
Smart Home Simulation using Avatar Control
and Probabilistic Sampling

J. Lundström ∗, J. Synnott †, E. Järpe ‡, C.D.Nugent †
∗Intelligent Systems Laboratory, ‡Department MPE Halmstad University, Box 823, S 301 18 Halmstad Sweden

{jenlun, erja}@hh.se

†School of Computing and Mathematics, University of Ulster, Jordanstown, Shore Road, Newtownabbey, Co. Antrim BT37 0QB
{j.synnott, cd.nugent}@ulster.ac.uk

Abstract—Development, testing and validation of algorithms
for smart home applications are often complex, expensive and
tedious processes. Research on simulation of resident activity
patterns in Smart Homes is an active research area and facilitates
development of algorithms of smart home applications. However,
the simulation of passive infrared (PIR) sensors is often used in a
static fashion by generating equidistant events while an intended
occupant is within sensor proximity. This paper suggests the
combination of avatar-based control and probabilistic sampling
in order to increase realism of the simulated data. The number
of PIR events during a time interval is assumed to be Poisson
distributed and this assumption is used in the simulation of Smart
Home data. Results suggest that the proposed approach increase
realism of simulated data, however results also indicate that
improvements could be achieved using the geometric distribution
as a model for the number of PIR events during a time interval.

I. INTRODUCTION

There is currently a global trend towards population ageing.
This is as a result of several factors including an increase in
life expectancy combined with a reduction in fertility levels.
The population of older adults aged 60 or over is predicted to
increase from the 600 million recorded in 2000 to 2 billion by
2050. The fastest growing portion of the older adult population
is those aged 80 and over, who accounted for 1 in 7 of older
adults in 2009 and are predicted to increase to account for 1
in 5 older adults by 2050 [1].

An increase in life expectancy is a positive situation,
however the increased proportion of older adults poses a
challenge for the sustainability of adequate healthcare provi-
sion. As the prevalence of such conditions increases, so will
the demand on resources. Intelligent Environments, and in
particular Smart Homes, are seen as a potential solution to ease
the predicted burden on healthcare resources by facilitating
ageing in place, ambient assisted living and the provision of
objective healthcare metrics.

The development, testing and validation of algorithms for
human activity modelling and deviation detection in smart
homes are often complex, expensive and tedious processes.
There are many factors to consider, including sensor accuracy
and placement, in addition to the complexity of residents’
behaviour. Performances of activities of daily living (ADLs)
may consist of many different valid combinations of steps. A
recent study with simulator IE Sim demonstrated a constrained
ADL graph limiting the process of preparing a cup of tea to

8 possible combinations of steps, although in reality there are
far more [2].

Access to comprehensive sensor datasets is required in or-
der to facilitate the development, testing and validation of new
models and algorithms. However, access to such datasets is
limited for several reasons. As with any physical environment,
Intelligent Environments and Smart Homes are expensive to
construct, requiring a significant investment of resources in
terms of time for planning, space, and cost for construction.

The use of Intelligent Environment simulation software
can ease these limitations, allowing researchers to create vast,
diverse datasets. The use of simulators enables researchers and
developers to test software elements early in the process, e.g. to
test a deviation detection algorithm’s ability to detect a person
falling in a smart home. For such simulations to be useful the
output data should show a high correlation to data collected in
a real-life setting. The use of simulation software during the
design phase of a novel approach is likely to result in more
robust and inclusive designs [3].

It is not common for current simulators to specify details
(i.e. arms and legs movements) on how the human moves
with respect to the PIR sensors on a level of activity or
time, or both. However, simulators such as IE Sim [2], let the
software user control an avatar in a 2D environment. Moreover,
a 2D perspective of an activity where the avatar is eating
breakfast is visualised as an avatar with a fixed position and
renders no PIR events (or simulates events at a fixed rate).
This could be a problem when such motion data is crucial for
the tested algorithms, e.g. for anomaly detection algorithms.
Therefore, in this paper the avatar controlled approach of IE
Sim is combined with estimation of human motion in rooms,
in the goal to produce more realistic data sets. The approach
is evaluated using a small study where similarities between
simulated and real data (from a specific scenario) are analysed.

