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Magnetic resonance imaging (MRI) and positron emission tomography (PET) are
neuroimaging modalities typically used for evaluating brain changes in Alzheimer’s
disease (AD). Due to their complementary nature, their combination can provide
more accurate AD diagnosis or prognosis. In this work, we apply a multi-modal
imaging machine-learning framework to enhance AD classification and prediction of
diagnosis of subject-matched gray matter MRI and Pittsburgh compound B (PiB)-
PET data related to 58 AD, 108 mild cognitive impairment (MCI) and 120 healthy
elderly (HE) subjects from the Australian imaging, biomarkers and lifestyle (AIBL)
dataset. Specifically, we combined a Dartel algorithm to enhance anatomical registration
with multi-kernel learning (MKL) technique, yielding an average of >95% accuracy
for three binary classification problems: AD-vs.-HE, MCI-vs.-HE and AD-vs.-MCI,
a considerable improvement from individual modality approach. Consistent with
t-contrasts, the MKL weight maps revealed known brain regions associated with
AD, i.e., (para)hippocampus, posterior cingulate cortex and bilateral temporal gyrus.
Importantly, MKL regression analysis provided excellent predictions of diagnosis of
individuals by r2 = 0.86. In addition, we found significant correlations between the
MKL classification and delayed memory recall scores with r2 = 0.62 (p < 0.01).
Interestingly, outliers in the regression model for diagnosis were mainly converter
samples with a higher likelihood of converting to the inclined diagnostic category.
Overall, our work demonstrates the successful application of MKL with Dartel on
combined neuromarkers from different neuroimaging modalities in the AIBL data. This
lends further support in favor of machine learning approach in improving the diagnosis
and risk prediction of AD.

Keywords: Alzheimer’s disease, classification, machine learning, multi-kernel learning, prediction, Australian
imaging, biomarkers, lifestyle AIBL
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INTRODUCTION

Magnetic resonance imaging (MRI) and positron emission
tomography (PET) are two imaging data modalities that are
routinely used for evaluating changes in the brain associated
with Alzheimer’s disease (AD) (Ewers et al., 2011; Bateman
et al., 2012). Biomarkers from these neuroimaging data are
crucial for identifying early symptoms of AD pathology. For
example, structural atrophy measured by MRI, and glucose
metabolism or amyloid-β deposition measured by PET scans can
be detected almost 15–20 years before the expected symptom
onset as compared to 5 years in advance by clinical tests (Bateman
et al., 2012; Weiner et al., 2013). In addition, biomarkers from
neuroimaging data are more sensitive and reliable measures of
AD progression than the cognitive and clinical assessments (Ye
et al., 2008).

Previous MR-based studies have found brain atrophy
in subcortical regions such as the hippocampal pathway
(entorhinal cortex, hippocampus, and posterior cingulate
cortex; Frisoni et al., 2010; Bateman et al., 2012) and
cortical thickness reduction at vulnerable regions (Desikan
et al., 2009; Dickerson et al., 2009) at the earliest stages
of the disease. Moreover, longitudinal PET studies with
[18F]-fluorodeoxyglucose (FDG) tracer have reported reduced
cerebral metabolic rate of glucose (hypometabolism) in bilateral
parietotemporal, frontal and posterior cingulate cortices in
AD and mild cognitive impairment (MCI) participants with
respect to healthy elderly (HE) participants (Mosconi et al.,
2005; Nordberg et al., 2010) or in baseline-vs.-follow-up whole-
group study (Apostolova et al., 2010). Other PET studies
with [11C]-Pittsburgh compound B (PiB) tracer have found
an increase of cortical PiB retention in areas known to
significantly accumulate amyloid-beta [Aβ] deposits in AD and
MCI subjects with respect to HE (Nordberg et al., 2010; Cohen
and Klunk, 2014). However, in most cases, one biomarker
is not sufficient for an accurate diagnosis or prognosis of
the disease because each modality reveals information about
different aspects of the underlying pathology (Hinrichs et al.,
2011).

