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Abstract  

Background and Purpose An ever-growing wealth of information on current drugs and their 

pharmacological effects is available from online databases. As our understanding of systems 

biology increases, we have the opportunity to predict, model and quantify how drug 

combinations can be introduced that outperform conventional single-drug therapies.  Here, 

we explore the feasibility of such systems pharmacology approaches with an analysis of the 

mevalonate branch of the cholesterol biosynthesis pathway. 

Experimental Approach Using open online resources, we assembled a computational model 

of the mevalonate pathway and compiled a set of inhibitors directed against targets in this 

pathway.  We used computational optimisation to identify combination and dose options that 

show not only maximal efficacy of inhibition on the cholesterol producing branch but also 

minimal impact on the geranylation branch, known to mediate the side effects of 

pharmaceutical treatment.  

Key Results We describe serious impediments to systems pharmacology studies arising from 

limitations in the data, incomplete coverage and inconsistent reporting.   By curating a more 

complete dataset, we demonstrate the utility of computational optimization for identifying 

multi-drug treatments with high efficacy and minimal off-target effects. 

Conclusion and Implications We suggest solutions that facilitate systems pharmacology 

studies, based on the introduction of standards for data capture that increase the power of 

experimental data.  We propose a systems pharmacology work-flow for the refinement of 

data and the generation of future therapeutic hypotheses. 
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Non-approved Abbreviations 

API - Application Program Interface 

BPS - British Pharmacological Society 

BRENDA - Braunschweig Enzyme Database 

CID – Compound Identifier 

FDA – US Food and Drug Administration  

FDFT1 - Farnesyl-diphosphate farnesyl transferase 1 

FDPS - Farnesyl diphosphate synthase 

GtoPdb - Guide to Pharmacology Database 

HMGCR – Hydroxymethylglutaryl-CoA reductase 

HMGCS1 - Hydroxymethylglutaryl-CoA synthase 

HPC – High Performance Computing 

KEGG - Kyoto Encyclopedia of Genes and Genomes 

IDI1 - Isopentenyl diphosphate  delta isomerase 1 

IDI2 - Isopentenyl diphosphate  delta isomerase 2 

InChlKey - International Chemical Identifier 
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QC – Quality Control 

SBGN – Systems Biology Graphical Notation 

SBGN-ML - Systems Biology Graphical Notation Markup Language 

SBML – Systems Biology Markup Language 

SMILES - Simplified Molecular-Input Line-Entry System 

STRENDA - Standards for Reporting Enzymology Data 

WHO – World Health Organisation 

 

Supporting Information 

Our supporting information includes the following files. 

 

Supporting figure 1.  A sensitivity analysis of the impact of pairs of drugs on the pathway. 

 

Supporting figure 2.  A representative reaction from the IUPHAR/BPS GuidetoPharmacology 

(GtoPdb).   

 

Supporting table 1. A description of the databases and online resources used in this study. 

 

Supporting table 2.  A description of the inhibitors used in our optimisation calculations. 

 

Supporting table 3. A list of the best performing drug combinations identified as intervention 

hypotheses. 

 

A SBGN-ML file describing the mevalonate pathway shown in Figure 1.  This is machine 

readable and interpretable as a biological pathway and is encoded using SBGN, an XML 

based mark up.   

 

A SBML file describing the kinetics of the pathway shown in Figure 1.  This is encoded 

using a XML based markup to describe the interactions and parameters of the pathway.  
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Introduction  

The expansion of available genomic and proteomic data has enhanced our understanding of 

biomolecular interaction networks. Consequently, the development of systems biology 

approaches has enabled us to better understand how cellular behaviour emerges from these 

networks (Boran, 2010a).  Systems-level approaches have been used to predict the on- and 

off-target impacts of an intervention (Boran, 2010b) and to identify the most sensitive 

components in pathways that suggest candidate drug targets (Benson et al. 2013). They also 

have the untapped potential to suggest therapies comprising combinations of drugs chosen to 

strategically reprogram biomolecular interaction networks in order to drive the system from a 

diseased to a healthy state (Zhao et al. 2013; van Hasselt, 2015; Watterson, 2010). This 

approach, known as Systems Pharmacology (Boran, 2010b; Westerhoff, 2015) is underpinned 

by the expansion in pathway, pharmacology and medicinal chemistry databases. 

 

For example, WikiPathways held 804 human pathways
1
 with 253 added in 2015 (Kutmon et 

al. 2016).  KEGG PATHWAY holds 518 pathway maps (Kanehisa, 2017)
2
.  Reactome 

currently holds 2148 human pathways involving 10684 proteins and isoforms
3
 (Croft, 2014; 

Fabregat, 2016).  ChEMBL version 23  (Gaulton et al. 2017) includes 14675320 bioactivities 

and the IUPHAR/BPS Guide to Pharmacology (GtoPdb) contains 15281 curated interactions 

in its 2017.5 release (Southan et al. 2016).  In 2016, the Food and Drug Administration 

(FDA) new drug approvals fell to 22 , following 45 approvals in 2015 (US Food and Drug 

Administration 2016a ; US Food and Drug Administration 2016b). According to DrugBank 

release 5.0, their distinct molecular count of approved small-molecule drugs is 2037 (Law et 

al, 2014). 

 

As this catalogue of pharmacological interactions grows and our understanding of pathway 

systems expands, it will be advantageous to integrate these resources in order to devise new 

potential therapies.  Drug combination based interventions represent an opportunity for 

therapy development that can yield one-size-fits-all or personalized/stratified therapies and 

they can target pathways precisely rather than perturbing entire networks.  Two NIH 

workshop white papers have made a strong case for Systems Pharmacology (Sorger et al. 

2011) as a way to reduce attrition in therapy, to stimulate drug development, to bridge the gap 

                                                        
1 http://www.wikipathways.org/index.php/WikiPathways:Statistics 
2 http://www.kegg.jp/kegg/docs/statistics.html 
3 http://reactome.org/stats.html 
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between network biology and translational medicine and to enhance industrial-academic 

collaborations.  Systems Pharmacology is also likely to impact upon genomic medicine 

(Westerhoff, 2015), Systems Pathology, Systems Biology and Pharmacometrics (van der 

Greef, 2005; Vicini, 2013) and the tools that could contribute to Systems Pharmacology have 

been described (Kell, 2014; Berger, 2009; Lehar, 2007).   

 

Prior work under the domain of Systems Pharmacology, has primarily focussed on 

pharmacokinetic-pharmacodynamic (PKPD) modelling (Darwich, 2017).  Industry has 

evaluated Systems Pharmacology as a tool to inform trial design in areas of cardiovascular 

disease, endocrinology, neurogenerative disease, respiratory disease, oncology and infectious 

disease (Visser, 2014) and to inform regulatory development (Visser, 2014; Peterson et al., 

2015).  There have a been a number of specific studies of nerve growth factor (Benson, 

2013), coagulation (Wajima, 2009), innate immunity (Madrasi, 2014), cancer (Abaan, 2013) 

and atherosclerosis (Pichardo-Almarza, 2015). 

