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Abstract—In this paper, we propose a reduced-complexity
optimal modified sphere decoding (MSD) detection scheme for
SCMA. As SCMA systems are characterized by a number
of resource elements (REs) that are less than the number of
the supported users, the channel matrix is rank-deficient, and
sphere decoding (SD) cannot be directly applied. Inspired by the
Tikhonov regularization, we formulate a new full-rank detection
problem that it is equivalent to the original rank-deficient
detection problem for constellation points with constant modulus
and an important subset of non-constant modulus constellations.
By exploiting the SCMA structure, the computational complexity
of MSD is reduced compared with the conventional SD. We also
employ list MSD to facilitate channel coding. Simulation results
demonstrate that in uncoded SCMA systems the proposed MSD
achieves the performance of the optimal maximum likelihood
(ML) detection. Additionally, the proposed MSD benefits from a
lower average complexity compared with MPA.

Index Terms—Sparse code multiple access (SCMA), modified
list sphere decoding (MSD), maximum likelihood (ML).

I. INTRODUCTION

THE need to accommodate diverse types of users and

applications necessitates more efficient ways to use the

spectrum in 5G systems. Sparse code multiple access (SCMA)

is a non-orthogonal multidimensional codebook-based config-

uration that can cope with the requirements of 5G systems. In

essence, SCMA is a generalization of low density signature

(LDS) signaling, whereby a sparse signature matrix is used to

reduce the complexity of the detector at the receiver [1].

One of the main challenges in the design of SCMA systems

is to overcome the complexity of the receiver that decodes the

data generated from all active users. Inspired by the sparsity

of the SCMA codewords, [1] uses a near-optimal message

passing algorithm (MPA) to detect the SCMA symbols. An

MPA-based algorithm was proposed in [2] that reduces the

detection complexity by assigning larger weight factors to

those codewords with larger probabilities. However, this im-

provement results in a degradation in the block error rate at

high signal-to-noise ratio (SNR) regimes. In [3], a hybrid of

list sphere decoding (SD) and MPA is used to reduce the

complexity of SCMA detection. However, the SD detection
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problem is defined per resource elements (RE) and not on the

entire block, and thus does not result in an optimal solution.

In this paper, we investigate the detection problem of SCMA

systems, and propose a reduced-complexity optimal modified

SD (MSD) detection scheme. Due to the non-orthogonal

nature of SCMA systems, the number of REs is less than the

number of active users. As such, the channel matrix is rank-

deficient, and SD cannot be directly applied. To tackle this

issue, we use Tikhonov regularization [4] to formulate a new

full-rank detection problem that is equivalent to the original

rank-deficient detection problem for constellation points with

constant modulus, and an important subset of non-constant

modulus constellations. The complexity of the proposed MSD

scheme is reduced by exploiting the sparsity of SCMA code-

books, and the fact that each user spreads the same information

bits over a few REs alleviates the need for expanding all

tree branches. We also use list MSD to provide soft-outputs

to be used with channel coding. Simulation results confirm

that in uncoded scenarios the proposed MSD scheme achieves

the performance of the optimal maximum likelihood (ML)

detection. Furthermore, the proposed MSD benefits from a

lower average complexity compared with MPA.

II. SYSTEM MODEL

Consider an uplink SCMA system with K users and N
orthogonal resource elements (REs), where N < K , and

each user is connected to dv ≪ N REs only. In an M -

ary signal constellation, each LM = log2 M bits is mapped

to a dv-dimensional complex constellation symbol, xk =
(x1,k, . . . , xdv,k)