Recently, multi-modal imaging has gained popularity by
integrating complementary AD characterization, and hence
obtaining a more reliable AD biomarker (Cuingnet et al., 2011;
Dukart et al., 2011; Zhang et al., 2011). In particular, multi-
kernel learning (MKL) is a useful machine learning technique
to enhance interpretability and classification accuracy of multi-
modal imaging (Wang et al., 2008; Ye et al., 2008; Hinrichs
et al., 2009; Zhang et al., 2011; Dai et al., 2012; Segovia
et al., 2014). Specifically, the MKL forms an optimal kernel
from a linear combination of kernels/features (Sonnenburg
et al., 2006; Gönen and Alpaydin, 2011). Importantly, MKL can
be easily embedded in a support vector machine (SVM) for
high-dimensional pattern classification/recognition (Gönen and
Alpaydin, 2011). The SVM relies on the assumption that (two)
classes are separable by linear decision boundary (separating
hyperplane) in a feature space (transformed features via a
non-linear transformation function; Cortes and Vapnik, 1995).
MKL simultaneously optimizes weights under a gradient descent

algorithm and maximizes the margin in SVM (Rakotomamonjy
et al., 2008). Previous works have utilized the MKL method
on AD neuroimaging initiative (ADNI) data and reported
substantial improvement in classification performance, an
accuracy rate of above 90% (Hinrichs et al., 2009, 2011; Zhang
et al., 2011; Zhang and Shen, 2012). Tested on ADNI dataset,
MKL can outperform SVM by 3%–4% and enable early AD
diagnosis e.g., separating converting vs. non-converting MCI
(Hinrichs et al., 2011).

Dartel is a suite of tools to enhance inter-subject registration
or spatial normalization of anatomical scans, allowing for
less smoothing and improving MRI-PET coregistration
(Ashburner, 2007). This leads to improved anatomical precision
(Bergouignan et al., 2009; Klein et al., 2009; Yassa and Stark,
2009). In addition, improvements of AD classification of the
ADNI dataset have been reported using Dartel registration as
compared to unified segmentation (Cuingnet et al., 2011).
However, previous work has only applied to structural
neuroimaging data.

In the present work, we use a multimodal machine-learning
framework, utilizing both MKL and Dartel techniques, to
enhance multimodal classification accuracy of imaging scans
from AIBL dataset. A flowchart of the framework is presented
in Figure 1, where both MRI and PET imaging modalities
after anatomical coregistration enhancement by the Dartel
algorithm are jointly combined via a multi-kernel learning
process. Contributions of ROIs are derived by whole-brain
MKL weights, and results are compared with the t-contrasts
of conventional general linear model (GLM) analysis. In
addition, expected ranking values are computed for each data
modality, indicating variability (stability) ranking of regions
across the folds. Using the Australian imaging, biomarkers,
and lifestyle (AIBL) data, our results showed considerable
improvement of combinedMRI-PET classification accuracy over
single modal approach, and correlated strongly with the scores
of a commonly used psychological test, the delayed memory
recall test. Importantly, our results showed high diagnostic
accuracy for individual samples and can potentially predict the
likelihood of individual’s stability or conversion to another AD
category.

MATERIALS AND METHODS

Data Characteristics
As shown in Table 1, for AD with respect to MCI and
HE participants, the average Mini-Mental State Examination
(MMSE) score was the lowest (20 ± 2.1), while the average
clinical dementia rating (CDR) scores (0.85 ± 0.4) and
average delayed memory recall (DeRecall) scores were the
highest (1.28 ± 2.0). Expectedly, MCI participants showed
lower average MMSE and DeRecall scores and higher average
CDR scores with respect to HE subjects. These graded
scores fall within the standard range of diagnosis, and
hence confirmed the validity of the diagnosis, which will
be used as targets in the supervised machine learning
process.
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FIGURE 1 | Schematic overview of the proposed multimodal (imaging) machine-learning framework. See text for detailed descriptions.

MRI and PET Data
The imaging data from the AIBL flagship study of ageing
(Ellis et al., 2009) dataset was used in this study. Data was
collected by the AIBL study group. AIBL study methodology
has been reported previously (Ellis et al., 2009; Albrecht
et al., 2015; Gupta et al., 2015). Demographic characteristics
of the studied population of the AIBL data are shown in
Table 1. To test the multi-modal machine-learning framework,
subject-matched MRI and Pittsburgh compound B-positron

emission tomography (PiB-PET) imaging data clinically
diagnosed with AD (= 58), MCI (= 108), and HE (= 120) were
analyzed. Among them, there were four MCI converters
(2 MCI-to-AD and 2 MCI-to-HE), two AD converters
(2 AD-to-MCI) and four HE converters (HE-to-MCI), from
baseline (BL) to a later time (month 18 or later), which were used
to partially evaluate the regression models.

Although our focus was on imaging data, the relationships
with non-imaging data were also investigated. In particular,

TABLE 1 | Demographic and neuropsychological characteristics of the study population from 58 AD, 108 MCI and 120 HE samples.

