted procedures 515 

are straightforward and are based on freely available images, and allowed shallow 516 

nearshore bathymetry to be represented well for depths less than 12 m. However, to 517 

improve the stability or robustness of the regressed model parameters over time, other 518 

Landsat 8 satellite images need to be analysed and compared with nearshore surveys. As 519 

an example, Brando et al. (2009) compared the accuracy of the depth-retrieval algorithm 520 

by comparison with acoustic depths at Rous Channel located in Moreton Bay 521 

(Australia) for depths of 0–30 m, with a 2-month interval between datasets. A greater 522 

agreement was found in shallow, clear water than in deeper or more turbid water near 523 

the coast (e.g., from 1–5 m depth,      of 0.43 m,           of 0.42 m, and      of 524 

1.35 m). Brando et al. (2009) optimised the inversion algorithm by comparing the 525 

measurable remote sensing reflectance from the image with a modelled reflectance. The 526 

procedure adopted by Brando et al. (2009) allowed differences related to environmental 527 

variables such as water column depth, substrate composition, and the concentration of 528 

optical active constituents on the water column (chlorophyll-a, the concentration of 529 

dissolved organic matter, and non-algal particles) to be minimised, as well the range of 530 

the technique to be extended. 531 

In general, SDB retrieved from Landsat 8 images presents a new perspective for 532 

remotely sensed bathymetry extraction and can be used to complement data from survey 533 

sources such as single-beam echo-sounder data, which are normally obtained at medium 534 

(profiling interval 25–30 m) to coarse (>30 m) resolution. This implies that SDB can 535 

effectively deliver data to complement such surveys and provide a similar spatial 536 

representation of nearshore variability. In particular, the ability to extract depth contours 537 

from satellite-derived bathymetry can be a straightforward and accessible method for 538 

evaluating morphological changes in the nearshore. This method has high potential for 539 

acquiring cost-effective, long-term time-series of coastal morphology over extensive 540 

areas and at the same time provides high-frequency data (i.e., approximately fortnightly 541 

intervals, 16 days). The medium-resolution maps derived from the presented method 542 

can be used to improve the prediction of hydro-morphodynamic modelling simulations 543 
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such as those given by X-Beach (Roelvink et al., 2009) by allowing the continuous 544 

extraction of model input morphodynamic parameters (e.g., submerged beach slope). 545 

 546 

6. Conclusion 547 

An improved understanding of coastal zone evolution and processes is based partially 548 

on the existence of detailed and reasonably accurate monitoring datasets. Such datasets 549 

have become fundamental for coastal research, modelling, and management. The 550 

present contribution assessed the potential of satellite-derived bathymetry (SDB) maps 551 

for providing nearshore bathymetry at medium resolution from freely available Landsat 552 

8 imagery, and revealed the value of the approach for the monitoring and management 553 

of coastal morphological evolution. The results showed that bathymetry obtained from 554 

multi-spectral satellite data is more accurate for shallow water depths (0 to 8 m) than for 555 

greater depths (8–12 m), a limitation inherent in a passive optical detection system; 556 

however, in the Ria Formosa case study, the decrease in accuracy with depth was also a 557 

function of the more limited availability of the LiDAR data used to tune the image-to-558 

depth conversion algorithm at greater depths. The SDB maps were able to provide good 559 

approximations of the shoreline position and nearshore isobath contours for different 560 

cases along a highly complex coastline that includes morphological features such as 561 

barrier islands, inlets, ebb deltas, and alongshore and swash bars. In all instances, the 562 

extracted morphological features (i.e., nearshore isobaths and profiles) displayed 563 

reasonable accuracy when compared with those derived from traditional monitoring 564 

methods. 565 

Improved satellite imagery collection, processing algorithms, and workflows make SDB 566 

a real and useful survey solution for monitoring coastal areas and for producing rapidly 567 

deliverable digital bathymetric models. Although SDB has great potential in its current 568 

state, the good quality of the results presented here for the 60-km stretch of coast of the 569 