T
that is selected from a dv-dimensional com-

plex codebook Xk of size M , and defined within a constel-

lation set, Xk ⊆ C
dv . The N × dv binary mapping matrix1

of user k is denoted by Sk, where sn,l = 1, n ∈ {1, . . . , N}
and l ∈ {1, . . . , dv}, if and only if the lth symbol of user

k occupies resource n. We assume each user consists of dv
layers that is connected to one RE only. The total number of

layers is K ′ = dv K , and the mapping matrix of the SCMA

code, S = [S1 . . .SK ], is then an N ×K ′ matrix with only

one non-zero element in each of its columns. The set of layers

occupying resource n is specified by the position of 1s in the

nth row of S, and is represented by Fn = {k′|sn,k′ = 1},

k′ ∈ {1, . . . ,K ′}, with cardinality df = |Fn|. As we will

1The indicator matrix P is an N × K matrix with each of its columns
defined as pk = diag

(

SkS
T
k

)

. Note that [3] uses p to apply SD on each
RE independently, which does achieve the ML performance. Also, using P

to apply SD on all REs jointly is very challenging and may not be possible.
In contrast, S allows us to apply SD on all REs jointly, and achieves the ML
performance. The increase in dimensionality from K to K ′ due to using S

instead of P will be compensated in the proposed algorithm.
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discuss later in Section III-A and V, to simplify the detector, it

is very advantageous for S to be an upper-triangular matrix, so

the first N columns of S constitutes an identity matrix. This

can be achieved in scenarios with static resource allocation

(RA) by assigning the first dv REs to the first user, the

second dv REs to the second user, and so on. In scenarios

with dynamic RA, it is easy to make S an upper-triangular

matrix during the RA phase by relabelling the REs and users,

provided that there exists N/dv orthogonal users2.
In an uplink transmission scenario over Rayleigh frequency

flat fading contaminated by additive white Gaussian noise

(AWGN), the N × 1 received signal vector is represented by

y =

K
∑

k=1

Sk Hk xk +w

= Gx+w, (1)

where Hk = diag (h1,k, . . . , hdv,k) is a dv × dv diagonal

matrix containing the complex channel gains for the dv REs

used by user k, x =
(

xT
1, . . . ,x

T
K

)T
= (x1, . . . , xK′)T

is a

K ′-dimensional vector containing all transmitted symbols of

all users, and w ∼ CN
(

0, σ2
I
)

is the N -dimensional com-

plex Gaussian ambient noise. Moreover, G = (g1, . . . , gK),
gk = Sk Hk, is the N ×K ′ effective channel gain matrix.

After the reception of y, a multiuser detection technique is

employed to recover each user’s codeword xk. The optimal

ML detection for SCMA transmitted codewords is given by

x̂ = argmin
x∈X

‖y −Gx‖2 , (2)

where x̂ = (x̂1, . . . , x̂K′)
T
, denotes the detected symbols, and

X = X1 × . . . × XK , X ⊆ C
K′

, contains the constellation

set of all users. Since the ML implementation is prohibitively

complex, we propose a reduced-complexity MSD detection

scheme that is able to achieve the optimal ML performance.

III. MSD DETECTION SCHEME

In this section, we develop a reduced complexity SD detec-

tion scheme that is based on a modified tree search method,

and is capable of achieving the ML performance.

A. Problem Formulation

It is clear that (2) represents an under-determined system;

thus, SD cannot be directly applied. To overcome this issue,

and inspired by Tikhonov regularization [4], we rewrite G

in (1) as, G =
[

G
(1)
N×N G

(2)
N×(K′−N)

]

. We then define the

modified effective channel gain matrix as

G̃K′×K′ =

[

G
(1)
N×N G

(2)
N×(K′−N)

0(K′−N)×N I(K′−N)×(K′−N)

]

. (3)

Also, by rewriting x in (1) as, xT =
[

x
(1)
N×1 x

(2)
(K′−N)×1

]T

,

the modified received signal vector can be written as

ỹ = G̃x+ w̃
[

yN×1

0(K′−N)×1

]

= G̃

[

x
(1)
N×1

x
(2)
(K′−N)×1

]

+

[

wN×1

− x
(2)
(K′−N)×1

]

. (4)

2On the occasion that there are not N/dv orthogonal active users in the
system, we can relabel the layers rather than the users and some minor
modifications to the SD algorithm will be needed.
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Fig. 1: Modified tree search method for K = 6, dv = 2, and M = 4.