Total scans: 286 AD MCI HE
(n = 58; 23 F/35 M) (n = 108; 47 F/61 M) (n = 120; 55 F/65 M)

Mean ± SD Range Mean ± SD Range Mean ± SD Range

Age 74.3 ± 4.1 55–93 75.1 ± 5.3 60–96 72.9 ± 5.1 55–93
MMSE 20 ± 2.1 2–29 27 ± 2.3 20–30 28.7 ± 2.2 24–30
CDR 0.85 ± 0.4 0.5–3 0.4 ± 0.2 0–0.5 0.02 ± 0.23 0–0.5
DeRecall 1.28 ± 2.08 0–8 4.83 ± 3.93 0–17 11.26 ± 3.95 0–22

The numbers refer to subjects. AD, Alzheimer’s Disease, MCI, Mild Cognitive Impairment, HE, Healthy Elderly, MMSE, Mini-Mental State Examination, CDR, Clinical

Dementia Ratio; SD, standard deviation.
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FIGURE 2 | Significant data features ranked by ANOVA test. A total of 8 out of 33 features were identified by ANOVA test from 58 Alzheimer’s disease (AD), 108 mild
cognitive impairment (MCI) and 120 healthy elderly (HE) samples. Features/biomarkers were ranked based on their p-values. The biomarkers include clinical
dementia ratio (CDR), Mini-Mental State Exam (MMSE), delayed memory recall (DeRecall), immediate memory recall (Immediate Recall), gray matter (GM), average
intensity of PiB, cerebrospinal fluid (CSF), and Apolipoprotein E (ApoE) genotype 1. Error bars represent a standard error.

delayed memory recall (DeRecall) score was tested by the MKL
regression model to check how well such non-categorical
scores can correlate with the imaging features/kernels.
As presented in Figure 2, by means of a one-way ANOVA
test, we assessed 33 (29 non-imaging + 4 imaging) features to
identify the most distinctive markers among three diagnostic
groups of samples. The non-imaging features considered
were gender, age, neuropsychology test scores (MMSE,
CDR and delayed/immediate recall memory tests), blood
test analysis (Apolipoprotein E or ApoE genotypes and
hormones including thyroid stim, vitamin B12, red blood
cells, nucleated red blood cells, platelets, hemoglobin, mean
corpuscular hemoglobin (MCH), MCH concentration, urea
nitrogen, serum glucose, cholesterol and creatinine), medical
history (psychiatric, neurological, cardiovascular, hepatic,
musculoskeletal, endocrine-metabolic, gastrointestinal, renal-
genitourinary, smoking, malignancy), laboratory data (thyroid
hormone, vitamin B12, red blood cell count, white blood cell
count, platelets, hemoglobin, MCH, MCH concentration, urea
nitrogen, serum glucose, cholesterol, creatinine). The imaging
features were the mean intracranial volume of gray matter
(GM), white matter (WM) and cerebrospinal fluid (CSF)
brain tissues, and average voxel intensity of PIB-PET scans.
The features were normalized in [0, 1] (each divided by its
maximum) before applying the ANOVA test to select and rank
the top features in terms of significance with respect to AD
progression.

Processing of MRI and PET Scans
A total number of 286 (58 AD, 108 MCI and 120 HE) MRI
scans were evaluated using a Dartel-enhanced voxel-based

morphometry (VBM) analysis, as interfaced in SPM12
(Wellcome Trust Centre for Neuroimaging, London)1. Scans
were acquired with a T1-weighted magnetization-prepared
rapid gradient echo (MPRAGE) sequence using 1.5T scanners
(repetition time/echo time/inversion time = 2300/3.04/900 ms
and flip angle = 9◦) in DICOM format. Steps to process the MRI
scans were as follows: (1) origins of scans were set to the anterior
commissure (AC) brain area; (2) MR scans were segmented into
GM, WM and CSF brain tissues. Accordingly, ‘‘c1’’, ‘‘c2’’ and
‘‘c3’’ NIFTI files were generated. In addition, Dartel imported
versions of tissue class images for GM and WM i.e., ‘‘rc1’’ and
‘‘rc2’’ were obtained; (3) the ‘‘rc1’’ and ‘‘rc2’’ images were used
to create a template from the mean of all scans/subjects. In
addition, they were used to generate flow fields that contain
deformation details of scans; (4) GMs (‘‘c1’’) were normalized
into a Montreal Neurological Institute (MNI) space using the
Dartel template (‘‘Template_6’’) and flow fields (‘‘u_rc1’’). To
compensate for any residual due to inter-subject variability
and, to increase the signal-to-noise ratio, spatially smoothing
was applied to GMs (‘‘c1’’) images using a full-width-at-half-
maximum (FWHM) Gaussian kernel with a common resolution
of 8 mm. The resulted ‘‘smwc1’’ scans were then used for the
unpaired two-sample t-test.