Ria Formosa area is inherently related to the availability of the high-frequency LiDAR 570 

data that were used to perform the regression to obtain the coefficients of Lyzenga’s 571 

(1978, 1985) model. In other words, if no in situ water depths are available and/or depth 572 

measurements are sparse, then the model cannot be applied with the same degree of 573 

rigor. However, SDB has the potential to complement traditional but expensive 574 

maritime charting techniques such as acoustic and LiDAR surveys, because the method 575 
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does not need devoted boats, aircraft, or other survey systems. Depending on weather 576 

conditions and satellite orbit timings, the surveys can be performed on a regular basis, 577 

giving the potential to create historical datasets from imaging archives. If the robustness 578 

of the coefficients is further analysed, the technique can be used to derive nearshore 579 

bathymetric maps to assist with coastal monitoring. Finally, the accuracy of SDB maps 580 

is partly a function of water clarity, depth, and wave climate. Better approximations 581 

could be derived by using algorithms that correct for environmental variables such as 582 

the concentration of optically active constituents in the water column (e.g., chlorophyll-583 

a, organic dissolved matter, and suspended sediment). With respect to wave climate, the 584 

method presented here works better for calm conditions, and major deviations in the 585 

accuracy of depth assessments occur in the breaking zone. 586 

 587 

 Acknowledgments 588 

André Pacheco and Carlos Loureiro were supported by the Portuguese Foundation for 589 

Science and Technology (grant numbers SFRH/BPD/76110/2011 and 590 

SFRH/BPD/85335/2012). AoI3 bathymetric data were acquired under project RUSH 591 

(from RUn up to overwaSH) (PTDC/CTE-GIX/116814/2010) funded by the Portuguese 592 

Foundation for Science and Technology. The authors acknowledge the anonymous 593 

reviewers, whose comments helped to greatly improve an earlier version of this 594 

manuscript. 595 

 596 

List of Acronyms 597 

AoI  Area of Interest 598 

DEM  Digital Elevation Model 599 
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SDB  Satellite-Derived Bathymetry 605 
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SNR  Signal to Noise Ratio 606 

TIRS  Thermal Infrared Sensor 607 

 608 

List of Symbols 609 

      Absorption coefficient 610 

       Backscatter coefficient 611 

    Bottom depth 612 

DN  Digital number 613 

d   Earth–Sun distance  614 

    Downwelling irradiance 615 

    Solar constant 616 

      
   Exo-atmospheric solar irradiance from band    617 

    Significant wave height 618 

    Solar zenith angle 619 

    Sub-surface viewing angle from nadir 620 

    Sub-surface solar zenith angle 621 

    Total radiance (measured by the satellite) 622 

    Water-leaving radiance 623 

      Minimum scatter radiance 624 

   Irradiance reflectance 625 

    Bottom albedo 626 
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     Remote sensing reflectance 628 

    Total reflectance 629 

    Reflectance of water 630 

    Water reflectance (if optically deep) 631 



Pacheco et al. 

 

Retrieval of nearshore bathymetry from Landsat 8 images: a tool for coastal monitoring in shallow waters   21 

TOA  Top of Atmosphere Reflectance 632 

    Transmission coefficient Sun-to-Earth 633 

    Transmission coefficient Earth-to-Sun 634 

        Depth acquired with LiDAR 635 

        Satellite-derived depth 636 

   Viewing azimuth angle from solar plane 637 
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Table Captions 704 

Table  1. Details of the datasets used in the present study (LiDAR, Landsat 8 scenes, and echo-sounder + 705 

RTK–DGPS). XY is referenced to WGS84 UTM ZONE 29 and Z to mean sea level (MSL). 706 