As such, the ML detection problem is

x̂ = argmin
x∈X

(

∥

∥

∥
ỹ − G̃x

∥

∥

∥

2

−
∥

∥

∥
x(2)

∥

∥

∥

2
)

, (5)

which represents well-defined systems of equations, and is

equivalent to the ML detection problem in (2) for constellation

points with constant modulus, i.e.,
∥

∥x(2)
∥

∥

2
is a constant (e.g.,

4-QAM or the codebook in [5]). Since S is an upper-triangular

matrix, G̃ is upper-triangular and MSD can then be directly

applied. That is, the choice of S alleviate the need of QR

factorization prior to SD as in e.g., [6], which will substantially

reduce the computational complexity of the proposed MSD.

B. Modified Tree Search Method

The proposed MSD detection scheme can be visualized by a

search over a tree with K ′ layers. The tree search is performed

in descending order from the last layer down to the first layer,

wherein the layers with the indices k′ ∈ [(k − 1)dv +1, kdv]
correspond to user k. Since each user spreads the same

information bits over dv REs, there exists up to M branches for

layers with indices k′ = k dv, k ∈ {1, . . . ,K}, and only one

branch for layers with indices k′ ∈ {(k − 1)dv+1, . . . , kdv−
1}. The modified tree search method is illustrated in Fig. 1,

for a scenario with K = 6, dv = 2, and M = 4.

C. MSD Extension to Non-constant Modulus Constellations

As mentioned in Section III-A, (5) is equivalent to (2) for

constellation points with a constant modulus, e.g., 4-QAM.

However, as long as the SCMA codebook can be written

as x = Ω x′, where the entries of x′ are taken from a

constant modulus constellation and Ω is a block diagonal

matrix, then the decoding algorithm can readily be employed

the same way as for the constant modulus case. This condition

applies for most good SCMA codebooks, e.g., [7] or 16-QAM.

For illustrative purposes, consider an M -QAM constellation,

v = [v1, . . . , vM ], with M = 4m, that can be constructed

from 4-QAM constellations. Let V ′ represent the m × 4m

matrix resulting from the Cartesian product of m tuples of 4-

QAM constellations, and let v′

i , i ∈ {1, . . . , 4m}, denote the

ith column of V ′. Each M -QAM constellation point, vi, is

vi =
∑m

j=1 2
j−1v′ij . In a similar vein, the K ′-dimensional vec-

tor, x, containing the transmitted symbols of all layers can be

decomposed as x = Ωx′, where Ω = diag (ω1, . . . ,ωK′) is a

K ′ ×mK ′ block diagonal matrix, and ωk′ =
[

2m−1, . . . , 1
]

.

Further, x′ = (x
′T
1 , . . . ,x

′T
K′)T is an m K ′- dimensional

vector, and the entries of x′

k′ are chosen from the 4-QAM

constellation. The received signal vector y can be re-written



as y = G′ x′ + w, where G′ = G Ω. The MSD detection

scheme then runs the same way as the constant modulus case.

IV. COMPLEXITY DISCUSSION

The principles of the SD algorithm necessitate the detected

symbols, x̂, falls within a hypersphere of radius d by ensuring

that the following is held [6]:

d2 ≥
∑K′

i=1

∣

∣

∣

∣

yi −
∑K′

j=i
g̃i,j x̂j

∣

∣

∣

∣

2

, (6)