An equal number of PiB-PET scans were separately
preprocessed. Scans were aligned, co-registered to the Dartel-
enhanced average of GM scans (maximization of mutual
information), normalized into MNI space and smoothed with
FWHM = 8 mm. The resulted scans (image matrix dimension
121 × 145 × 121 with 1.5 × 1.5 × 1.5 mm spacing) were used

1www.fil.ion.ucl.ac.uk/spm/
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for the unpaired two-sample t-test, and later for the multi-modal
machine-learning process.

An unpaired two-sample t-test was separately applied to
structural MR and PiB-PET scans to look for differences between
three groups of subjects. A threshold of 0.05 with a family-wise
error correction for multiple comparisons at the voxel-level
was employed. Comparisons for MRI and PiB-PET were made
based on the following contrasts: subtraction of AD from
HE (AD-vs.-HE), MCI-vs.-HE and AD-vs.-MCI. In regards
to t-statistics, we looked at regions of interests (ROIs) with
maximum t-values. For MRI scans, we expected to identify
significant differences in (para)hippocampus, temporal gyrus
and posterior cingulate cortex regions (Frisoni et al., 2010;
Bateman et al., 2012). For PiB-PET scans, we expected to see
significant differences at bilateral parietotemporal, frontal and
posterior cingulate cortices (Langbaum et al., 2009; Villain et al.,
2012).

Multimodal Classification and Regression
Analyses
Kernels per modality were built from subject matched whole-
brain GM and PiB image scans (of 58 AD, 108 MCI, and
120 HE subjects), as implemented in PRoNTo.v2 (Schrouff
et al., 2013b). Kernels were simply the pairwise similarity
measures (dot product) between scan pairs per region (LaConte
et al., 2005). An anatomical automatic labeling (AAL) atlas
consisting of 90 ROIs was used to parcellate the regions (Tzourio-
Mazoyer et al., 2002). An optimized MKL technique called
‘‘simpleMKL’’ or sMKL was used to combine multiple kernels
of GM and PiB scans. The sMKL is an iterative method
that results in a smooth and convex optimization problem
(Rakotomamonjy et al., 2008). It works based on a weighted
`2-norm regularization and sparsity (of linear combinations of
the kernel) controlled by `1-norm constrains. This makes it
superior to other similar algorithms in terms of convergence
and efficiency. A whole-brain binary mask (provided by GLM
analysis of GMs) was applied to both data modalities. The first-
level masking discards all uninteresting features such as voxels
outside the brain.

A nested cross-validation (CV) with hyperparameter
optimization was used for assessment of the generalization
error (Marquand et al., 2010). For the inner loop, 10-fold
CV on subjects-per-group-out and for the outer loop, leave-
one-subject-out techniques were used. The 10-fold CV was
chosen for the inner loop since it had fewer folds and reduced
the computational time. The sMKL employs a binary SVM
for classification. We used a soft-margin hyper-parameter
optimization with the best configuration among C = 0.1, 1,
10 and 100. All the C values were tested using a 10-fold cross
validation (inner folds), then the best C value was used for the
outer loop.

To have an unbiased classification, kernels were
mean-centered and normalized) fi = (fi − f̄i)/σi, fi and
σ i are the mean and standard deviation of i-th sample,
respectively). This is due to fact that kernels can be computed
from samples with a different number of features (i.e., regions
with different numbers of voxels). A balanced accuracy

(BA) = 0.5× (CA1 + CA2), where CA1 and CA1 were accuracies
of class 1 and 2 was used to report the overall performance
(Schrouff et al., 2013c). Due to inherent imbalance data, we
also reported class accuracies. The AAL atlas was used to
construct the sMKL weight maps. The weight maps were the
spatial representation of the decision function that defined
the level of ROIs contributions to the classification process. In
addition to percentage contribution, expected ranking values
were computed for each data modality, indicating variability
(stability) ranking of the regions across folds (Schrouff et al.,
2013a).