II. BACKGROUND AND RELATED WORK

Systems for detecting deviating activity patterns is one ex-
ample of smart environment applications, which is in particular
limited to smart homes. The methods of such applications
are based on ubiquitous computing which is a concept of
integrating computers into everyday life in order to facilitate
the modern life of humans, a concept coined by Weiser nearly
three decades ago [4]. Ubiquitous computing also involve
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computers able to adapt to the environment by sensing various
features, e.g. by sensing location. Realisations of the concept
can be found in the research area of Intelligent environments
which includes examples of smart homes [5], class rooms [6],
and cities [7].

An example from academia is the large scale intelligent
environment at Ulster University, which encompasses a home-
like environment including a sensor equipped kitchen, living
room and a meeting room. The environment, which is used
to facilitate research and is used in synergy with developed
simulator tools, is equipped with a range of sensor technologies
including X10 and Tynetec PIR, contact, chair pressure and
floor pressure sensors [8].

Another example is the technology demonstrator developed
at Halmstad University, which is a portable smart home of 10
m2 size that let researchers test sensors, sensor placement,
algorithms and scenarios. The space is especially used for
testing anomaly detection algorithms and is used as a bridge
between simulations and real-life measurements. Moreover,
currently six elderly residents that live in their own home in
Halmstad, Sweden, have sensors and data logging equipment
installed in order to log their normal activity patterns. The
long-term goal is to develop algorithms which could detect
potentially dangerous situations. Despite the ongoing data
collection, realistic simulation data is required to facilitiate the
research process (e.g. by focusing on specific deviating event
patterns).

There are a number of existing related works exploring
the use of virtual environments to generate simulated datasets.
Buchmayr et al. (2011) [9] created a simulator involving the
use of floor plans that facilitated sensor interaction through
mouse clicks. Poland et al. (2009) [10] and McGinn et al
(2010) [11] created simulation tools which faciliated inter-
action with 3-dimensional environments through the use of an
avatar. Synnott et al. created IE Sim [2], which was created to
expand upon previous works in the area by facilitating rapid
creation of 2D floor plans, with the ability to create new objects
and sensors for use within an environment. This approach,
which generates data in the HomeML format, is the target of
expansion in this paper.

III. PROPOSED APPROACH

To increase realism it is proposed to combine the interactive
avatar-based approach with probabilistic modelling of PIR
sensors. This section describes each of the components and
the proposed combination thereof.

A. Modelling number of PIR events by the Poisson distribution

The events generated by an PIR sensor could be grouped
in bins over different times of the day. Consider bin bi which
is defined by the start and stop times ti, ti+l where l denotes
the width of the bin, in time. Moreover, the sum of all events
which occur in bi is denoted as xi. Given multiple observations
of xi (e.g. the number of events occurring between seven and
eight AM during 30 days) we assume that xi is the realisation
of the random variable Xi which is distributed according to
some arbitrary distribution. It is reasonable to assume that Xi

is Poisson distributed due to some properties of xi: being non-
negative due to the count of number of events.

The Poisson distribution is governed by a single parameter,
λ (expected number of events during a time period), which
controls both expected value and variance, as seen in the
Poisson probability density function:

P (X = x) =
λx exp−λ

x!
(1)

For a certain time period ti we estimate λi by taking the
sample mean of all events xi which occur in bins during time
period i. Hence, it is possible to generate realisations of the
Poisson distributed PIR events using the estimated λ values.
Other authors have suggested to model Smart Home data by
similar assumptions based on the Poisson distribution [12].

To generate PIR events, the inter-arrival time between two
successive events is randomly drawn from the the exponential
distribution, which is a distribution explaining the elapsed time
between events and is also governed by the λ parameter.

B. Modelling interaction using IE Sim

IE Sim [2] was developed in line with Buchmayr et al.s
recommendations for the functionality of a simulator designed
for the generation and visualisation of sensor data [9].
These recommendations include several essential requirements
including environment creation, sensor creation, error simula-
tion, real-time data synthesis and real-time visualisation. IE
Sim facilitates the creation of simulated environments through
the use of an object toolbox. This object toolbox provides
a range of structural objects (including rooms and walls),
household objects (including furniture and appliances such as
sofas, chairs, televisions, kettles, microwaves etc.) and sensors
(including PIR, door contact, humidity, light etc.). Users can
select objects required in the environment and drag them into
an environment workspace to create an interactive floor plan of
the environment. The properties of any objects and sensors can
be adjusted, including position, orientation, size, name and ID.
For interactive objects such as doors and appliances, properties
such as the interaction range can be adjusted. Additionally,
properties of the data generated by sensors may be adjusted,
such as the data values generated, the detection range and
the frequency of data generation. IE Sim promotes flexibility
by supporting the creation of new objects or sensors using
an intuitive user interface. User-created environments can be
saved in XML format for distribution.