 

However, whilst there is much enthusiasm for Systems Pharmacology as a tool to improve 

the efficacy and safety of the drug development pipeline (Trame, 2016; van der Graaf, 2011; 

Rostami-Hodgegan, 2012), the practical challenges of systematically amalgamating 

pharmacology and pathway biology in a coherent framework have not been adequately 

addressed.  

  

Here, we describe a Systems Pharmacology study of the cholesterol biosynthesis pathway, 

detailing the barriers to progress that we encountered and suggesting solutions to these 

impediments, before proposing a model of how Systems Pharmacology studies could be 

conducted in future. In particular, we build a dynamic ordinary differential equation (ODE) 

model of the pathway, which we parameterize as far as possible from the literature.  We 

identify relevant pharmacological agents that act on this pathway and parameterize them as 

far as possible from the literature and online databases.  We then use computational 

optimization techniques to identify the drug combinations that are most effective at 

suppressing the outputs of the pathway that lead to cholesterol production and that minimise 

off-target effects.  In completing our analysis, we identify many of the problems that prevent 

this type of work being undertaken routinely and we suggest solutions that would enable 

systems pharmacology to make a regular contribution to therapy development.  

 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2718
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As explored in previous studies (Caspi et al. 2016; Watterson et al. 2013; Bhattacharya et al. 

2014; Mazein et al. 2013; Mazein et al. 2011), the cholesterol biosynthesis pathway is critical 

to both cardiovascular health (Lewington et al. 2007; Henderson et al. 2016; Parton et al. 

2016) and innate immunity (Blanc et al. 2011; Lu et al. 2015; Robertson et al. 2016).  As the 

target of the statin class of drug, we would expect this pathway to be amongst the most 

thoroughly characterized and for this reason we have chosen it for our feasibility study of 

Systems Pharmacology. For simplicity, we focus on the segment of the pathway that 

transforms acetyl-CoA to squalene and that forks to produce geranylgeranyl-diphosphate. As 

a precursor to cholesterol, we would expect squalene synthesis to track cholesterol synthesis 

and so we use this as a proxy. The branch of the pathway that produces geranylgeranyl-

diphosphate has been shown to mediate both the innate immune response (Blanc et al. 2011) 

and the myopathy side-effects associated with statin treatment (Wagner et al. 2011).  Any 

intervention that demonstrates a minimal impact on this branch will avoid one of the 

significant side-effects associated with standard cholesterol lowering treatments.   

 

Methods 

Pathway production 

We started from the representations available in KEGG (Kanehisa et al. 2014), MetaCyc 

(Caspi et al. 2016) and the GtoPdb (Southan et al. 2016) taking these resources to be 

representative of the community of online pathway databases.  We reviewed the primary 

literature to establish the structure of the mevalonate portion of the cholesterol biosynthesis 

pathway, in particular the enzymes involved in the pathway, the reactions they catalyse, their 

subcellular localisation, the species in which they were identified and any known isoforms.   

 

Diagrams of the pathway were created using the SBGN standardised notation (Le Novere et 

al. 2009), the yEd diagram software (yWorks GmbH, http://www.yworks.com/products/yed) 

and the SBGN-ED add-on to VANTED (Czauderna et al. 2010).  From these diagrams, we 

built kinetic models as systems of Ordinary Differential Equations (ODEs).  

 

The ODE model of this pathway was built using Michaelis-Menten kinetics to describe each 

step except the interactions consuming isopentenyl-PP and producing geranylgeranyl-PP and 

pre-squalene-PP. These steps were described using mass action kinetics in order to simplify 

the process of calculating the steady state of the model and hence the steady state behavior of 

the pathway. Mass action kinetics were justified by the expectation that the pathway 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3038
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3054
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3052
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=104
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=104
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3053
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interactions would operate far from substrate saturation making the dynamics robust against 

small fluctuations in enzyme concentration.  Mass action rate constants were calculated from 

the Kcat, Km and Ki parameters as described elsewhere (Watterson et al. 2013) and enzyme 

concentrations were taken from experimentally measured values (Watterson et al. 2013).  

 

The pathway map and the associated mathematical model are available from the supporting 

material as SBGN-ML (van Iersel et al. 2012) and SBML files (Hucka et al. 2003), 

respectively.  

 

Pathway parameterisation 

We identified the kinetic parameters that quantify each reaction unambiguously (Km, Kcat) 

using the BRENDA enzyme database (Chang et al. 2015) and verified the values described 

against the primary literature.  In many instances enzymes were associated with multiple 

kinetic parameter sets. We selected kinetic parameters based upon the following criteria: i) 

specificity to the wild-type enzyme in one of the three main mammalian model species: 

human, mouse or rat, ii) sourced from a primary literature reference describing in vivo or in 

vitro experimental data as opposed to computationally-derived structural modelling data and 

iii) sourced from a reference that could be accessed and therefore verified. For many enzymes 

this yielded a range of values for each parameter and where this was the case, we used the 

mean of the values obtained.   

 

Inhibitor list   

Inhibitor compounds not already indexed in GtoPdb were identified for each reaction from 

ChEMBL and BRENDA, databases that we took to be representative of the community of 

target databases.  We included a compound in our set if it met three criteria: i) the enzyme 

used in the assay was wild-type from one of the three main mammalian model species: 

human, mouse or rat, ii) an experimentally determined reaction-specific inhibition 

constant (Ki) was reported and iii) the assay conditions were reported. Crucially, all data 

were checked against the primary literature references.  Where this yielded a range of 

inhibition constants for nominally identical compounds the most potent Ki values were used.  

 

We verified the correct chemical structures of the inhibitors by cross-referencing the original 

references against the online chemical databases PubChem (Kim et al. 2016) and 
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ChemSpider (Pence & Williams 2010). The actual chemical structures of the marketed statin 

drugs were established by checking the FDA labels and the International Non-Proprietary 

Name (INN)-assigned structures on the WHO MedNet site (https://mednet-

communities.net/inn).  Comparison of unique structural identifiers allowed us to identify 

duplicates within the ChEMBL, BRENDA and literature-derived dataset, and to establish 

whether the chemical structure reported in a given reference matched the marketed drug or 

research compound structures.  

Curated content describing the enzymes in this pathway, their substrates and small molecule 

inhibitors was used to consolidate and expand GtoPdb using the same approach and 

guidelines as described elsewhere (Pawson et al. 2014).  The enzymes, list of inhibitors and 

kinetic parameters are now all updated in the July 2016.3 release of GtoPdb.  

 

Hypothesis generation 

We combined ODE kinetic models, the pathway parameters and the inhibitor parameters to 

create a model describing the dynamics of the mevalonate pathway. We sought to identify the 

drug combination that would best suppress the production of squalene as a precursor for 

cholesterol, but would also maintain production of geranylgeranyl-diphosphate at the same 

levels as in the absence of any inhibitors, thereby eliminating a significant side-effect of 

treatment.  Firstly, we identified the steady-state activity of the pathway in the absence of any 

inhibitors. Then we used computational optimisation to identify the drug combination that, at 

steady state, minimised squalene production, but left geranylgeranyl diphosphate production 

the same as in the absence of inhibitors.  

