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Abstract.  Metagenomics is one of the most prolific “omic” sciences in the                   

context of biological research on environmental microbial communities. The 

studies related to metagenomics generate high-dimensional, sparse, complex, and 

biologically rich data-sets. In this research, we propose a framework which                  

integrates omics-knowledge to identify suitable-reduced set of microbiomes                          

features, for gaining insights into functional classification of the metagenomic                      

sequences. The proposed approach has been applied to two Use Case studies, on: 

1) cattle rumen microbiota samples, for differentiating nitrate and vegetable oil 

treated feed, for improving cattle performance, under MetaPlat H-2020 Project1, 

and 2) human gut microbiota and classifying them in functionally annotated                    

categories of leanness, obesity, or overweight. A high Accuracy of 97.5 % and 

Area Under Curve performance value (AUC) of 0.972 was achieved for classi-

fying Bos taurus, cattle rumen microbiota data samples using Logistic Regres-

sion (LR) as classification model as well as feature selector in wrapper based strat-

egy for Use Case 1 and 94.4 % Accuracy with AUC of 1.000, for Use Case 2 

on human gut microbiota. In general, LR classifier with Wrapper- LR learner (with 

ridge estimator) as feature selector, proved to be most robust in analysis.  

Keywords: Metagenomics, OTUs (Operational Taxonomic Units, Phylogeny, 

Machine Learning (ML), Classification 

1 Introduction 

Metagenomics involves the study of gene sequences of microorganisms derived 

directly from the natural environment such as air, water, human or animal body, and 

soil etc., following a culture-independent approach [1]. In the past few years, this field 

                                                           
1MetaPlat (http://www.metaplat.eu) is a 4-year project funded by European Horizon H2020-MSCA-RISE-

2015 
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has gained prominence due to important projects such as the Human Microbiome                   

Project(http://hmpdacc.org/), Earth Microbiome Project (http://www.earthmicro bi-

ome.org/) , and American Gut Project(http://americangut.org/), and due to unprece-

dented advances in low cost DNA isolation and sequencing strategies such as high 

speed throughput Next-Generation Sequencing (NGS) over the traditional Sanger               

approach [2, 3]. Several studies have shown relations between microbial diversity and 

host phenotypes. For example, human microbiome is related to various diseases such 

as diabetes (Type 1 and Type 2), Inflammatory bowel disease (IBDCrohn's Disease or 

Healthy), Obesity (Obese, lean, overweight), and cancer etc. [2, 4]. Belanche et.al. [5] 

recently studied the impact of supplementing Grass Hay with Vitamin A on rumen mi-

crobiome and its function. Roehe et al. [6] found that host genetics is shaping the rumen 

microbiome influencing methane production and feed conversion efficiency in cattle.  

Metagenomic studies follow a typical metagenomic pipeline consisting of various 

stages including, gene sampling, sequencing, assembly, binning, taxonomic assign-

ment, functional data analysis, and data sharing [7]. The binning of sequences gener-

ates Operational Taxonomic Units (OTUs)/taxas. OTU abundance count, relations                             

between OTUs (phylogeny) and sample microbe-microbe interactions contribute                            

effectively in analyzing metagenomic functional roles. Current computational chal-

lenges along the metagenomic pipeline concern data management, processing, and 

analysis of metagenomics datasets. These are due to key characteristics of metagenomic 

data, being massive, high dimensional, sparse, heterogeneous, incomplete, highly-

skewed, and noisy [8, 9]. Emergence of NGS, has resulted in a gap between the pace 

of data generation and its analysis [3]. The variance in OTU abundance count also does 

not follow a normal distribution, and pose statistical challenges [9]. Considering these 

challenges, we propose an integrative approach, combining omics and data analytics to 

identify functional roles of metagenomic datasets. This is achieved by identifying a 

subset of OTU features which offer optimal predictive modelling built upon various 

Machine Learning (ML) classification algorithms. Selecting a subset of relevant OTU 

features for ML models is expected to entail improvement in performance. 

2 Materials 

The study involves analysis over two Use Case datasets; i) B. taurus (cow) rumen                  

microbiota dataset and ii) human distal gut microbiome dataset. The B. taurus micro-

biota plays an important role in cattle productivity, health, and immunity. To investigate                    

B. taurus gut microbiota in the context of these environmental traits, it’s community 

composition was determined in 40 case samples provided by the MetaPlat project1. The 

data consist of 20 samples from an oil based treatment and 20 samples from a nitrate 

based treatment to reduce methane emissions. 5 OTU tables, with different taxonomic 

levels (Phylum to Genus) of classification, were generated in QIIME by NSilico 

(http://www.nsilico.com/). The tables consist of 27, 52, 101, 194 and 386 OTU feature 

vectors for phylum, class, order, family, and genus levels respectively. The dataset un-

der consideration for second Use Case was obtained from a study on the human gut 

microbiome in obese and lean twins conducted by Turnbaugh et.al. [4]. To address the 

http://hmpdacc.org/
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factors related to obesity and genotypes, the study considered the microbiome of twin 

pairs and their mothers using 16s rRNA genes. The dataset consists of 18 microbiome 

samples, 756 OTU species and 3 classes (lean, obese, overweight) for analysis.  