Following the classification, an sMKL regression analysis
was applied to multimodal data to make predictions about
age, diagnosis and psychological (DeRecall) scores of subjects.
The regression accuracies were compared with individual
data, which were modeled by kernel ridge regression (KRR)
method (Shawe-Taylor and Cristianini, 2004). Similar to
classification process, a nested cross validation technique
was used to report the generalization error. Kernels were
mean-centered and normalized. To assess the goodness-of-fit
of the regression models the coefficient of determination (r2)
based on Pearson’s correlation was computed. Confidence
intervals (p-values) generated by non-parametric permutation
testing with 5000 randomizations were used to assure
low variability in the outputs of classification/regression
models.

RESULTS

Based on the ANOVA test, we identified eight features which
were significantly linked to AD progression. Specifically,
the ranking in terms of the highest significance to AD
progression was CDR, DeRecall, immediate memory
recall, MMSE, PiB-PET, GM-MRI, CSF-MRI and ApoE
genotypes (Figure 2). We henceforth based our study on
these relatively more significant features. In particular,
with regard to imaging data, we considered GM-MRI and
PiB-PET data modalities. By default, as a known key risk
factor for AD, we also included age in our (regression)
analyses.

GLM Analysis: Group Statistical Analysis of
MRI and PET Scans
Group t-statistics of GMs in AD-vs.-HE contrast revealed
significant changes in bilateral (left and right) subcortical
regions: hippocampus (t = 11.0 and 8.7), parahippocampus
(t = 7.0 and 9.5), fusiform gyrus (t = 10.8 and 10.34) as well as
in bilateral cortical regions: middle temporal gyrus (t = 8.1 and
7.8), inferior temporal gyrus (t = 7.1 and 6.7) and posterior
cingulate cortex (t = 7.4 and 6.8), as shown in Figure 3A.
Similar ROIs were found in the hippocampus, fusiform gyrus,
middle temporal gyrus and left posterior cingulate cortex
for another two contrasts of MCI-vs.-HE and AD-vs.-MCI,
but with lower t-values. Group t-statistics of PiB-PET scans
for AD-vs.-HE contrast suggested significant differences in
the majority of cortical regions e.g., parietotemporal, frontal
gyrus and posterior cingulate cortex (Figure 3B). As expected,
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FIGURE 3 | Group statistical differences of the group pairs for GM-MRI and Pittsburgh compound B-positron emission tomography (PiB-PET) volumes. The
rendered t-contrast maps obtained from unpaired two sample t-test factorial analysis of three group pairs, AD-vs.-HE, MCI-vs.-HE and AD-vs.-MCI for (A) GM and
(B) PiB scans.

similar ROIs were suggested by the results of the other two
contrasts and with lowest t-values for AD-vs.-MCI. This is
consistent with results from several previous works (Frisoni
et al., 2010; Nordberg et al., 2010; Hinrichs et al., 2011; Bateman
et al., 2012; Cohen and Klunk, 2014; Stam, 2014; Hafkemeijer
et al., 2015), and provides confidence in our subsequent
analyses.

Multimodal MKL Analysis Enhanced
Classification Accuracy
The sMKL was applied to multimodal GM-PiB of 58 AD,
108 MCI and 120 HE subjects. Figures 4A–D show scatter
plots (prediction per fold) and their corresponding histograms
of the function values obtained for the three contrasts. Note
that scatter prediction plot in Figures 4A–C represent the
predicted values (x-axis) against the real values or targets
(y-axis) values, whereas histogram plots in Figure 4D are the
smoothed density versions of the prediction plot that indicate
how the function values were distributed. The performance
curve with the frequency of selection of each hyper-parameter
is shown in Figure 4E. In our data, margins with the SVM
parameter C = 102 resulted in a stable model performance across

three classification problems. Promisingly, multi-modal analysis
yielded the balanced accuracies (BAs) of around 95% for all
three classification problems: 95.7% (CA1 = 93.3, CA2 = 98.2) for
AD-vs.-HE, 95.81% (CA1 = 91.6, CA2 = 100) for MCI-vs.-HE,
and 95.1% (CA1 = 97.2, CA2 = 92.9) for AD-vs.-MCI contrasts,
which with respect to single-modal analysis modeled by SVMwas
considerably higher (SVM for PiB scans yielded BAs of 79.59% in
AD-vs.-MCI, 90.07% in AD-vs.-HE, and 81.6% in MCI-vs.-HE,
and SVM for GM scans resulted BAs of 89.12% in AD-vs.-MCI,
92.48% in AD-vs.-HE, and 91.3% in MCI-vs.-HE). For ease of
comparison, the BAs obtained based on single- (GM or PiB) and
multi-modal (GM + PiB) analysis are summarized in Figure 4F
supporting the superiority of the multi-modal classification to
single-modal analysis.