Interaction with environments is facilitated through the
use of an avatar-based approach. The software interface is
easy to use and is designed for non-technical users through
an intuitive user interface and intuitive avatar controls. This
approach involves the use of the arrow keys to navigate an
avatar throughout the environment. The implementation of
realistic collision detection ensures the user must navigate
the avatar around objects such as furniture, and interact with
objects such as doors in order to access various areas of the
environment. Interaction with the environment is performed
either passively or actively. Passive interaction includes the
firing of PIR sensors when the avatar is within the PIR sensors
field of view, or the firing of a pressure sensor when the avatar
makes contact with it. Active interaction involves the use of
a context menu which updates to provide interactions options
(e.g. Open door, Close door) once the avatar is within range
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of an interactive object. IE Sim supports the adjustment of
simulation time, facilitating the generation of datasets spanning
large amounts of time. For example, activity recording can
be completed in real-time when simulating detailed ADL
performance, and can then be fast-forwarded during longer
periods of low activity, such as sleeping.

This interactive avatar-based approach has the advantage
of facilitating the recording of detailed, fine-grained activity
performances. The user has complete control over when and
where activities occur, in addition to the exact order of events
in ADL performance. For example, IE Sim has been shown to
facilitate the recording of the steps involved in the making a
cup of tea activity, including valid and invalid activity perfor-
mances. The approach also facilitates the recording of activity
interruptions, such as a user completing some of the steps of
an activity before leaving the room to answer the telephone
and then returning to complete the activity. The ability to
record such detailed activity performances while generating
associated sensor data can facilitate the generation of detailed
sensor datasets for use within a range of applications.

C. Combining IE Sim and probabilistic sampling

Previous versions of IE Sim produced PIR data generated
at fixed intervals, as determined by the Frequency parameter.
Our proposed approach was to combine the Poisson distribu-
tion modelling approach with IE Sim for the production of
more realistic datasets. This augmentation was implemented
by adding a parameter file containing estimates of λ during
various time periods to the virtual PIR sensor class.

A PIR sensor becomes active when the avatar enters the
field of view (FOV) of the sensor. While a sensor is active,
the TotalTimeActivated property of that PIR sensor updates to
track the duration of time that the avatar is within the sensor’s
FOV. Once the avatar leaves the FOV of the sensor, or if the
simulation is ended, the data for the active period i is retro-
spectively generated by sampling inter-arrival times from the
exponential distribution using λi. This data generation process
involves iterating through the active time and comparing the
simulated time to the associated lambda values.

IV. EXPERIMENTAL SETUP

A virtual representation of a sensor equipped home of an
elderly resident in Halmstad, Sweden, was created using the
IE Sim software. This was based on an architectural floor plan
of the environment, which facilitated the precise replication
of room layout and dimensions, in addition to the placement
of objects and sensors within the environment. The real-world
setup contains six PIR sensors, eight door switch sensors and
one bed sensor each thoroughly tested when installing to get
the desired output. However, for the sake of simplicity only
a subset of the sensors (nine sensors) is contained in this
experiment. The virtual environment is shown in Figure 1.
In this example, the avatar (D) is located in the bedroom. The
bedroom and hallway PIR (C) sensors are both generating PIR
events as they are detecting the avatar’s presence, indicated by
a red glow. Inactive PIR sensors (A) are represented as a white
colour.

A scenario was selected as it represented common activities
recorded in the Halmstad dataset, and thereby manually picked

from the collected data. The scenario was based on typical late
night and early morning routines.

Estimations of λ for five time periods were computed
from 72 days of data, dataset D1, collected in the home
of the elderly resident. Only occasions when at least one
PIR event was measured were used in the lambda parameter
estimation, hence the estimation is based only on when the
resident was in the sensor proximity. The scenario was selected
from additional 74 days of data, denoted D2. The project
and data collection was granted an ethical approval by the
regional ethical review board and the resident signed a written
consent. Further, events generated by the visiting night patrol
were automatically removed from the data before estimating
λ using sensors installed at the front door.