3 Methodology 

This research was performed using NGS-16S genomic datasets listed in Section 2. OTU 

tables (Biological Observation Matrix), consisting of raw abundance counts, were ob-

tained using the QIIME(http://qiime.org/) or CloVR-metagenomics pipelines (http:// 

data.clovr.org/d/10/obese-lean-twin-gut-metagenome-output) [10]. The samples also 

associated meta-data describing their relationship with environmental traits. The OTU 

tables were pre-processed and transposed to fit to ML models. To maximize the perfor-

mance of our experimental design, we followed an integrated workflow (as depicted in 

Fig.1.), focusing on two major steps: (1) selecting a suitable feature selection method 

and (2) selecting an appropriate learning classification functional model over selected 

features in Step (1), by evaluating its performance.  

3.1 Feature Selection 

Feature selection methods remove irrelevant and redundant features. The process                 

primarily consists of two main steps: - i) feature subset search and ii) feature subset 

evaluation. We employed Best First Search (BFS) and Ranker’s Method (RM) as fea-

ture search strategies [11], to the OTUs at various taxonomical levels. BFS is based on 

back-tracking the search path for finding OTU subsets till prominent results are attained 

whereas in RM, OTU features are ranked by their individual evaluations over selection 

metrics like associated weights, entropy, etc. on a user defined threshold. The features 

exceeding a threshold defined by user are selected for further analysis. The default 

value of threshold is set to -1.79769 in our analysis.  

The next differentiating factor after subset search, is to evaluate the attained subsets 

for application of ML models. The evaluations are typically inspired from two catego-

ries: i) filter based techniques (FFS), in which function evaluates the worth of features 

by heuristics over general characteristics of OTU data or ii) wrapper based (WFS) tech-

niques which evaluates the worth by using an embedded ML algorithm over OTUs [11].  

The various filter techniques used for evaluating OTU data are Correlation-based fea-

ture selection (CFS), selecting OTU features that are highly correlated with the class 

but uncorrelated with each other; Info-gain based feature selection (IFS) which is driven 

from probabilistic modelling of nominal valued feature subsets; Principal Component 

Analysis (PCA) that transforms existing features in the subset to new features in lower 

dimensional feature space; and Relief based Evaluation (RB), evaluating the worth of 

OTU features by instance based learning [11]. Wrapper Based Filters evaluate attribute 

sets by estimating their accuracy using a learning scheme [11]. The related user defined 

parameters include the classifier model, the number of associated folds (set to 5), ran-

dom seed (set to 1) and any associated threshold value (set to 0.01) in our current study. 

The classifier model supports a variety of algorithms from Naïve Bayes probabilistic 

http://qiime.org/
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measure, Support Vector Machines, K-Nearest Neighbor, Logistic Regression to Ran-

dom Forests, Boosting, etc. The most discriminative OTU feature selection has poten-

tial to reduce complexity of the potential ML model and increase the performance.  

 
DNA sequences encoded for the variable regions of 16SrRNA 
gene are transformed to OTU table on some similarity cut off (usu-
ally 97%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. An integrated approach for functional analysis in metagenomics     

3.2 Learning Functional Models 

A machine learning model works over the knowledge induced from the sample OTU 

data sub-sets attained in section 3.1. Applying ML models for categorizing the OTU 

features, into one of a pre-specified set of functional categories, is the key characteristic 

step of functional metagenomics. To identify the most suitable model for predicting 

functional metagenomes, various supervised ML classification algorithms were evalu-

ated for their fitness in the prediction task against the selected OTU feature set. The 

range of classifiers applied are: Naïve Bayes (NB) with kernel estimator as false; Neural 

Network (NN), with hidden layers as 01/02/ no=(features + classes)/2, random seed as 

1-10, validation threshold as  20, model learning rate as 0.3, momentum as  0.2; Random 

Forest (RF) with maximum tree depth as 0-6; Support Vector Machine (SVM) with 

Poly-Kernel/RBF Kernel and c, seed parameters varying between 0-10; Logistic Re-

gression (LR) with ridge estimation; k-Nearest-Neighbor’s classification (K-NN) with 

linear nearest neighbor search and no: of neighbors as 1-5; Adaptive Boosting (AdaB) 
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and an ensemble of classifiers(Zero-R, NN, K-NN, LWL) [12,13]. To assess the per-

formance of each prediction model, a 10-folds cross validation procedure was carried 

out in which OTU data is randomly split into k = 10, mutually exclusive subsets of 

equal size for overall assessment of classification. The performance assessment metrics 

used for evaluating classification models, in our study, are: Accuracy (Ac.), Precision 

(Pr.), Sensitivity (Se.), and Specificity (Sp.), Area under Curve (AUC-ROC) [13, 14]. 