Whole-brain model weights obtained by sMKL (per
region) from GM modality in the AD-vs.-HE contrast
suggested ROIs at left hippocampus (1.85% ROI weight
and 2221 voxels), right hippocampus (1.52%, 2296 voxels),
left posterior cingulate cortex (1.61%, 4364 voxels), right
posterior cingulate cortex (1.54%, 3557 voxels), right
parahippocampus (1.43%, 2557 voxels), left parahippocampus
(1.30%, 2344 voxels), left inferior occipital (1.22%, 2264 voxels),
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FIGURE 4 | AD classification by simple multi-kernel learning (sKML) using combined GM-PiB imaging data. (A–C) Prediction plots (per fold). The decision threshold
is displayed by a vertical line at the center of the plot. (D) Corresponding histograms of the function values of three groups modeled by sMKL. (E) Performance curve
depending on the hyper-parameter values (C = 0.1, 1, 10, 100) with frequency of selection of each hyper-parameter, for three binary classification problems. (F) A
summary of classification accuracies obtained by single and multi-modal data.

FIGURE 5 | Weight (per region) maps modeled by multi-kernel learning (MKL) using GM-MRI data. Rendered MKL weights on a template. The results from a single
modality GM-MRI data with an average of 75% contribution to (A) AD-vs.-HE, (B) MCI-vs.-HE and (C) AD-vs.-MCI classification problems. Weights for PiB-PET with
lower (25% or less) contribution are not shown.

as in Figure 5A. In addition, sMKL weights from PiB-PET
in the AD-vs.-MCI contrast suggested a bilateral temporal
gyrus (left with 2.5% and 120 voxels and right with 2.05%
and 132 voxels) and bilateral mid-frontal gyrus (left with
1.68%, 1206 voxels, right with 2.23%, 1100 voxels). The

ROIs detected during MCI-vs.-HE and AD-vs.-MCI were
analogous to that during AD-vs.-HE for each data modality,
but with relatively lower weight values (Figures 5B,C).
sMKL suggested a greater contribution by GM modality
(a contribution level of 74.6 ± 3.1 (mean ± SD) and
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FIGURE 6 | Predictions of diagnosis of individuals. A line prediction plot (predictions overlaid on targets) of diagnosis values of subjects derived from (A) GMs (B)
PiB-PET scans modeled by kernel ridge regression (KRR) method and (C) combined GM-MRI and PiB-PET data modeled by sMKL. Proximity of sample data to any
colored horizontal line denotes the likelihood of classifying under that particular diagnostic category associated with that line.

FIGURE 7 | Correlation of estimated diagnosis values (modeled by sMKL) with true DeRecall scores and age values. (A) Line plots of estimated diagnosis values
(similar to Figure 6C), (B) true DeRecall scores and (C) true age values. Dashed lines: outlier (transition candidates) samples. Down/upside arrows: correctly
detected transitions.

with an expected ranking of 0.9961 ± 0.3) than the PiB
modality (a contribution level of 25.3 ± 4.9 and with an

expected ranking of 1.99 ± 1.1) in classifying three groups of
subjects.
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FIGURE 8 | Predictions of three target values using single and multi-modal data. (A–C) Line prediction plot of delay memory recall scores. Individual GM an PiB
modeled by KRR while multimodal GM-PiB modeled by sMKL. The closer a particular predicted data (gray) to the targeted data (in green, red and blue), the better
the accuracy of sample data.

MKL Multi-Modal Analysis Improves
Prediction Accuracy
The sMKL regression analysis applied to combined GM and
PiB scans provided a correlation of r2 = 0.86 (p < 0.01) for
the estimated diagnosis values, an improved prediction accuracy
with respect to data based on individual participant (r2 = 0.72,
p < 0.01 using GM and r2 = 0.61, p < 0.01 using PiB,
modeled by KRR), as in Figure 6. Yet, we noticed some outliers
in the predicted values or mispredicted samples (Figure 7A).
Interestingly, 3/4 (2 MCI to AD and 1 MCI to HE) of MCI
converters, 1/2 (AD to MCI) of AD converters and 1/4 (HE
to MCI) of HE converters were correctly identified by the
regression model. We hypothesized that the samples expected to
be identified as HE but with predicted values closer to MCI had
lower DeRecall scores than the average of the expected group
i.e., HE. Conversely, the sample expected to be MCI but with
estimated values closer to HE had cognitive scores relatively
higher than the average of theMCI group. To test this hypothesis,
we examined Pearson correlation between estimated values and
their corresponding non-categorical variables, DeRecall and age
values. We found a significant correlation between the estimated
diagnostic values and the DeRecall scores (r2 = 0.62, p < 0.01),
but no (significant) correlation with age values (r2 = 0.01, p = 0.7),
as in Figures 7B,C.