Bias was eliminated by ensuring the recording of the
scenario was performed by a user who had no familiarity
with the Halmstad dataset, the behaviour of the inhabitants,
or the environment other than the floor plan. The scenario
was presented to a single user as a series of timestamped
instructions and locations. The following example contains the
instructions for the scenario:

1) Stay in bed until 07:45:00, thereafter go towards
bathroom (07:47:30).

2) Spend time in bathroom (with door open) until
07:49:30.

3) Go towards living room starting 07:49:30.
4) Spend time in living room until 07:51:10, thereafter

go to bathroom.
5) Spend time in bathroom until 08:11 (with door open).
6) At 08:11 go back to the kitchen and spend time at

the table until 08:14:00.
7) Use trashcan and spend time by the trashcan until

08:17:00.
8) Use trashcan.
9) Go back to the table and spend time there until 08:34.

10) Use trashcan (shortly after 08:34).
11) Go back to the table and spend time there until

08:45:00.

Fig. 1. The virtual environment. (A) An inactive PIR sensor, (B) the
refrigerator with a door contact sensor (as well as a door contact sensor
installed at the trashcan door), (C) an active PIR sensor, (D) the avatar, (E)
an inactive bed pressure sensor
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A. Evaluation of simulated data

The estimated values of λ using D1 and D2 are compared
in short intervals of two minutes in order to investigate
parameter stability for 146 days. Further, simulation and col-
lected real-world data of the scenario is investigated by visual
inspection and by computing a similarity score using Dynamic
Time Warping (DTW) [13]. To let DTW compute the similarity
score, the simulated sequence and real-world sequence were
converted to a one-dimensional discrete signal where each level
represents a unique sensor activation. Moreover, DTW requires
a distance function which defines the distance between two
observations. Therefore a distance function designed to allow
for physical proximity, or overlap of FOV, of sensors was used
(e.g. the PIR sensors in kitchen and living room could be
triggered by the same human movement).

V. RESULTS

To study how the rate of PIR events change during the
day for D1 and D2 the sample mean of two minutes inter-
vals is plotted in Figure 2 and Figure 3. Solid and dashed
lines illustrate D1 and D2 respectively. It can be seen that
movement in the bedroom (in green) increases after wake-up
time (approximately at 8 am) which is followed by activity
in kitchen (in black). Moreover, the two datasets D1 and D2

separated in time closely relates to each other which shows the
consistent behaviour patterns over the two time periods. This
is also shown for the PIR sensors in the living room (in blue)
and bathroom (in red), see Figure 3.

02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:000
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λt

t

Fig. 2. Estimated λ over intervals of two minutes for bedroom (green) and
kitchen (black) for D1 (solid line) and D2 (dashed line) over time t.

The consistent but daily-varying rate of PIR event, λ,
during the day also suggest that different time periods during
the day should be simulated using different number of PIR
events.

The bedroom PIR sensor is in particular interesting for
healthcare applications and the simulation capability is further
analyzed in Figure 4. The plot shows the simulated (λs) and
real-world (λr) sample mean of the number events during
scenario, calculated using a 15 minute intervals. For low
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Fig. 3. Estimated λ over intervals of two minutes for livingroom (blue) and
bathroom (red) for D1 (solid line) and D2 (dashed line) over time t.

intensities of λ the correlation is better than for high rates
which shows an underestimation. The Spearman correlation
coefficient and p-value for λs and λr was r = 0.72 and
p < 0.01.

0 2 4 6 8 10 12
0

5

10

15

20

λr
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Fig. 4. Sample mean of the bedroom PIR event rate during the scenario for
simulated (λs) and real data (λr).

The last two hours of simulation data and real-world col-
lected data for the scenario is shown in Figure 5 and Figure 6
respectively. Rows indicate a specific type of sensor event (bar
is a PIR event, arrow down/up is door opening/closing event,
and square is a bed exit event) for the different sensors used.