 

This was implemented using the Genetic Algorithm function available on Matlab 

(MathWorks, http://www.mathworks.com) in parallel with a population size of 200 and a 

function tolerance of 10
-6

. Matlab was chosen as the modelling platform for its flexibility, 

stability and comprehensive libraries.  The genetic algorithm started with one instance of a 

set of drug concentrations where each drug was assigned a concentration equal to its Ki.  A 

199 further instances of sets of drug concentrations were automatically generated from this 

instance by adding Gaussian noise to the concentration of each drug (with standard deviation 

1, the default setting). These 200 instances comprised the first generation of candidate 

interventions.  All instances of sets of concentrations were evaluated for their efficacy at 

suppressing squalene synthesis whilst maintaining geranylgeranyl-PP production. 200 new 

http://www.mathworks.com/
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instances were created as a second generation of candidate interventions from the two most 

effective instances of the first generation and with the addition of Gaussian noise.  The 200 

new instances were then themselves evaluated with the two most effective instances used to 

generate a further 200 new instances, the third generation.  This process was iterated until we 

arrived at instances from which no improvement in efficacy could be found for 20 

consecutive generations at which point we interpreted the best performing instance identified 

thus far as optimal. 

 

Nomenclature of Targets and Ligands 

Key protein targets and ligands in this article are hyperlinked to corresponding entries in 

http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS 

Guide to PHARMACOLOGY (Southan et al., 2016), and are permanently archived in the 

Concise Guide to PHARMACOLOGY 2015/16 (Alexander et al., 2015). 

 

Results 

Pathway Production 

We produced the model of the mevalonate arm of the cholesterol biosynthesis pathway 

shown in Figure 1 in SBGN notation, describing the sequence of metabolic steps that lead 

from acetyl-CoA and acetoacetyl-CoA consumption to squalene and geranylgeranyl-

diphosphate production.  This pathway comprises 12 steps (see Table 1), involving 10 

enzymes and 14 metabolites.   

 

The parameters required for the resulting ODE model are shown in Table 1. After pooling 

results across mouse, human and rat models we were able to obtain experimental values for 

only 12 out of the 24 required parameters.  Across the studies reported, pH values ranged 

from 7.0 to 8.0 and temperatures ranged from 25C to 37C, although in some studies neither 

pH nor temperature values were given.  When verified against the primary references, we 

found that one parameter value obtained from BRENDA was missing from the literature 

reference provided, suggesting that it had been misattributed (Kcat=0.023/s for HMGCR).  A 

second parameter had been transcribed (for MVD) where the literature source contradicted 

itself, specifying Km=10μM in the abstract and Km=10mM in the manuscript.  Because 

computational hypothesis generation is highly sensitive to the values of the parameters, 

ambiguous or inaccurate reporting can have a significant impact on any predictions made. 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3039
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=639
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=642
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Substrates were reported in varying levels of structural detail. Common names were used that 

could refer to multiple explicit forms of a chemical structure.  However, variations in the 

chirality and chemical structure can significantly affect substrate affinity.  The relative 

enzyme concentrations had been inferred previously (Watterson et al, 2013) and are listed in 

Table 2. 

 

Supplementary Table 1 compares representations of the cholesterol biosynthesis pathway 

across the main publicly available pathway and chemical databases.  It includes a summary of 

cross-referencing between databases with standard identifiers for unambiguous 

representation, which will be essential for future cross-platform interoperability.  

 

Inhibitors 

The inhibitors obtained from GtoPdb, BRENDA and the literature, together with their 

inhibition constants (Ki), are listed in Table 3. Six of the ten enzyme targets had quantified 

parameters in humans.  It was necessary to include two inhibitors that had been only reported 

for rat enzymes (L-659,699 for HMGCS1 and 3-hydroxy-3-methyl-6-phosphohexanoic acid 

for PMVK) in order to maximise coverage of the pathway.  Two enzyme paralogues (IDI1 

and IDI2) had no reported inhibitors with available Ki values, representing a region of the 

pathway that cannot currently be modulated in our modelling process. This can be contrasted 

with the enzymes HMGCR and FDPS, each of which had an extensive list of inhibitors. 

Inhibition constants could be obtained for 8 of the 10 enzymes in the pathway.  Where 

reported, these values came from studies conducted across a range of pH levels from 6.8 to 

7.5 and temperatures from 25C to 37C.   

 

Both explicit structure and name-to-structure (n2s) ambiguities existed around the reporting 

of inhibitor entities.  In some cases, the common or trade name of a compound was used, 

without specification of the exact chemical structure and stereochemistry. In other cases we 

found a different n2s assignment across different database resources or indeed within the 

same resource.  For example, under the HMGCS1 entry of BRENDA, the same inhibitor is 

listed twice as L-659,699 and (E,E)-11-[3-(hydroxymethyl)-4-oxo-2-oxytanyl]-3,5,7-

trimethyl-2,4-undecadienenoic acid. 

 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5886
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=638
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3202
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=641
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=646
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=647
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=644
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Several results recorded in ChEMBL were transcribed against the incorrect drug target. Three 

inhibitors listed against the enzyme HMGCS1 describe results obtained from experiments 

with HMGCR (Balasubramanian et al. 1989).  There were also cases where the incorrect 

species had been recorded. For example, the compound with ChEMBL ID CHEMBL88601 

cited in one study (Procopiou et al. 1994) (ChEMBL document ID CHEMBL1151052) is 

listed against the human FDFT1 enzyme, while in fact the paper describes results for the 

yeast Candida albicans and rats.  

 

Hypothesis generation 

In order to complete the gaps in the available parameter sets, we proceeded by assuming that 

where parameters were taken from separate studies, the same metabolite chemical structures 

were referenced. For all the unknown parameters, we substituted a single representative 

value, obtained by averaging across all known corresponding parameters. 

 

Calculating the steady state behavior of the pathway in the absence of inhibitors yielded the 

profile of flux shown on the left of Fig 2A, which we take to be wild-type behavior.  Using 

computational optimisation, we identified the following drug combination that produced the 

steady state profile of flux shown in the middle of Fig 2A and in Fig 2B: L-

659,699=0.0294nM, Rosuvastatin=2.60nM, Farnesyl Thiodiphosphate=0.0340nM, Cinnamic 

acid=0.00104nM, 6-fluoromevalonate 5-diphosphate=0.0213nM, zoledronic acid=9.97nM, 

BPH-628=5.86nM; Zaragozic acid A=0.755nM (see Table 3 and supplementary Tables 2 and 

3).  Here, the production of squalene, a precursor of cholesterol is heavily suppressed and the 

production of geranylgeranyl-PP is maintained at wild-type levels.  In Figure 2B, we see 

specifically the flux at endpoints of the two pathway branches.  With this drug combination, 

the flux from Geranylgeranyl-PP → Protein Prenylation is the same between the wild- type 

(inhibitor free) case and the optimal multi-drug intervention case.  However, the flux from 

Squalene → Cholesterol synthesis has been significantly suppressed.   