4 Experiments and Results 

Predictive modelling over the Use Cases supports holistic understanding of input data 

behavior, and an objective of this study is to identify feature selection/s method and 

classifier/s, which are robust and efficient for analysis. The results presented in this 

section (Fig.2. (a, b)), were obtained after experimenting with the classifiers listed in 

section 3 and tuning their learning parameters to yield optimum output. The optimal 

parameters were adjusted by tuning values of batch size, estimator, optimization algo-

rithm, search algorithm, number of iterations, random seed, complexity parameters, 

weight threshold, etc. The experiments were performed in WEKA 3.8 [11,13]. Firstly, 

we applied 8 classification algorithms (NB, NN, SVM, RF, LR, K-NN, AdaB, Ensem-

ble) as predictive models, without any feature selection/s, on both Use Case data sets, 

for determining the functional classes. The accuracy of functional classification cov-

ered range from 25% to77% over our Use Cases. The four dominant classifiers provid-

ing overall good accuracy were: SVM, LR, NN and RF. 

The accuracy of 77.5 %, achieved by SVM at Phylum level of Use Case 1 and accu-

racy of 50 % by SVM at Species level of Use Case 2; proved to be best prediction 

results without feature selections. These results proved useful for further comparative 

analysis. We thereafter, applied both filter based (CFS, IFS, PCA, RB) and wrapper 

based (LR, SVM, NN, RF) feature selections, using BFS and RM search methods. 

Overall the combination of Wrapper based filter method with Logistic learner for fea-

ture selections’ and the classification with LR model {parameter settings: - batch size 

as 100, with ridge estimator for log likelihood as 1.0E-8}, provided highest accuracy in 

predicting functional classes for metagenomic studies in hand. The highest accuracy of 

97.5 % was attained for MetaPlat rumen data and accuracy of 94.4 % for human micro-

biota, with the above said combination (Fig.2. (a, b)). The proposed combination, 

achieved the test average AUC of 0.972 with only 12 OTUs, in comparison to LR, 

which has AUC of 0.577 with all OTUs (386) in MetaPlat cattle rumen data at genus 

level of study. Additionally, on human microbiota data, it achieved average AUC of 

1.000 with only 4 OTU features, serving much better than LR model having AUC 0.530 

over all 756 OTU species.  

The application of LR model substantially depicted higher predictive accuracy in 

comparison to other state of art conventional ML approaches over feature selections.  

The OTU abundance count data usually have high variance and is not normally distrib-

uted. LR proved to be more robust in classification of metagenomic use cases, as it 

assumes that, the independent OTU features need not to be normally distributed, or 

have equal variance in each class/functional group. 
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Fig. 2. a. Performance of Classifier/s and Feature Selection/s over Use Case 1 

 

Fig. 3. b. Performance of Classifier/s and Feature Selection/s over Use Case 2 (Here, NFS: No 

Feature Selection, FFS: Filter Feature Selection and WFS: Wrapper Feature Selection) 

The findings report that feature subset selection provides a drive for comparative very 

good classification accuracy. CFS and Wrapper with LR and RF, proved to be most 

effective feature selection methods over metagenomic Use Cases. The bacterial se-
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Brevibacterium, Methanosphaera, Butyrivibrio, Erwinia and Salana. Bifidobacterium-

dentium, Campylobacterconcisus, Helicobacterhepaticus, Mycobacteriummarinum 

and Borreliaburgdorferi species proved to be significant in analysis over Use Case 2. 
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5 Conclusion and Future work 

In this paper, we have presented an integrative approach to characterize OTU features 

that are useful in identifying functional roles in metagenomic studies. The results, show 

that feature selections play an important role in metagenomic analysis. We propose that 

LR with wrapper based on LR learner considering ridge estimation, potentially give 

higher validation accuracy for identifying functional roles from human and cattle mi-

crobiomes. However, it may be computationally intensive for very large data sets. Also, 

we considered independent OTU features in LR for metagenomic analysis. In future, 

we propose to apply new optimization methods with phylogeny-driven LR, integrating 

association analysis into our framework; for gaining over computational efficiency. 
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