During time period from 06:35 to 07:45 the resident is
still in bed. Clearly for the latter part of this time period
there is an underestimation in the number of bedroom PIR
events, S5, (just before the resident leaves the bed). This
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S1
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time
Fig. 5. Simulated events generated for a scenario (during a single day) where
(bar is a PIR event, arrow down/up is door opening/closing event, and square
is a bed exit event for the sensors PIR in kitchen (S1), livingroom (S2),
hallway (S3), corridor (S4), bedroom (S5), bathroom (S6). Door sensor at
trashcan in kitchen (S7) and pressure sensor in bed (S8).

increase of intensity is most likely context specific and is
therefore something that sensors did not capture. Hallway and
corridor sensors did capture transitions between the larger
rooms of bedroom and living room. However, the period spent
in bathroom during 07:55 and 08:05 is mainly captured by
the corridor sensor outside (see S4 in Figure 6) which is not
captured by the simulator.

S1

S2

S3

S4

S5

S6

S7

S8

time
Fig. 6. Events from sensors installed in a real home for the specific scenario
(during a single day) where (bar is a PIR event, arrow down/up is door
opening/closing event, and square is a bed exit event for the sensors PIR
in kitchen (S1), livingroom (S2), hallway (S3), corridor (S4), bedroom (S5),
bathroom (S6). Door sensor at trashcan in kitchen (S7) and pressure sensor
in bed (S8).

From Figures 5 and 6 an underestimation of λ for S1 and
S2 during the time period 08:15-08:35, can be seen. This is
also captured by the DTW similarity measure, Figure 7.

06:35 06:45 06:55 07:05 07:15 07:25 07:35 07:45 07:55 08:05 08:15 08:25 08:35
0.00

0.01
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0.03

0.04

0.05

cost

time
Fig. 7. Computed cost (using the DTW algorithm) of the similarity for
two-minute intervals (sliding window) plotted from 06:35 to 08:35.

The apparent underestimation suggests that higher values
of λ is not well aligned with the Poisson distribution. Therefore
an alternative was considered, the geometric distribution. This
distribution was tested for a goodness of fit using D1 by
adopting a series of χ2-tests. The PIR data for kitchen, living
room, bedroom and bathroom was used, see Table I.

TABLE I. GOODNESS OF FIT FOR GEOMETRIC DISTRIBUTION USING
EXPECTED VALUE ESTIMATION FROM THREE MONTHS OF DATA, D1 . TIME

PERIODS ARE t1 (00:00-07:00), t2 (07:00-07:30), t3 (07:30-08:00), t4
(08:00-08:30) AND t5 (08:30-09:00).

χ2/p-value t1 t2 t3 t4 t5

Kitchen 1.02/0.58 0.67/0.70 0.31/0.90 0.45/0.81 18.61/0.0005
Living room 0.91/0.65 0.10/0.96 3.14/0.21 2.32/0.29 45.4/0.0005

Bedroom 1.63/0.46 2.00/0.36 1.19/0.57 4.24/0.12 0.73/0.71

Bathroom 3.03/0.25 3.59/0.17 2.07/0.35 2.54/0.26 2.64/0.28

Majority of the computed values of χ2, were below the
critical-value (5.99), and almost all p-values above a five
percent significance level. This means that the null hypothesis,
suggesting that the data is consistent with the geometric
distribution, can not be rejected for most of the goodness of
fit tests.

VI. CONCLUSIONS AND DISCUSSION

This paper presents a novel approach to simulate smart
home data using a combination of avatar-based control and
probabilistic sampling. The proposed approach was tested by
simulating data from a scenario acquired from real-world data,
and then comparing similarities of simulated and real data.

It can be concluded that the average PIR rate of events do
follow a regular pattern of the two datasets studied for 146
days. This is encouraging as the proposed approach is based
on λ estimates of different PIR sensors.
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For low PIR event rates there is reason to believe that
the approach is successful. However, for higher rates the
probabilistic sampling is underestimating the PIR event rate.
This could probably be due to the thin tails of the Poisson
distribution, which seems reasonable due to the high goodness
of fit with the geometric distribution (which has a thicker tail).

Few conclusions on the results of DTW can be taken.
This is due to fact that inactivity (no sensor activity) is
overrepresented in the data and therefore makes the result
difficult to interpret. However, the average cost level can
provide information about the general similarity.

VII. FUTURE WORK

Future work includes testing the proposed approach using
more scenarios. Moreover, further work on using a sam-
pling function which relates to the inter-arrival times of the
geometric distribution is also considered. A study on how
the simulated data affects activity recognition and anomaly
detection algorithms is also planned as future work.
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