Table 2. Constant coefficients derived from the multiple linear regression between water reflectance band 707 

and LiDAR depth. Residual statistics between the satellite-derived depth (      ) and (   ) and LiDAR 708 

depth for different depth classes. 709 

Table 3. AoI1 univariate statistics obtained by comparing Bm2 and Bm3. AoI2 univariate statistics 710 

obtained by comparing Bm2 and Bm3. AoI3 and AoI4  univariate statistics obtained by comparing the 711 

echo-sounding + RTK–DGPS survey performed in late April 2013 with the SDB maps produced using 712 

the Landsat 8 scene from 26 April 2013. 713 

 714 

Figure Captions 715 

Figure 1. (A) Ria Formosa multi-inlet system (southern Portugal). Areas of Interest AoI1 and AoI3 (B) 716 

and AoI2 and AoI4 (C) are represented by aerial photography images to a depth limit of ~12 m. 717 

Figure 2. Workflow processing steps for deriving SDB maps from Landsat 8 images (DN: Digital 718 

number; LT: Total radiance; L1%: Minimum scatter radiance; Rw: Reflectance of water; RT: Total 719 

reflectance; R∞: Water reflectance; Xi, Xj, and Xk are from Lyzenga’s (1978, 1985) linear solution for 720 

albedo correction; a0, ai, aj, and ak are constants determined by multiple linear regression; ZLiDAR: Depth 721 

acquired with LiDAR; ZLSAT8: Satellite-derived depth.  722 

Figure 3. Spatial distribution of the residual between        and        along X coordinate WGS84 723 

UTM29 for different depth classes. Vertical grey bands represent the inlet areas. Horizontal dark-grey 724 

bands represent residuals less than 2 m. The smaller amount of data at greater depths results from LiDAR 725 

data limitations (see main text Section 3.2.). 726 

Figure 4. Histogram of differences between satellite-derived depth (      ) and LiDAR depth (      ) 727 

by depth class. 728 

Figure 5. (A) AoI1 bathymetry contour map (Bm1) using the 2-m resolution 2011 LiDAR data 729 

superimposed with an aerial photograph of AoI1. (B) Bathymetry contour map (Bm2) with a 30-m 730 

resolution using 2011 LiDAR data resampling. (C) Satellite-derived bathymetry contour map (Bm3) with 731 

a 30-m resolution. (D) Difference map between Bm2 and Bm3. P1 to P12 represent the locations of the 732 

profiles extracted from bathymetric maps Bm1 and Bm2. 733 

Figure 6. AoI1 nearshore cross-profiles spaced by 1000 m and extracted from bathymetric contour maps 734 

Bm1, Bm2, and Bm3. 735 

Figure 7. (A) 2-m, (B) 4-m, (C) 6-m, and (D) 8-m isobaths extracted from Bm1 (LiDAR 2 m), Bm2 736 

(LiDAR 30 m), and Bm3 (SDB 30 m) for AoI1. XY coordinates are referred to WGS84 UTM29 and Z 737 

contour lines to MSL. 738 
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Figure 8. (A) AoI2 bathymetry contour map (Bm1) using the 2-m resolution 2011 LiDAR data 739 

superimposed with an aerial photograph of AoI2. (B) Bathymetry contour map (Bm2) with a 30-m 740 

resolution using 2011 LiDAR data resampling. (C) Satellite-derived bathymetry contour map (Bm3), also 741 

showing AoI3. (D) Difference map between Bm2 and Bm3. P1 to P9 represent the locations of the 742 

profiles extracted from bathymetric maps Bm1, Bm2, and Bm3. 743 

Figure 9. AoI2 nearshore cross-profiles spaced by 1000 m and extracted from bathymetric contour maps 744 

Bm1, Bm2, and Bm3. 745 

Figure 10. (A) 2-m, (B) 4-m, (C) 6-m, and (D) 8-m isobaths extracted from Bm1 (LiDAR 2m), Bm2 746 

(LiDAR 30 m), and Bm3 (SDB 30 m) for AoI2. XY coordinates are referred to WGS84 UTM29 and Z 747 

contour lines to MSL. 748 

Figure 11. (A) AoI3 bathymetry contour map acquired using an echo-sounder synchronised with a RTK–749 