Finally, DeRecall scores were modeled by the sMKL
regression for the combined GM-PiB data. Results were
compared with a KRR regression model for individual modality
data, GM and PiB (Figure 8). Themultimodal analysis and sMKL
provided the best regression accuracy for all three target values
with r2 = 0.53 for DeRecall. This is compared to the lower values
obtained from the individual modality data and KRR analysis
with r2 = 0.46 and r2 = 0.36 for the DeRecall, using PiB and GM,
respectively.

DISCUSSION

In the current work, we have applied a machine-learning
framework based on multimodal analysis for AD classification
and prediction of the AIBL data. Crucially, we utilized the

Dartel algorithm to enhance coregistration of structural
MRI and PET scans while the MKL technique combines
complementary data information from different modalities
to improve AD classification and prediction (Ye et al., 2008).
In particular, we combined GM and PiB data from the
AIBL dataset. At least for the AIBL data, our integrated
Dartel-MKL multimodal approach revealed a very high
classification accuracy (>95%) for the three binary diagnostic
classification problems (Figure 4). Importantly, it could
potentially predict the diagnosis of individuals, and their
potential transition across diagnostic categories in the future
(in 18 months or later), although more data are required to
confirm this.

Although previous works have successfully tested the Dartel
algorithm for AD classification in combination with MKL,
there is no work that has tested on the AIBL data. Further,
it was applied to only structural data (Cuingnet et al., 2011).
Using voxel-based or cortical thickness features extracted
from combined GM, WM and CSF, a classification rate of
up to 81% sensitivity and 95% specificity was achieved for
four groups of subjects including AD, MCI converters, MCI
non-converters and HE. However, compared with GM alone,
including all tissue maps provided slight improvement in the
classification performance. In our work, we selected GM features
as representative of the structural data, supported by the
ANOVA test (Figure 2). Moreover, we included PET (PiB)
scans to complement the analysis and improve the quality
of diagnosis. In another work that used voxel-based features
of GM and FDG data, an average classification accuracy of
94% was achieved for three groups of subjects including AD,
frontotemporal lobar degeneration and control subjects (Dukart
et al., 2011). However, the features used in their multimodal
analysis were directly concatenated into a long feature vector
and not formally combined. Importantly, the concatenation
can increase the dimensionality of the feature space, making
the classifier unstable and lead to overfitting. In contrast,
MKL provides a unified way to combine heterogeneous data
when different types of data cannot be directly concatenated.
In addition, it provides more flexibility by using different
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weights on biomarkers of different modalities (Shen et al.,
2014).

Our whole-brain investigations on group statistical
differences using GMs and PiB scans (Figure 3) suggested
MRI and PET changes in the regions that are known to be
affected by AD e.g., temporal gyrus, (para)hippocampus, lingual
gyrus, thalamus, posterior cingulate cortex and amygdala,
consistent with previous findings (Frisoni et al., 2010; Nordberg
et al., 2010; Hinrichs et al., 2011; Bateman et al., 2012; Cohen
and Klunk, 2014; Stam, 2014; Hafkemeijer et al., 2015). Our
MKL and multimodal analysis provided a high regression
accuracy (r2 = 0.86) for AD classification (Figures 6, 7), as
a rough measure of multi-class separation. We found high
negative correlations between the estimated values and a
well-known cognitive test score, DeRecall, with r2 = 0.62
(Figure 7B). However, we found no significant correlation
(r2 = 0.02) between the estimated diagnostic category and
age (Figure 7C). Importantly, those correlations can justify
the sample outliers provided by the regression model. For
example, samples that were expected to be identified as
HE but estimated with values close to MCI, their DeRecall
score were relatively lower than the average of the target
group. Conversely, samples expected to be MCI but with
estimated values closer to HE their cognitive scores were
relatively higher than the average of the expected group values
i.e., MCI (Figure 7A). These findings suggest that the proposed
framework could potentially help in predicting individual
baseline diagnoses and likelihood of stability or conversion.
Future work will test this on a larger dataset or on follow-up
analysis.