 

In Figs 2A and 2B, we compare the flux profiles for wild-type and optimal multi-drug 

interventions to the case where Rosuvastatin, a type of statin, is applied alone.  This inhibitor 

targets the interaction catalysed by HMGCR and we chose a concentration sufficient to 

suppress the rate of squalene formation and consumption to the same extent as the multi-drug 

intervention.  As can be seen in Fig 2B Rosuvastatin intervention impacts upon both branches 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=645
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2954
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3216
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3203
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3203
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3205
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3177
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3188
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3057
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of the pathway, suppressing Geranylgeranyl-PP formation and protein prenylation as an off-

target effect of treatment.    

 

Interestingly, a concentration of 362nM Rosuvastatin was required to achieve the same level 

of squalene suppression as the multi-drug intervention.  The greatest individual drug 

concentration required in the optimal multi-drug intervention was 9.97nM and the total 

combined concentration was 19.3nM, a dramatically lower dosage. 

 

The value of drug combinations can also be seen in Supplementary Fig 1 where we consider 

the impact of pairs of drugs (Lehar et al, 2007).  Here we see that drug pairs with targets 

above the fork inhibit the flux though both pathway endpoints (Supplementary Fig. 1A & B). 

Drug pairs with targets above and below the fork together inhibit the flux through the 

cholesterol synthesizing branch (Supplementary Fig. 1C & D). However, drug pairs with 

targets above and below the fork at high doses can have a low impact on the flux through the 

protein prenylation branch (Supplementary Fig. 1E & F).  Critically, Supplementary Fig. 1 B 

& E show that concentrations can be selected that significant suppress the cholesterol 

synthesising branch, but that do not suppress the protein prenylation branch.  The results 

demonstrate comparable impact to the multi-drug intervention described above, but at higher 

individual and combined concentrations. 

 

In order to identify the optimal multi-drug combination, it was necessary to use a high 

performance computing (HPC) platform.  However, the HPC demands were modest. Using a 

8 node desktop computer running MATLAB in parallel, we can see that the score (a 

dimensionless value, greater than or equal to zero, that quantifies how effectively the best 

performing multi-drug intervention identified achieves our objective, with zero indicating 

success) converges rapidly on an effective drug combination.  It successfully identified an 

optimal combination in 46 minutes and achieved an approximately optimal solution in less 

than 10 minutes.  

 

The results of our curation of the pathway and the inhibitors that target it are available in 

GtoPdb at 

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=104  

an example of which is shown in supplementary Fig 2. 
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The model produced is available from Biomodels.org (Chelliah et al. 2013) (ID: 

MODEL1506220000).  

 

Discussion  

The importance of Systems Pharmacology 

Multi-drug interventions 

Multi-drug approaches are already employed in areas including HIV and oncology (Thakur, 

2012; Petrelli, 2008). However, the existing interventions have typically been developed 

heuristically, rather than through systematic studies of the pathways involved, requiring 

significant domain expertise and subjective judgment.  Systems Pharmacology introduces 

objective metrics that have the potential to transform therapy development, yielding 

therapeutic hypotheses more rapidly and cost-effectively. 

 

Many diseases are multifactorial in nature, involving multiple pathways in their pathology.  

Effective future therapies will likely employ multi-drug approaches that target multiple points 

in the network of pathways responsible (i.e. polypharmacology).  Promiscuous drugs can be 

incorporated advantageously into the generation of these hypothetical interventions, provided 

that their interactions are known and parameterized.  

  

Multi-drug approaches can minimise the pleotropic effects of an intervention.  As we 

demonstrated for statins, where a single drug intervention suppressed the output of a pathway 

to the same extent as multiple drugs targeting the same pathway, not only was the dose of 

each of the multiple drugs significantly lower than the dose of the single drug, but also the 

combined dose of all of the multiple drugs was significantly lower than the dose of the single 

drug.  This intrinsically reduces the risk from off-target or pleotropic effects for each drug.  

 

The systems pharmacology approach allows us to predict multi-drug strategies that may be 

optimal to treat a disease and can be used as a prioritization triage for future drug 

development.  It can support personalized and stratified medicine, where we adapt the 

parameter sets of the underlying models of pathway activity to represent an individual (for 

personalized medicine) or a subpopulation (for stratified medicine) and we develop 

interventions that are customized to be optimal for the patient or patient group.  A challenge 

lies in developing optimised therapies so that they preferentially target key tissues.  Pathway 

models and pharmacological interactions can be made tissue specific by generating a new 
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parameter set for each tissue.  Hypothesis generation would then use optimization to 

determine an intervention that impacted upon a key pathway in a key tissue, leaving other 

pathways unchanged across all tissues and with a minimal impact on the key pathway in non-

targeted tissues.  

 

Drug development  

Few multi-drug treatments make it through the development process. The number of 

combinational therapies listed in the Therapeutic Target Database at the time of writing is 

115 (Qin et al. 2014). A combination therapy, LCZ696, with the brand name Entresto, was 

approved in 2015 and is in Phase III of clinical trials for the treatment of cardiovascular 

disorders.  Establishing drug combinations using a conventional drug development pipeline 

creates significant challenges as development essentially replicates the single drug 

development process multiple times. Systems Pharmacology is therefore critical to expanding 

the range of multi-drug interventions available in a cost effective manner.  Although it may 

add extra steps to the pre-clinical stages of the drug development process, it could have a 

significant positive impact on the cost-efficiency associated with each success by reducing 

the attrition rate in the later stages of the pipeline (Bowes et al. 2012).  

 

Integrating our understanding of pharmacology and systems biology will also enable us to 

make better predictions of the behavior of individual drugs.  For example, squalene synthase 

(FDFT1) has been investigated as a potential drug target that lies downstream of HMGCR, 

the target for statins, in the cholesterol biosynthesis pathway (see Figure 1).  FDFT1 catalyses 

an interaction after the fork to geranylgeranyl-diphosphate production and it has been 

speculated that squalene synthase inhibitors might suppress cholesterol production without 

impacting on the geranylgeranyl-diphosphate producing branch, in contrast to statin 

treatment.  However, squalene synthase inhibitors typically have Ki values orders of 

magnitude greater than the typical Ki for statins (See Table 3b).  As a result, squalene 

synthase inhibitor concentrations are required to be orders of magnitude greater than statin 

concentrations to suppress the corresponding enzyme activity comparably. Such high 

concentrations risk unforeseen off-target effects, making squalene synthase inhibitors a 

higher risk drug to develop.  
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Systems level Analysis 

At the heart of Systems Pharmacology is the growing recognition that we will only be able to 

truly understand the best ways to therapeutically intervene in physiological function by 

considering biology at a systems level.  The network of interactions that mediate 

physiological function is a dynamical system and just as health and disease are different 

dynamical states of cells, tissues and organs, they also describe different dynamical states of 

the networks (Ahn, 2006).  In a network context, dynamical states can comprise a single 

stable configuration of the whole network or a sequence of configurations that repeat 

cyclically and stably.  However, it is the configuration (species concentrations, distributions 

and structural conformations) of the network as a whole, or at least of critical subnetworks, 

that relate to phenotype, rather than any single component of the network (Lewis, 1991).    