DGPS in the area adjacent to Ancão Inlet on 26 April 2013. (B) Satellite-derived bathymetry (SDB) 750 

contour map (Bm3) with a 30-m resolution. (C) Difference map between A and B. (D) Difference map 751 

between LiDAR 05/2011 and SDB data derived from the Landsat 8 image of 26 April 2013; the red/blue 752 

values signify that accretion/erosion has occurred, respectively. 753 

Figure 12. (A) AoI4 bathymetry contour map acquired using an echo-sounder synchronised with a RTK–754 

DGPS in and around Tavira Inlet on 30 April 2013. (B) Satellite-derived bathymetry (SDB) contour map 755 

(Bm3) with a 30-m resolution. (C) Difference map between A and B. (D) Difference map between 756 

LiDAR 05/2011 and SDB data derived from the Landsat 8 image of 26 April 2013; the red/blue values 757 

signify that accretion/erosion has occurred, respectively. 758 
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Table 1. Details of the datasets used in the present study (LiDAR, Landsat 8 scenes, and echo-sounder + 760 
RTK–DGPS). XY is referenced to WGS84 UTM ZONE 29 and Z to mean sea level (MSL) 761 

 762 

Dataset Details and coverage Type/Resolution 

 

 

LiDAR 

Topographic LiDAR LeicaALS60 

Bathymetric LiDAR HawkEyeII 

Coverage: Portugal, to 8–10 m depth 

Datum: WGS84; Ellipsoid: WGS84 

UTM Zone: 29; Z referred to MSL   

 

Date acquired= 2011-05 

 

Combined model (topographic 

plus bathymetric LiDAR): 

Resolution 2 m  

Order 1A International 

Hydrographic Organisation 

Standards 44 (2008) 

 

 

 

 

 

 

 

 

 

 

Landsat 8 

Scene: LC82030342013164LGN00 

Map projection: UTM 

Datum: WGS84; Ellipsoid: WGS84 

UTM Zone: 29  

Coverage: 

X: 494400–720900 

Y: 4037100–4258200 

 

Date acquired: 2013-06-13 

 

 

 

 

8 Bands Digital Numbers (DNs) 

each 30 m 

Image attributes 

Min/Max Radiance  

Min/Max Reflectance 

Min/Max Pixel Value  

Radiometric Rescaling 

TIRS Thermal Constants 

Projection Parameters 

 

All in the *.MTL file provided 

by United States Geological 

Service 

 

Scene: LC82030342013116LGN01 

Map projection: UTM 

Datum: WGS84; Ellipsoid: WGS84 

UTM Zone: 29  

Coverage: 

X: 494400–720900 

Y: 4037100–4258200 

 

Date acquired: 2013-04-26 

 

 

 

 

Echo-

Sounder + 

RTK–DGPS 

 

Sounding: Echotrac CV 100 

Frequency: 200 kHz 

Positioning: RTK–DGPS 

TrimbleR6/5800 

GPS Satellite signals: L1C/A, L1C, 

L2C, L2E, L5. 

Datum: WGS84; Ellipsoid: WGS84 

UTM Zone: 29; Z referred to MSL 

Coverage:  

AoI3 Barreta Island  

AoI4 Tavira Inlet 

 

Date acquired 

2013-04-26 (AoI3) 

2013-04-30 (AoI4) 

 

1 Hz data 

Resolution 25 m (single-beam 

echo-sounder lines run parallel 

at pre-planned line spacing); 

Bathymetry tide corrected 

(RTK) 

Echo-sounding accuracy: 0.01 m 

±0.1% of depth 

Positioning performance for 

RTK surveying: 

Horizontal: 8 mm + 1 ppm RMS  

Vertical: 15 mm + 1 ppm RMS 

 

 763 
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Table 2. Constant coefficients derived from the multiple linear regression between water reflectance band 765 
and LiDAR depth. Residual statistics between the satellite-derived depth (      ) and (   ) and LiDAR 766 

depth for different depth classes 767 

 768 

Multiple Linear Regression  

                               

 

R
2
 = 0.88, N = 35247      = −2.39;    = −6.05;    = −0.33;    = 8.25 

Residual statistics (      _      ) 