where g̃i,j denotes each element of G̃. From the choice of S

to be an upper-triangular matrix and from Section III-A, the

following are observed for G̃, which introduce a reduction in

the number of operations involved in detecting the transmitted

symbols: Firstly, since the first N columns of S form an

identity matrix, G
(1)
N×N is a full-rank matrix with non-zero

diagonal elements, i.e., g̃j,j 6= 0, j = 1, . . . ,K ′. Secondly, due

to the sparsity of SCMA codebooks, the number of non-zero

elements in the first N rows of G̃ is df , and the position of

those non-zero elements is determined by the position of ones

in the corresponding row of the mapping matrix, S. Thus, only

df layers are involved in detecting each symbol corresponding

to the first N rows of G̃. That is, from (6), to detect the symbol

corresponding to the first N layers, i.e., k′ ∈ {1, . . . , N},

MSD selects a constellation point, x̂k′ , that satisfies

d2 ≥ d21 +

∣

∣

∣

∣

yk′ −
∑

j∈Fk′

g̃k′,j x̂j

∣

∣

∣

∣

2

, (7)

where Fk′ = {i|sk′,i = 1}. Thirdly, due to the presence of I

in (3), the last K ′−N rows of G̃ will have only one non-zero

element, which is on the diagonal. That is, for the last K ′−N
layers, i.e., k′ ∈ {N + 1, . . . ,K ′},

d2 ≥ d21 + |yk′ − g̃k′,k′ x̂k′ |2 , (8)

where d21 =
∑K′

i= k′+1

∣

∣

∣
yi −

∑K′

j = i g̃i,j x̂j

∣

∣

∣

2

, when k′ ∈

{1, . . . ,K ′ − 1}, and d21 = 0 when k′ = K ′. Let Nv1

and Nv2 denote the average number of visited layers [6],

[8]–[10] for k′ ∈ {1, . . . , N}, and k′ ∈ {N + 1, . . . ,K ′},

respectively. The average complexity of MSD based on (7)–

(8), and the complexity of log-MPA [1] using
∗

max operation

[11] is provided in Table I. Note from (6), unlike (7) and

(8), the detection of each symbol involves the contribution of

all other symbols. Further, the conventional SD branches up

to M possibility for all the K ′ layers, whereas from Section

III-B, we branch up to M possibilities only for K layers, and

branch only 1 possibility for the K ′−K layers. This suggests

a substantial reduction in the complexity of the proposed MSD

compared with the conventional SD3.

V. LIST MSD

To use channel coding soft outputs are required; we employ

list MSD that is based on the list SD [11] to provide soft out-

puts. Let Nc denotes the length of codewords output from the

channel encoder. The codewords are partitioned into Nc/LM

digital symbols of LM bits each. Let ck = (ck,1, . . . , ck,LM
),

3As a result, the dimensionality increase due to using S instead of P is
compensated with the MSD scheme.
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Fig. 2: BER performance of 4-ary uncoded SCMA systems over
AWGN.

ck,m ∈ (0, 1), be the bits conveyed in one symbol for user

k, k ∈ {1, . . . ,K}. Each ck is mapped to a dv-dimensional

complex constellation symbol, xk. That is, xk = Xk (ck).
To minimize the probability of making a wrong decision on a

given bit, its a posteriori probability (APP) is maximized. The

log-likelihood-ratio for each bit of each user, λk,m, is used to

express the APP ratio as

λk,m ≈
∗

max
c∈A0

{

−1

2σ2

(

∥

∥

∥
ỹ − G̃x

∥

∥

∥

2

−
∥

∥

∥
x

(2)
∥

∥

∥

2
)

+ log Pr {x}

}

−
∗

max
c∈A1

{

−1

2σ2

(

∥

∥

∥
ỹ − G̃x

∥

∥

∥

2

−
∥

∥

∥
x

(2)
∥

∥

∥

2
)

+ log Pr {x}

}

,

(9)

where c = (c1, . . . , cK), x = X (c), X = (X1, . . . ,XK). In

addition, A0 = C′
k,m, 0 and A1 = C′

k,m, 1 denote the set of

bits c having ck,m = 0 and ck,m = 1, respectively, and Pr {x}

represents the a priori probability of x. The
∗

max operation is

a numerically stable operation and is defined in [11]. Based on

the sign of λk,m, we can decide whether that bit corresponds

to a binary 0 or 1, i.e., ck,m = 0 or ck,m = 1. The magnitude

of λk,m also specifies how reliable that specific bit is. Note

that computing (9) is exponential with the number of users

K and the constellation size M . That is, for each ck, there

exists 2K M hypotheses (all different possibilities of c in A0

and A1) to search over in (9). As such, we use list SD to

reduce the computational complexity. In the list SD, instead

of searching through all hypotheses, we only search over a list

L with Ncand most probable hypotheses. That is, in evaluating

(9), A0 = c ∈ L
⋂

C′
k,m, 0 and A1 = c ∈ L

⋂

C′
k,m, 1.