 

Small networks often yield dynamics that are intuitive and predictable.  However, as 

networks become larger and richer in structure, novel and often counter-intuitive dynamics 

can emerge and it will only be once we are able to build high-confidence models at this scale 

that the full potential of systems level studies will be realized (Aderem, 2005).  Building high 

confidence networks at this scale is inherently challenging as we see here. Coherently and 

unambiguously parameterizing all the interactions of a network is a significant logistical 

challenge.  However, we have also seen that doing so enables us to identify and address the 

side-effects of treatment whilst the therapy is being designed, rather than retroactively.  

Hence systems levels approaches are well suited to pharmacological applications. 

 

Current impediments to Systems Pharmacology 

Problem 1: Lack of systematic recording 

The absence of systematic and rigorous descriptions of metabolites and pharmaceutical 

compounds poses a significant challenge.  Example 1, fluvastatin consists of two 

enantiomers, represented by PubChem Compound Identifiers (CIDs) 1548972 and 446155, 

with the 3R, 5S enantiomer (CID 446155) being significantly more pharmacologically active 

than the other (Boralli et al. 2009; Di Pietro et al. 2006). Commercial preparations used in 

vitro often vary in their stereochemical composition, with both enantiomers available 

individually, as well as in a racemic mixture.  However, authors did not always specify the 

stereochemical composition used despite this necessarily impacting upon the inhibition 

constant, Ki, reported.  Example 2, mevalonate is a metabolite that occurs naturally in 

mammals as the (R)-isomer form.  Sigma-Aldrich currently refers to its marketed version as 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2951
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3042
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‘(RS)-mevalonic acid’.  However, in one study (Potter and Miziorko 1997) the metabolite is 

obtained from the supplier Sigma-Aldrich and it is recorded on BRENDA under the general 

name ‘mevalonic acid’ without unambiguous chemical identifiers such as SMILES or 

InChIKeys. The isomer form affects the parameterisation of the metabolite.  Hence, this 

ambiguity creates potential inaccuracy in any resulting modelling.  

 

Problem 2: Reporting of the wrong data 

We found cases of incorrect or incomplete kinetic data reported in the primary literature that 

undermined the ability to model interactions. Vmax values were regularly reported instead of 

Kcat values where Vmax is related to Kcat by Vmax = Kcat  (Enzyme concentration).  For a Vmax 

value to be reusable in subsequent studies, the enzyme concentration must also be reported 

alongside it.  However, we regularly found this not to be the case, making most reported Vmax 

values unusable.  

 

Similarly, inhibitors were frequently parameterised by IC50 values instead of Ki values where 

Ki and IC50 are related by Ki = IC50 / (1 + S/Km) and S is the substrate concentration.  For 

IC50 values to be reusable in future studies, the substrate concentrations must also be 

reported.  Here again we found regular omissions that rendered most reported IC50 values 

unusable.  

 

Solution (1 & 2): Introduce data capture standards that facilitate unambiguous 

reconstruction of the results without optimization.  

Reporting must include clear and thorough descriptions of experimental configurations and 

unambiguous identification of chemical structures through the use of comprehensive and 

standard nomenclature.  Past experience has shown that effective standards can be developed 

through open community exercises (e.g. SBML, SBGN). The necessity for appropriate 

standards has been recognised previously by the chemical biology and pharmacometric 

communities (Oprea et al. 2011; Swat et al. 2015). 

 

Standards are already employed widely across the life sciences, frequently building upon 

ontologies (controlled vocabularies of biological/chemical entities and concepts). The 

International Union of Pure and Applied Chemistry (IUPAC), the International Union of 

Biochemistry and Molecular Biology (IUBMB) Joint Commission on Biochemical 
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Nomenclature, and the Nomenclature Committee of IUBMB (NC-IUBMB) have provided 

guidelines on biochemical descriptions and enzyme classification.  A library of ontologies for 

the life sciences has also been proposed by the OBO Foundry (Smith et al. 2007).  Standards 

and guidelines also exist for reporting biomedical studies, including the minimum 

information (MI) standards overseen by the MIBBI (Minimum Information for Biological 

and Biomedical Investigations) Foundry who include the STRENDA Commission (Standards 

for Reporting Enzymology Data) (Gardossi et al. 2010). The MI standards of direct relevance 

include the ‘Minimum information about a bioactive entity’ (MIABE) (Orchard et al. 2011) 

the ‘Minimum information about a proteomic experiment’ (MIAPE) (Taylor et al. 2007) and 

the ‘Minimum information about a molecular interaction experiment’ (MIMIx) (Orchard et 

al. 2007). 

 

Problem 3: Curation errors 

Online databases can contain errors. We have identified cases where the incorrect structures, 

enzyme targets, species and parameter values had been recorded.  Errors were at low 

frequency but some would undermine Systems Pharmacology approaches and these fell into 

two groups: errors that derived from mistakes in the literature itself, such as from mis-

interpretation of data, and errors that derived from the incorrect transcribing from the 

literature to the database.  The former derive from verbatim acceptance of results from 

manuscripts following author error.  The latter errors can be introduced by databases 

themselves, either from semi-automated triage tools or inadvertent curator mistakes and this 

can be associated with a lack of clarity in the original document. In the present study and for 

the GtoPdb, we reviewed the primary literature when expanding our datasets and re-curated 

existing database coverage.     

 

Solution 3: Quality control in curation of results 

Using teams of curators to validate each other’s work can reduce errors.  This can be 

arranged systematically into error-identifying or error-correcting curation quality control 

programmes. In an error-identifying programme, each result is independently curated twice 

and where disagreements are identified, the data is reviewed.  Such approaches have been 

discussed within the International Society for Biocuration (Bateman 2010).  However, the 

funding limitations of most public databases preclude this degree of validation. In an error-

correcting programme, each result would be independently curated three times and where a 

disagreement is found, the consensus is accepted automatically as correct.  
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Systems Pharmacology for the future 

A workflow for future studies and hypothesis generation 

With an adequate set of standards and a well-characterised experimental system, it should be 

possible to develop intervention hypotheses that can be tested to inform future therapy 

development and to contribute to iterative refinement of databases.  To make this a 

consistent, high confidence process, it would be advantageous to work in one experimental 

system. Such an experimental system could be in vivo or in vitro.  However, an in vitro model 

would offer more control and consistency. Such an in vitro system would serve as a first 

approximation to in vivo physiology and would contribute to determining how in vitro 

parameters are mapped to in vivo parameters in order to maximise their value.  An advantage 

of using an in vitro system is that it would lend itself to automated hypothesis generation and 

testing and it could be used to systematically search for new protein-protein and drug-target 

interactions. It has been suggested that artificial intelligence methods would be suitable for 

this purpose in the laboratory (King et al. 2004). Automation would both minimise the time 

required for study and reduce the risk of misreporting or mis-curation of the results.  