 Depth Class (m)  

 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Overall 

 [0–2] [2–4] [4–6] [6–8] [8–10] [10–12] [0–12] 

N 6145 9619 8377 7640 3258 208 35247 

Bias (m) 0.61 0.01 −0.07 −0.26 −0.31 −1.16 −0.20 

Std (m) 0.71 0.84 0.71 0.71 1.06 1.28 0.89 

Var (m
2
) 0.51 0.70 0.50 0.50 1.12 1.63 0.83 

          (m) 0.60 0.05 −0.07 −0.37 −0.02 −0.77 −0.10 

     (m) 0.94 0.84 0.71 0.75 1.10 1.72 1.01 

Max (m) 6.06 3.43 2.83 3.65 2.75 0.73 n/a 

Min (m) −2.03 −3.34 −3.72 −3.97 −3.54 −4.79 n/a 

 769 
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Table 3. AoI1 univariate statistics obtained by comparing Bm2 and Bm3. AoI2 univariate statistics 771 
obtained by comparing Bm2 and Bm3. AoI3 and AoI4  univariate statistics obtained by comparing the 772 
echo-sounding + RTK–DGPS survey performed in late April 2013 with the SDB maps produced using 773 

the Landsat 8 scene from 26 April 2013 774 

 775 

AoI1 Bathymetric Contour Map 

 Bm2 ( LiDAR 30 m) Bm3 (SDB 30 m) 

Mean (Z) (m) −5.93 −5.94 

Median (Z) (m) −6.12 −6.41 

Min (Z) (m) −10.39 −10.77 

Max (Z) (m) −0.09 −0.46 

Std (Z) (m) 2.62 2.84 

         0.56 

            0.01 

                0.03 

         0.75 

 

AoI2 Bathymetric Contour Map 

 Bm2 (LiDAR 30 m) Bm3 (SDB 30 m) 

Mean (Z) (m) −5.38 −4.69 

Median (Z) (m) −6.25 −5.64 

Min (Z) (m) −10.24 −7.38 

Max (Z) (m) −0.01 −0.52 

Std (Z) (m) 2.74 2.00 

         0.90 

            −0.69 

                −0.63 

         1.17 

 

AoI3 Bathymetric Contour Map 

 Echo-Sounder + RTK–DGPS SDB 30 m 

Mean (Z) (m) −4.43 −4.44 

Median (Z) (m) −4.42 −4.72 

Min (Z) (m) −8.32 −7.97 

Max (Z) (m) −0.68 −0.13 

Std (Z) (m) 1.75 2.21 

         0.39 

           0.01 

                0.18 

         0.62 

  
  

AoI4 Bathymetric Contour Map 

 Echo-Sounder + RTK–DGPS SDB 30 m 

Mean (Z) (m) −5.75 −5.53 

Median (Z) (m) −6.23 −5.93 

Min (Z) (m) −8.67 −6.90 

Max (Z) (m) −1.67 −0.74 

Std (Z) (m) 1.44 1.28 

         0.38 

           0.01 

                −0.07 

         0.62 

  

 776 
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 778 

Figure 1. (A) Ria Formosa multi-inlet system (southern Portugal). Areas of Interest AoI1 and AoI3 (B) 779 
and AoI2 and AoI4 (C) are represented by aerial photography images to a depth limit of ~12 m. 780 
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 782 

 783 

Figure 2. Workflow processing steps for deriving SDB maps from Landsat 8 images (DN: Digital 784 
number; LT: Total radiance; L1%: Minimum scatter radiance; Rw: Reflectance of water; RT: Total 785 
reflectance; R∞: Water reflectance; Xi, Xj, and Xk are from Lyzenga’s (1978, 1985) linear solution for 786 
albedo correction; a0, ai, aj, and ak are constants determined by multiple linear regression; ZLiDAR: Depth 787 
acquired with LiDAR; ZLSAT8: Satellite-derived depth.  788 
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 790 