Another multimodal classification method, different from the
MKL method, called multimodal support vector classification
(SVC) had been introduced as a simple and effective way of
combining various data sources (Zhang et al., 2011). Feature
selection (not optimization) was performed under a coarse-grid
searching via cross validation. Tested for combined GM, FDG
and CSF biomarkers from the ADNI data, a high classification
accuracy (93.2%) for AD-vs.-HE but a relatively low accuracy
(76.4%) for MCI-vs.-HE subjects were achieved. In this work,
the features were simply the volume of GM tissue and average
intensity of FDG scans in 93 ROIs added with features from
CSF biomarkers, i.e., a total of 93 + 93 + 3 features for
each participant. In general, region-based features were more
intuitive and suitable for post hoc analysis. However, cross
similarities of the samples were indirectly generated by a (linear
or Gaussian) kernel function. In comparison, the values of
the similarity matrix were coarser, representing whole-brain
activities, but directly account for the interactions among
samples. Nevertheless, for a better evaluation, future work should
compare the performance of two SVC and MKL methods under
two region-based and whole-brain strategies, using a similar
dataset e.g., ADNI or AIBL.

An extension of SVC called support vector regression
(SVR) under a multi-modal multi-task learning (M3T) was
introduced (Zhang and Shen, 2012). It was tested on the
ADNI dataset (similar to Zhang et al., 2011) and provided
improved correlations between biomarkers from multimodal

data (GM + FDG + CSF) and MMSE (r = 0.69) and
AD assessment scale-cognitive subscale (ADAS-Cog) score
(r = 0.73), with respect to individual data. In comparison,
our sMKL method applied to GM + PiB provided higher
correlations between kernels and psychological test scores
(r2 = 0.62 for DeRecall). Again, for a better evaluation,
future works should compare the two methods under similar
conditions and over a similar dataset. Another multimodal
approach for AD classification is a classical multidimensional
scaling (to generate joint embedding) and random forest-
based algorithm (for classification), which was tested on four
different modalities including MRI, FDG-PET, CSF biomarkers
and categorical genetic information in the ADNI data (Gray
et al., 2013). It would perhaps be worthwhile to more closely
compare this method with the MKL and multi-kernel SVM
methods.

In our study, PiB-PET scans were masked with a whole brain
template where only non-informative features from outside the
brain were discarded. However, it is known that brain tissues
(GM, WM and CSF) can have different uptake patterns (Klunk
et al., 2004). Hence this is clearly a limitation of our method.
As a solution, an additional normalization, standardized uptake
value ratio (SUVR) has been suggested (Raniga et al., 2008;
Dore et al., 2012). Under PiB-SUVR normalization, uptake
values are normalized by the mean uptake value within a
region containing nonspecific binding e.g., cerebellar gray matter
(Perani et al., 2014). This leads to better inter-subject variability,
suitable for group analysis. However, this normalization requires
a careful (tissue) segmentation and brain parcellation. In
future work, this will be incorporated as an extension to our
current framework to improve performance of the multimodal
analysis.

Our study can also be extended in two aspects. First,
due to a high level of accuracy offered by our multimodal
analysis, subtle changes (mild symptoms) that are evident at
an early stage of the disease can be investigated (Davatzikos
et al., 2011). This may eventually improve the diagnostic
quality. Second, as significant correlation was found between
imaging measures with known psychological test scores such
as DeRecall, incorporating such features into the machine-
learning framework (Figure 1) may potentially further improve
the diagnosis. This can be achieved as a contributing (weight)
factor for the decision function of the (SVM) classifier
or as an independent data modality, similar to the CSF
biomarkers in Zhang et al. (2011) to enhance the multimodal
analysis.

To conclude, our work has shown that a proper combination
of Dartel and sMKL methods applied to the multimodal
neuroimaging data in AIBL can substantially improve the
classification of AD of not only group samples but also
individual samples. There is also a potential application
for predicting individual conversions. Hence, this could
likely lead to direct clinical applications, for example, in
the form of a clinical decision support tool. Our work
provides further support in favor of machine learning,
particularly MKL-based, approach in improving the diagnosis
and risk prediction of AD. The computational approach
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is also sufficiently general to allow incorporating other
e.g., non-imaging data features to further improve the
performance.

SOFTWARE NOTE

Part of the implementation (preprocessing, DARTEL and
MKL analyses) have been unified under a publicly available
MATLAB graphical user interface, named Software Integrating
NEuroimaging And other Data (SINEAD) accessible at
github.com/vyoussofzadeh/SINEAD_tool.
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