 

Our current systems-level understanding has grown to a scale where manual manipulation is 

no longer feasible.  Standards such as SBML, SBGN and SBGN-ML and repositories such as 

BioModels have been developed partially to address this and automated model development 

allows the full value of databases to be realized (Swainston et al. 2011).  Open PHACTS 

(Williams et al. 2012) is a consortium responsible for a number of pharmacological and life 

science databases whose aims include the improvement of data availability through the use of 

data standards, the incorporation of contextual data through semantic web standards and the 

cross-platform linkage of datasets through an identity mapping service.  Developing multi-

drug hypotheses is a challenge that grows exponentially with the number of drugs and 

interactions considered. HPC resources are likely to be essential for this development.   

 

The following work-flow would enable the process to be automated (see Figure 3). 

 

I) Pharmacological literature seeds databases of pharmacological interactions.  

II) Pharmacological and chemical databases containing sufficient information for 

experimental results to be reproduced accurately. Database APIs facilitate extraction of 

results for hypothesis generation. 
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III) Interaction literature seeds databases of biological pathways. 

IV) Pathway databases containing sufficient information for experimental results to be 

reproduced accurately.  Database APIs facilitate extraction of results for hypothesis 

generation. 

V) Hypothesis generation for single drug and multi-drug interventions using data obtained 

through APIs from the pharmacological and pathway databases.  

VI) Hypothesis testing.  Success yields a candidate therapy and provides validation of the 

database.  Failure initiates further exploration of the underlying interactions that in turn refine 

the databases.   

VII) Candidate Intervention.  Following success, the group of compounds enters an 

optimization pipeline that reduces them to a minimal set of lead compounds for pre-clinical 

testing to establish their efficacy and safety (see Table 4).  

 

5. Conclusion 

The growth in our understanding of pharmacological interactions and the continuing 

development of our ability to computationally model pathway biology will increasingly 

enable us to explore drug combinations that target multiple points on multiple pathways to 

reprogram system level behaviour.  In this way, Systems Pharmacology may lead to more 

effective therapies with fewer side effects.  Here, we explored this approach for the 

mevalonate arm of the cholesterol biosynthesis pathway and in doing so, we identify many of 

the current barriers to progress.  

 

We attempted to build a systems pharmacology model of the mevalonate arm of the 

cholesterol biosynthesis pathway but gaps and inconsistencies in the data prevented us from 

achieving this to a high level of confidence.  In particular, we found the lack of 

comprehensive and systematic parameterisations, experimental variation, ambiguity in 

structural detail and inappropriate and inaccurate reporting from the primary literature to be 

obstacles. That this should be the case for a pathway of such high biomedical and commercial 

significance was unexpected.  For this reason our best current parameterisation represents a 

patchwork of values taken from multiple species and experimental configurations.  

Nonetheless, by completing gaps in our knowledge with representative values, we were able 

to demonstrate subtle reprogramming of pathway dynamics that may contribute significantly 

to drug development.  We propose that these obstacles can be removed through the adoption 

of standards and quality control.   
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Although we focused on the mevalonate arm of cholesterol biosynthesis, this approach could 

be applied to any pathway of interest for which targets and ligands are known.  However, 

before this can happen at a general level both the computational biology and the 

pharmacology communities must collaborate to remove the current barriers to progress. 
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Figure 1. The mevalonate arm of the cholesterol biosynthesis pathway. 
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Figure 2.  A) The profile of flux through the pathway shown in Figure 1 described as a cone-

plot for the three scenarios: wild-type (treatment free), optimised multi-drug intervention and 

single-drug statin-like intervention.  Cone size and colour both describe flux level.  We show 

only the flux leading to cholesterol synthesis (the flux to protein prenylation is described in 

Fig 2B).  Interactions are numbered by their product: (1: 3-hydroxy-3-methylglutaryl-CoA; 2: 

melvaldyl-CoA, 3: mevalonate, 4: mevalonate-P, 5: mevalonate-PP, 6: isopentenyl-PP, 7: 

dimethylallyl-PP, 8: geranyl-PP, 9: farnesyl-PP, 10: presqualene-PP, 11: Squalene, 12: 

Cholesterol synthesis).  B) The flux through the endpoints of the two branches for the three 

scenarios: wild-type, optimised multi-drug intervention and single drug statin-like 

intervention.  Flux through the squalene/cholesterol synthesis branch is shown in blue.  Flux 

through the geranylgeranyl-pp/protein prenylation branch is shown in red.  The statin 

concentration has been selected to ensure that the flux through the cholesterol synthesis 

branch is the same as in the multi-drug intervention. C) Convergence on the optimal multi-

drug intervention that suppresses cholesterol synthesis whilst minimising off target effects, 

shown against time and against generations of the genetic algorithm. 

 

 

Figure 3. The proposed Systems Pharmacology Workflow. 
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Table 1. A list of the enzymes of the lanosterol branch of the cholesterol synthesis pathway, with gene and protein identifiers and EC numbers.  

 E.C 
number 

Enzyme/GtoPdb target 
ID UniProt ID HGNC ID IUBMB Enzyme approved name Reaction Catalysed   

2.3.3.10 HMGCS1/638 Q01581 5007 Hydroxymethylglutaryl-CoA synthase acetyl CoA + H2O + acetoacetyl CoA = (S)-3-hydroxy-3-methylglutaryl-CoA + coenzyme A   

              

              

              

              

              

1.1.1.34 HMGCR/639 P04035 5006 
Hydroxymethylglutaryl-CoA reductase 
(NAPDH) (S)-3-hydroxy-3-methylglutaryl-CoA + 2 NADPH = mevaldyl CoA + 2NADP+   

              

          mevaldyl CoA + 2NADP+ = (R)-mevalonate + coenzyme A + 2 NADP+   

              

              

              

              

              

              

              

              

2.7.1.36 MVK/640 Q03426 7530 Mevalonate kinase ATP + (R)-mevalonate =ADP + (R)-5-phosphomevalonate   

              

              

              

2.7.4.2 PMVK/641 Q15126 9141 Phosphomevalonate kinase  ATP + (R)-5-phosphomevalonate =ADP + (R)-5-diphosphomevalonate   

4.1.1.33 MVD/642 P53602 7529 Diphosphomevalonate decarboxylase ATP + (R)-5-diphosphomevalonate = ADP + phosphate + isopentenyl diphosphate + CO2   

              

              

              

              