 791 

Figure 3. Spatial distribution of the residual between        and        along X coordinate WGS84 792 
UTM29 for different depth classes. Vertical grey bands represent the inlet areas. Horizontal dark-grey 793 
bands represent residuals less than 2 m. The smaller amount of data at greater depths results from LiDAR 794 
data limitations (see main text Section 3.2.). 795 
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 796 

 797 

Figure 4. Histogram of differences between satellite-derived depth (      ) and LiDAR depth (      ) 798 
by depth class. 799 
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 801 

 802 

Figure 5. (A) AoI1 bathymetry contour map (Bm1) using the 2-m resolution 2011 LiDAR data 803 
superimposed with an aerial photograph of AoI1. (B) Bathymetry contour map (Bm2) with a 30-m 804 
resolution using 2011 LiDAR data resampling. (C) Satellite-derived bathymetry contour map (Bm3) with 805 
a 30-m resolution. (D) Difference map between Bm2 and Bm3. P1 to P12 represent the locations of the 806 
profiles extracted from bathymetric maps Bm1 and Bm2. 807 
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 809 

 810 

Figure 6. AoI1 nearshore cross-profiles spaced by 1000 m and extracted from bathymetric contour maps 811 
Bm1, Bm2, and Bm3. 812 
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 814 

 815 

Figure 7. (A) 2-m, (B) 4-m, (C) 6-m, and (D) 8-m isobaths extracted from Bm1 (LiDAR 2 m), Bm2 816 
(LiDAR 30 m), and Bm3 (SDB 30 m) for AoI1. XY coordinates are referred to WGS84 UTM29 and Z 817 
contour lines to MSL. 818 

  819 



Pacheco et al. 

 

Retrieval of nearshore bathymetry from Landsat 8 images: a tool for coastal monitoring in shallow waters   36 

 820 

 821 

Figure 8. (A) AoI2 bathymetry contour map (Bm1) using the 2-m resolution 2011 LiDAR data 822 
superimposed with an aerial photograph of AoI2. (B) Bathymetry contour map (Bm2) with a 30-m 823 
resolution using 2011 LiDAR data resampling. (C) Satellite-derived bathymetry contour map (Bm3), also 824 
showing AoI3. (D) Difference map between Bm2 and Bm3. P1 to P9 represent the locations of the 825 
profiles extracted from bathymetric maps Bm1, Bm2, and Bm3. 826 
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 828 

 829 

Figure 9. AoI2 nearshore cross-profiles spaced by 1000 m and extracted from bathymetric contour maps 830 
Bm1, Bm2, and Bm3. 831 
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 833 

 834 

Figure 10. (A) 2-m, (B) 4-m, (C) 6-m, and (D) 8-m isobaths extracted from Bm1 (LiDAR 2m), Bm2 835 
(LiDAR 30 m), and Bm3 (SDB 30 m) for AoI2. XY coordinates are referred to WGS84 UTM29 and Z 836 
contour lines to MSL. 837 
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 839 

 840 

Figure 11. (A) AoI3 bathymetry contour map acquired using an echo-sounder synchronised with a RTK–841 
DGPS in the area adjacent to Ancão Inlet on 26 April 2013. (B) Satellite-derived bathymetry (SDB) 842 
contour map (Bm3) with a 30-m resolution. (C) Difference map between A and B. (D) Difference map 843 
between LiDAR 05/2011 and SDB data derived from the Landsat 8 image of 26 April 2013; the red/blue 844 
values signify that accretion/erosion has occurred, respectively. 845 
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 847 

 848 

Figure 12. (A) AoI4 bathymetry contour map acquired using an echo-sounder synchronised with a RTK–849 
DGPS in and around Tavira Inlet on 30 April 2013. (B) Satellite-derived bathymetry (SDB) contour map 850 
(Bm3) with a 30-m resolution. (C) Difference map between A and B. (D) Difference map between 851 
LiDAR 05/2011 and SDB data derived from the Landsat 8 image of 26 April 2013; the red/blue values 852 
signify that accretion/erosion has occurred, respectively. 853 

 854 


