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ABSTRACT

This paper presents an initial computational multiscale modelling of the fibre-reinforced composite ma-

terials. This study will constitute an initial building block of the computational framework, developed

for the DURCOMP (providing confidence in durable composites) EPSRC project, the ultimate goal of

which is the use of advance composites in the construction industry, while concentrating on its major

limiting factor ”durability”. The use of multiscale modelling gives directly the macroscopic constitutive

behaviour of the structures based on its microscopically heterogeneous representative volume element

(RVE). The RVE is analysed using the University of Glasgow in-house parallel computational tool,

MoFEM (Mesh Oriented Finite Element Method), which is a C++ based finite-element code. A single

layered plain weave is used to model the textile geometry. The geometry of the RVE mainly consists of

two parts, the fibre bundles and matrix, and is modelled with CUBIT, which is a software package for

the creation of parameterised geometries and meshes. Elliptical cross sections and cubic splines are used

respectively to model the cross sections and paths of the fibre bundles, which are the main components

of the yarn geometry. In this analysis, transversely isotropic material is introduced for the fibre bundles,

and elastic material is used for the matrix part. The directions of the fibre bundles are calculated using

a potential flow analysis across the fibre bundles, which are then used to define the principal direction

for the transversely isotropic material. The macroscopic strain field is applied using linear displacement

boundary conditions. Furthermore, appropriate interface conditions are used between the fibre bundles

and the matrix.
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1. Introduction

Conventional materials, e.g. steel, aluminium and metallic alloys can no longer satisfy the demands for

materials with exceptional mechanical properties and ultimately requires the design of new material [1].

These new materials are designed by changing their microconstituents at a scale, which is very small

as compared to the physical structures. Due to the complicated micro-structure of these materials, direct

macro-level modelling is not possible and requires a detailed modelling at the micro-level. Textile or fab-

ric composites is a class of these new materials which provides full flexibility of design and functionality

due to the mature textile manufacturing industry and is commonly used in many engineering applica-

tions, including ships, aircrafts, automobiles, civil structures and prosthetics [2]. Numerous analytical

and computational methods have been proposed to analyse textile composite materials, which includes

the calculation of the overall macro homogenised response and properties from the micro-heterogeneous

representative value element (RVE) [3] and is often referred as micro-to-macro transition or homogeni-

sation [4].

This paper presents the computational multiscale modelling of the textile composites, using the Univer-

sity of Glasgow in-house computational tool MoFEM. The RVE in this case consists of fibre bundles

and matrix, which is modelled and meshed in CUBIT using a Python parametrized script. CUBIT also

facilitates the insertion of interfaces between the fibres and matrix. Transversely isotropic material are

used for the fibres and isotropic martial are used for the matrix. Five material parameters are required
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for the transversely isotropic material, i.e. Ep, νp, Ez, νpz and Gzp where Ep and νp are Young’s mod-

ulus and Poisson’s ratio in the transverse direction respectively, while Ez, νpz and Gzp are the Young’s

modulus, Poisson’s ratio and shear modulus in the fibre directions respectively. For the matrix part, only

two material parameters are required, i.e. Young’s modulus E and Poisson’s ratio ν. Although, periodic

boundary conditions [5, 6] gives better estimates of the homogenised response and properties as com-

pared to traction and linear displacement boundary conditions, linear displacement boundary conditions

are used in this paper due to its simple implementation. This will subsequently be extended to periodic

boundary conditions in future work. Fibre directions are calculated at each integration point by solving

a potential flow problem.

2. Theoretical background

Computational multiscale modelling is used in this paper to analyse the textile composite ma-

terials, in which a heterogeneous RVE is associated with each integration point of the macro-

homogenous structure as shown in Figure 1, in which B ⊂ R3 and B ⊂ R3 are macro and mi-

cro domains respectively. The calculation of the RVE boundary conditions from the macro-strain

integration point    
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Figure 1: Transition from macro-to-micro and micro-to-macro

ε =
[
ε11 ε22 ε33 2ε12 2ε23 2ε31

]T
at macroscopic integration point x =

[
x1 x2 x3

]T

is known as macro-to-micro transition, while subsequent calculation of the homogenised stress σ =[
σ11 σ22 σ33 σ12 σ23 σ31

]T
and tangent moduli is known as micro-to-macro transition. The

macro-strain is applied as linear displacement boundary conditions, which leads to satisfaction of Hill-

Mandel principle [7], i.e.

ε : σ =
1

V

∫

V

ε : σdV, (1)

where V is the volume of the RVE, while σ and ε are stresses and strains associated with a point y =[
y1 y2 y3

]T
of the RVE. The micro displacement field u =

[
u1 u2 u3

]T
, is written as

u = u∗ + ũ, (2)

where u∗ is known as Taylor displacements and ũ is the unknown displacement fluctuations. The Taylor

component is written as

u∗i = D
T
i ε, i = 1, 2, · · · n, (3)

where n is the number of nodes and Di is the coordinate matrix and is given as [4]

Di =
1

2
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Finally, the homogenised stress is calculated as

σ =
1

V

nb∑

i=1

Dif
ext
i , (5)

where nb is the number of nodes on the boundary ∂B of the RVE, and fext
i is the external nodal force

vector.