5.3.3.2 
IDI1 and IDI2*/646 & 
647 Q13907/Q9BXS1 

5387/ 
23487 Isopentenyl-diphosphate delta isomerase  Isopentenyl diphosphate =dimethylallyl diphosphate   

              

2.5.1.1  FDPS/644 P14324 3631 Farnesyl diphosphate synthase  dimethylallyl diphosphate + isopentenyl diphosphate = diphosphate + geranyl diphosphate   

2.5.1.10         geranyl diphosphate + isopentenyl diphosphate = diphosphate + trans,trans-farnesyl diphosphate   

2.5.1.1 GGPS1/643 O95749 4249 Farnesyltranstransferase dimethylallyl diphosphate + isopentenyl diphosphate = diphosphate +geranyl diphosphate   

2.5.1.10         geranyl diphosphate + isopentenyl diphosphate = diphosphate + trans,trans-farnesyl diphosphate   

2.5.1.29         trans,trans-farnesyl diphosphate + isopentenyl diphosphate = diphosphate + geranylgeranyl diphosphate   
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2.5.1.21 FDFT1/645 P37268 3629 Farnesyl-diphosphate farnesyl transferase 1  2 trans,trans-farnesyl diphosphate = diphosphate + presqualene diphosphate   

          presqualene diphosphate + NAD(P)H + H+ = trans-squalene + diphosphate + NAD(P)+   

Footnote Reported substrates, kinetic values and details of the experimental studies from which they were obtained, along with references are recorded.   

 

 
Please note that ligands outlined in the table are listed using the nomenclature from the original literature. Where the reference did not specify the isomer used experimentally, it was assumed the racemate was used. 
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Table 1. A list of the enzymes of the lanosterol branch of the cholesterol synthesis pathway, with gene and protein identifiers and EC numbers.  
   E.C 

number Km(mM)/pmid Reported Substrate/GtoPdb Ligand ID Kcat (s-1)/pmid Organism Reported Conditions 
Mean Km 
(mM) 

Substituted mean 
Km 

Substituted mean 
Kcat 

2.3.3.10 
0.009/6118268 Acetyl-CoA/3038 -- 

Rattus 
norvegicus 

absence of acetoacetyl-
CoA, hydrolysis reaction 0.0785   6.651575 

  
0.2/6118268 Acetyl-CoA/3038 -- 

Rattus 
norvegicus 

0.01M acetoacetyl-CoA 
      

  0.073/19706283 Acetyl-CoA/3038 -- Homo sapiens --       

  0.076/19706283 Acetyl-CoA/3038 -- Homo sapiens --       

  0.084/19706283 Acetyl-CoA/3038 -- Homo sapiens --       

  0.029/7913309 Acetyl-CoA/3038 -- Homo sapiens --       

1.1.1.34 
0.006/4985697 3-hydroxy-3-methylglutaryl-CoA/3040 -- 

Rattus 
norvegicus 

Only one enantiomer 
0.0765   0.0023 

  
0.012/4985697 3-hydroxy-3-methylglutaryl-CoA/3040 -- 

Rattus 
norvegicus 

-- 
      

  0.01/10392455 3-hydroxy-3-methylglutaryl-CoA/3040 -- Mus musculus Enzyme from tumour       

  
0.014/10392455 3-hydroxy-3-methylglutaryl-CoA/3040 -- Mus musculus 

Enzyme from liver and 
tumour       

  
0.015/10392455 3-hydroxy-3-methylglutaryl-CoA/3040 -- Mus musculus 

Enzyme from liver, 
implanted tumour       

  
0.019/10392455 3-hydroxy-3-methylglutaryl-CoA/3040 -- Mus musculus 

Enzyme from liver, 
implanted tumour       

  0.024/10392455 3-hydroxy-3-methylglutaryl-CoA/3040 -- Mus musculus Enzyme from liver       

  0.07/16128575 3-hydroxy-3-methylglutaryl-CoA/3040 -- Homo sapiens --       

  0.6/-- 3-hydroxy-3-methylglutaryl-CoA/3040 -- Homo sapiens pH 7.5/Temp not specified       

  
0.068/18446881 hydroxymethylglutaryl-CoA 0.023/18446881 

Rattus 
norvegicus 

-- 
      

  
0.004/7077140 S-3-hydroxy-3-methylglutaryl-CoA/3040 

  Rattus 
norvegicus 

-- 
      

2.7.1.36 
0.035/14680942 (RS)-mevalonate/3056 -- 

Rattus 
norvegicus 

pH 7.5/25C 
0.0337     

  
0.035/17964869 (RS)-mevalonate/3056 21.9/18302342 

Rattus 
norvegicus 

pH  7.5/34C 
      

  0.0408/18302342 (RS)-mevalonate/3056 -- Homo sapiens pH 7.5/30C       

  0.024/9325256 mevalonate/3056 -- Homo sapiens pH 7.0/30C       

2.7.4.2 0.034/17902708 (R)-5-phosphomevalonate/3046 -- Homo sapiens pH7.0/30C 0.034   6.651575 

4.1.1.33 
0.02/8744421 5-diphosphomevalonate/3055 -- 

Rattus 
norvegicus 

-- 
0.0262     

  0.0289/18823933 5-diphosphomevalonate/3055 4.5/18823933 Homo sapiens 30C       

  
0.036/16626865 5-diphosphomevalonate/3055 -- 

Rattus 
norvegicus 

-- 
      

  
0.036/17888661 5-diphosphomevalonate/3055 -- 

Rattus 
norvegicus 

-- 
      

  0.01/11913522 mevalonate diphosphate/3055 -- Mus musculus pH 7.2       

5.3.3.2 0.0228/17202134 isopentenyl diphosphate/3048 -- Homo sapiens pH 8.0 0.0279   6.651575 

  0.033/8806705 isopentenyl diphosphate/3048 -- Homo sapiens         

2.5.1.1  --           0.0351375 6.651575 

2.5.1.10 --           0.0351375 6.651575 

2.5.1.1 -- -- -- --     0.0351375 6.651575 
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2.5.1.10 -- -- -- --     0.0351375 6.651575 

2.5.1.29 0.0029/17846065 isopentenyl diphosphate/3048 -- 
Rattus 

norvegicus 
pH 7.0/37C 

0.0027     

  0.003/16698791 isopentenyl diphosphate/3048 -- Homo sapiens pH 7.7/37C       

  0.00071/17846065 trans,trans-farnesyl diphosphate/3050 -- 
Rattus 

norvegicus 
pH 7.0/37C 

      

  0.0042/16698791 trans,trans-farnesyl diphosphate/3050 0.204/16698791 Homo sapiens pH 7.7/37C       

2.5.1.21 0.0023/9473303 farnesyl diphosphate/2910 -- Homo sapiens   0.0016   6.651575 

  
0.001/1569107 trans-farnesyl diphosphate/3050 -- 

Rattus 
norvegicus         

Footnote Reported substrates, kinetic values and details of the experimental studies from which they were obtained, along with references are recorded.  
  