More details on list SD are provided in [11].

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

MLSD detection scheme over AWGN and Rayleigh fading

channels, where we assume each user observes the same chan-

nel coefficients over dv resources. We provide performance

comparisons among different detection schemes for uplink

SCMA systems with K = 6, N = 4, and dv = 2.

In Fig. 2, we compare the BER performance of uncoded

SCMA systems that differ in their multiuser detection tech-

niques, and operate over the AWGN channel, with the 4-

ary codebook in [5]. We observe that MSD achieves the ML

performance. Moreover, MPA approaches ML with increasing

number of iterations, Ni. In particular, MPA converges to



TABLE I: Average complexity of MSD and MPA

MSD log-MPA

Real Summators
(

4 df + 2
)

Nv1 + 2Nv2 M N df

(

Mdf−1
(

4 df − 2 +Ni

(

2 + 1
M

))

+Ni

(

2− 1
dv

)

+ 5

)

Real Multipliers
(

4 df + 2
)

Nv1 + 2Nv2 M N df

(

4 df Mdf−1 + 5
)

exp / log Operations 0 M N df Ni

(

Mdf−1 + 1

)

+ 1
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the proposed MSD after 12 iterations in AWGN channels.

We depict the performance comparison of uncoded SCMA

systems with ML, the proposed MSD, and the MPA detection

schemes that operate in Rayleigh fading channels in Fig. 3.

All users employ the 16-QAM constellation. As expected,

the proposed scheme achieves the same performance as ML,

however, the performance of MPA depends on the number of

iterations. Particulary, MPA converges to the proposed MSD

after 5 iterations at high SNRs. Fig. 4 compares the frame

error rate (FER) performance of a rate-1/3 turbo-coded 4-ary

SCMA system with the codebook given in [5], and operating

over Rayleigh fast fading channels, The list size Ncand is set

to 600. The turbo codes are chosen from the 3GPP LTE

standard [12] with the codeword length of Nc = 132 and

Nc = 516. As we see, for the two codeword lengths, MPA

converges to the list MSD after 3 iterations. In Fig. 5, we

show the average number of real summators and multipliers

in an uncoded SCMA system with a 4-ary codebook over

a fading channel with MSD and log-MPA. Despite the fact

that the complexity of exp / log operation involved in log-

MPA is higher than one multiplier, we consider each exp / log
operation equivalent to one multiplier. As we see in Fig. 5, the

average complexity of the proposed MSD decreases with the

increase in SNR. Although in this scenario MPA converges

only after 3 iterations, the proposed MSD benefits from a lower

average complexity compared to the widely used MPA.

VII. CONCLUSION

A reduced-complexity optimal MSD scheme was proposed

for SCMA detection that exploits the properties inherited

from the structure of SCMA codebooks. To facilitate applying

the SD algorithm on SCMA systems to achieve the optimal

performance, the Tikhonov regularization was used. It was

shown that the SCMA detection problem with the modified

channel matrix is equivalent to the original rank-deficient

detection problem for constellations with constant modulus

and an important subset of non-constant modulus constel-

lations. The complexity of MSD is reduced compared with

the conventional SD based on the sparse structure of SCMA

codebooks that does not require to expand all tree branches.

In addition, in order to use channel coding, list MSD was

employed. Simulation results show that in uncoded SCMA

systems the proposed MSD scheme achieves the performance

of the optimal ML detection. Also, the proposed MSD benefits

from a lower average complexity compared with MPA.
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