3. Numerical example

A sample RVE, which was used in [2], is used here with the same geometrical and material parameters,

as shown in Figure 1, where the subscripts warp and weft represent the corresponding directions of

fibre bundles. The geometrical and material parameters are defined in Table 1. This RVE is referred

Parameters Values Parameters Values

Wwarp 0.3 Wwe f t 0.3

Hwarp 0.1514 Hwe f t 0.0757

h gap warp 0.09 hgap we f t 1.2

LRVE 3.0 vgap 0.012

WRVE 0.8

HRVE 0.3

Fibres properties Matrix Properties

Ep Ez νp νz Gpz E ν

40 270 0.26 0.26 24 35 0.35

Table 1: REV geometrical and material properties (all dimensions in mm while E and G are in GPa)
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Figure 2: Crimp and non-crimp RVEs and sample fibre directions

as unbalanced, where the dimensions of fibre bundles are different in warp and weft directions. The

manufacturing processes and crossing of the warp and weft yarn will lead to non-circular cross sections

of the fibre bundles; therefore, elliptical cross sections are used in this paper, which are then sweeped

over the cubic spline fibres’ path to generate the fibres. Four-node tetrahedral elements are used for both

the fibre bundles and the matrix, while six-nodes prism elements are used as an interface between fibres

and matrix.

The textile RVE is analysed using two different meshes with 41,193 and 106,011 DOFs and is subjected

to 1 % strain in x direction, i.e. εxx. The finest mesh and coordinates system are shown in Figure 2(a),

where x and z are warp and weft directions respectively, while sample fibre directions vector are shown

in Figure 2(c). The resulting homogenised stress σxx versus applied strain εxx for the two meshes and a

reference value from [2] are shown in Table 2, in which Mesh-2 with 106,011 DOFs provides satisfactory

results. The small difference between current and reference results may be due to the use of lenticular

cross-sections for the fibres, use of 8-node 3D linear brick element and 4- node linear tetrahedron ele-

ment for fibres and matrix respectively and the use of perfect bonding between fibres and matrix in [2].

Furthermore, The effect of fibres dimensions and crimp pattern are analysed, for which a new 0o/90o

non-crimp RVE with 103,095 DOFs (shown in Figure 2(b)) is generated and is subjected to the same

strain state. Comparison of the homogenised stress σxx for both crimp and non-crimp RVEs are given

in Table 3, where relatively lower value of homogenised stresses σxx in the crimp RVE is due to the

waviness of the fibre bundles. Furthermore, both crimp and non-crimp RVEs are subjected to 1 % strain

in z direction, i.e. εzz and comparison of their homogenised stress in the z direction, i.e. σzz are shown in



Table 3, where again σzz is lower for the crimp RVE. Due to the small size and higher waviness of the

weft fibre bundles, the values of σzz are relatively smaller than the corresponding values of σxx.

σxx (MPa)

εxx (%) Mesh-1 Mesh-2 Reference

1 749.82 508.771 541.278

Table 2: σxx versus εxx for different mesh levels

σxx (MPa) σzz (MPa)

εxx (%) Crimp Non-Crimp εzz (%) Crimp Non-Crimp

1 508.771 751.507 1 83.9317 125.065

Table 3: Comparison of σxx versus εxx and σzz versus εzz for crimp and non-crimp RVE

4. Conclusions

This paper described an initial computational modelling framework for the DURACOMP project. Tex-

tile composite RVE geometry, which consists of two parts, i.e. fibre bundles and matrix is modelled and

meshed using CUBIT, where fibres are modelled using cubic spline with elliptical cross sections. The

University of Glasgow in-house computational tool MoFEM is used to analyse the RVE using trans-

versely isotropic material for the fibre bundles and isotropic material for the matrix. Linear displacement

boundary conditions and elastic interfaces between fibre bundles and matrix are used in this paper. Direc-

tion of the fibre bundles are calculated using a potential flow analysis. Two different level of meshes are

used to solve the RVE, and it is found that the homogenised stress calculated in the case of Mesh-2 are in

a good agreement with the reference solution. It is also found that homogenised stress in the case of the

crimp RVE is lower than the corresponding non-crimp RVE. Furthermore, it is also observed that due to

the relatively smaller dimensions and more waviness pattern for the weft fibre bundles, the homogenised

stress σzz is lower than the corresponding stress σxx in the warp direction.
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[5] Ł. Kaczmarczyk, C. J. Pearce, and N. Bićanić. Scale transition and enforcement of RVE boundary

conditions in second-order computational homogenization. International Journal for Numerical

Methods in Engineering, 74(3):506–522, 2008.

[6] G. Soni, R. Singh, M. Mitra, and B. G. Falzon. Modelling matrix damage and fibre-matrix interfa-

cial decohesion in composite laminates via a multi-fibre multi-layer representative volume element

(M2RVE). International Journal of Solids and Structures, 51(2):449 – 461, 2014.

[7] R. Hill. On constitutive macro-variables for heterogeneous solids at finite strain. In Proceedings

of the Royal Society of London. Series A, Mathematical and Physical Sciences, volume 326, pages

131–147. The Royal Society, 1972.