 
Please note that ligands outlined in the table are listed using the nomenclature from the original literature.  

   

 
Where the reference did not specify the isomer used experimentally, it was assumed the racemate was used. 
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Table 2. Normalised enzyme levels 

   Enzyme level 
 HMGCS1 1441 

 HMGCR 258 

 MVK 76 

 PMVK 874 

 MVD 111 

 IDI1 2707 

 IDI2 -- 
 FDPS 7029 

 GGPS1 86 

 FDFT1 3425 
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Table 3. List of inhibitors for each of the enzymes in the lanosterol branch of the cholesterol synthesis pathway, with Ki values and references.  

 

     
E.C number Enzyme Inhibitor name / GtoPdb Ligand ID InChi Key 

Approved  
drug? 

2.3.3.10 HMGCS1 L-659,699/5886 ODCZJZWSXPVLAW-KXCGKLMDSA-N No 

1.1.1.34 HMGCR Rosuvastatin/2954 BPRHUIZQVSMCRT-YXWZHEERSA-N Yes 

    Rosuvastatin/2954 BPRHUIZQVSMCRT-YXWZHEERSA-N Yes  

    Rosuvastatin/2954 BPRHUIZQVSMCRT-YXWZHEERSA-N Yes 

    Cerivastatin/2950 SEERZIQQUAZTOL-ANMDKAQQSA-N Yes 

    Cerivastatin/2950 SEERZIQQUAZTOL-ANMDKAQQSA-N Yes 

    Atorvastatin/2949 XUKUURHRXDUEBC-KAYWLYCHSA-N Yes 

  
 

Atorvastatin/2949 XUKUURHRXDUEBC-KAYWLYCHSA-N Yes 

    Lovastatin/2739 PCZOHLXUXFIOCF-BXMDZJJMSA-N Yes 

  
 

Lovastatin/2739 PCZOHLXUXFIOCF-BXMDZJJMSA-N Yes 

    Simvastatin/2955 
RYMZZMVNJRMUDD-HGQWONQESA-
N 

Yes 

    CHEMBL39312/7991 VWKZOIOUHUHQKZ-HZPDHXFCSA-N No 

  
 

CHEMBL39102/7993 XKZCNQAYFRBCKR-HNNXBMFYSA-N No 

  
 

Fluvastatin/2951 FJLGEFLZQAZZCD-MCBHFWOFSA-N Yes 

2.7.1.36 MVK Farnesyl thiodiphosphate/3216 DRADWUUFBCYMDM-UHFFFAOYSA-L No 

2.7.4.2 PMVK Cinnamic acid/3203 WBYWAXJHAXSJNI-VOTSOKGWSA-N No 

  
 

Isoferulic acid**   No 

  
 

3-hydroxy-3-methyl-6-phosphohexanoic acid/3202 XRCIRZGXKWCWNQ-UHFFFAOYSA-N No 

  
 

p-coumaric acid/5787 NGSWKAQJJWESNS-ZZXKWVIFSA-N No 

4.1.1.33 MVD 6-fluoromevalonate 5-diphosphate/3205 GLNCOGHKIHKSA-UHFFFAOYSA-N No 

  
 

2-fluoromevalonate 5-diphosphate/3204 WPXHWHACORBSDS-UHFFFAOYSA-N No 

  
 

diphosphoglycolyl proline/3206 CDFDGXYBANXCPC-UHFFFAOYSA-N No 

  
 

CHEMBL1160330/7994 YERUUUBBRAPJND-UHFFFAOYSA-N No 

  
 

CHEMBL1160328/7996 YIGLDWRZXXHIGZ-ZCFIWIBFSA-N No 

  
 

P'-geranyl 2-fluoromevalonate 5-diphosphate/3207 ACYPMTKDKJZHBJ-MDWZMJQESA-N No 

  
 

P'-geranyl 3,5,9-trihydroxy-3-methylnonanate 9-diphosphate/5621 PMUQIJKCGIYWGT-GZTJUZNOSA-N No 

5.3.3.2 IDI1 --     

5.3.3.2 IDI2 --     

2.5.1.1, 
2.5.1.10 

FDPS Zoledronic acid/3177 XRASPMIURGNCCH-UHFFFAOYSA-N Yes 

  
 

Zoledronic acid/3177 VWKZOIOUHUHQKZ-HZPDHXFCSA-N Yes 

    Risedronate/3176 IIDJRNMFWXDHID-UHFFFAOYSA-N Yes 

  
 

Risedronate/3176 IIDJRNMFWXDHID-UHFFFAOYSA-N Yes 

    NE58062/3166 XUCBNFJYKWKAMN-UHFFFAOYSA-N No 

    NE97220/3171 NAIJOBGUXRHQJW-UHFFFAOYSA-N No 

  
 

NE97220/3171 NAIJOBGUXRHQJW-UHFFFAOYSA-N No 

    NE58018/3168 XXNASZAYANFLID-UHFFFAOYSA-N No 

  
 

NE58018/3168 XXNASZAYANFLID-UHFFFAOYSA-N No 

2.5.1.1, 
2.5.1.10, 
2.5.1.29 

GGPS1 BPH-628/3188 MPBUFKZCEBTBSK-UHFFFAOYSA-N No 

  
 

BPH-608/7977 YXQQNSYZOQHKHD-UHFFFAOYSA-N No 

  
 

BPH-675/7975 MZVWVRVNMXTDAK-UHFFFAOYSA-N No 

  
 

BPH-629/7976 BYVXAUZOTGITQZ-UHFFFAOYSA-N No 

  
 

BPH-676/7978 NWIARQRYIRVYCM-UHFFFAOYSA-N No 

2.5.1.21 FDFT1 Zaragozic acid A/3057 DFKDOZMCHOGOBR-NCSQYGPNSA-N No 

    CHEMBL24362/3105 FBPJEWKDFUWVKV-UHFFFAOYSA-N No 

    CHEMBL1208103/3120 HGDWHTASNMRJMP-UHFFFAOYSA-N No 

    CHEMBL1207858/3127 AGJZDRXKAQZWEP-UHFFFAOYSA-N No 

    BPH-830/3121 GNETVUVZFYJATO-UHFFFAOYSA-N No 

    SQ-109/7997 JFIBVDBTCDTBRH-REZTVBANSA-N No 

    [1-(hydroxycarbamoyl)-4-(3-phenoxyphenyl)butyl]phosphonate/3120 HGDWHTASNMRJMP-UHFFFAOYSA-N No 

    compound 13 [PMID: 19456099]/3127 AGJZDRXKAQZWEP-UHFFFAOYSA-N No 

    (1-methyl-1-{[3-(3-phenoxyphenyl)propyl]carbamoyl}ethyl)phosphonate/3127 AGJZDRXKAQZWEP-UHFFFAOYSA-N No 

     **Interaction not listed on GtoPdb. These reactions were selected from either BRENDA or ChEMBL to complete the dataset required for the modelling process. 

 


